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Abstract. Silicate mineral dissolution rates depend on the in-

teraction of a number of factors categorized either as intrin-

sic (e.g. mineral surface area, mineral composition) or ex-

trinsic (e.g. climate, hydrology, biological factors, physical

weathering). Estimating the integrated effect of these factors

on the silicate mineral dissolution rates therefore necessitates

the use of fully mechanistic soil evolution models. This study

applies a mechanistic soil evolution model (SoilGen) to ex-

plore the sensitivity of silicate mineral dissolution rates to

the integrated effect of other soil-forming processes and fac-

tors. The SoilGen soil evolution model is a 1-D model devel-

oped to simulate the time-depth evolution of soil properties

as a function of various soil-forming processes (e.g. water,

heat and solute transport, chemical and physical weathering,

clay migration, nutrient cycling, and bioturbation) driven by

soil-forming factors (i.e., climate, organisms, relief, parent

material). Results from this study show that although soil so-

lution chemistry (pH) plays a dominant role in determining

the silicate mineral dissolution rates, all processes that di-

rectly or indirectly influence the soil solution composition

play an equally important role in driving silicate mineral dis-

solution rates. Model results demonstrated a decrease of sil-

icate mineral dissolution rates with time, an obvious effect

of texture and an indirect but substantial effect of physical

weathering on silicate mineral dissolution rates. Results fur-

ther indicated that clay migration and plant nutrient recycling

processes influence the pH and thus the silicate mineral dis-

solution rates. Our silicate mineral dissolution rates results

fall between field and laboratory rates but were rather high

and more close to the laboratory rates possibly due to the

assumption of far from equilibrium reaction used in our dis-

solution rate mechanism. There is therefore a need to include

secondary mineral precipitation mechanism in our formula-

tion. In addition, there is a need for a more detailed study that

is specific to field sites with detailed measurements of sili-

cate mineral dissolution rates, climate, hydrology, and min-

eralogy to enable the calibration and validation of the model.

Nevertheless, this study is another important step to demon-

strate the critical need to couple different soil-forming pro-

cesses with chemical weathering in order to explain differ-

ences observed between laboratory and field measured sili-

cate mineral dissolution rates.

1 Introduction

Silicate mineral weathering is the major source of most plant

nutrients in soils (Carey et al., 2005; Hartmann et al., 2014),

and it is probably the foremost process controlling soil pro-

duction rates (Anderson et al., 2007; Dixon and von Blanck-

enburg, 2012). Silicate mineral dissolution rates also have

implications on acidification in forest soils (Phelan et al.,

2014) and carbon sequestration (Beaulieu et al., 2011; God-

déris et al., 2013; Pham et al., 2011). Quantifying the rates of

silicate mineral dissolution is therefore of utmost importance

to answer many environmental questions such as the surface

and groundwater composition, the supply of macronutrients

(e.g K and Ca) in forests, and the neutralization of acid pre-

cipitation (Ganor et al., 2007).

Indeed a lot of work has been devoted to quantifying sil-

icate mineral dissolution rates using both laboratory exper-

iments (Blum and Stillings, 1995; Chou and Wollast, 1985;

Knauss and Wolrey, 1986; Lee et al., 1998; Stillings and Su-

san, 1995; Zhu and Lu, 2009) and field experiments (Maher
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et al., 2009; Parry et al., 2015; White and Brantley, 2003;

White et al., 1996; White, 2003; White, 2002). One common

conclusion from most of these studies is that a discrepancy

of up to 5 orders of magnitude (Oliva et al., 2003; Parry et

al., 2015; White et al., 1996; Zhu, 2005) does exist between

laboratory and field weathering rates. There seems to be a

general consensus that these differences may be explained by

(i) changes in fluid composition, (ii) changes in primary min-

eral surfaces (reactive sites), (iii) the formation of secondary

phases, (iv) efficiency of solution/mineral contact, and (v) the

composition of the soil solution in micro pores. White (2002)

grouped these factors into two: intrinsic (e.g. mineral compo-

sition, surface area) and extrinsic factors (e.g. solution com-

position, climate, biological processes). All these five fac-

tors could slow field weathering rates compared to labora-

tory experiments where most of the physical, biological, and

chemical conditions can be constrained (White and Brantley,

2003). In general the integrated effects of these intrinsic and

extrinsic factors are complex and certainly difficult to capture

both in the field and in the laboratory experiments. Moreover,

uncertainty in the extrinsic factors that occurred and varied in

the past is difficult to constrain in experiments (Moore et al.,

2012; White and Brantley, 2003).

Modelling approaches enhanced by an understanding of

silicate kinetic rates and mechanisms from the experimental

works are therefore essential to facilitate in the quantification

of silicate dissolution rates (Beaulieu et al., 2011; Goddéris

et al., 2006; Hellevang et al., 2013; Roelandt et al., 2010;

Stendahl et al., 2013). However, in only a few of these mod-

elling approaches (Goddéris et al., 2006; Maher et al., 2009;

Moore et al., 2012) has the integrated effect of some intrinsic

and extrinsic factors on silicate mineral dissolution rates been

investigated. There is a need for mechanistic models capa-

ble of simulating the integrated effect of physical, biological,

and chemical soil-forming processes on chemical weathering

rates. Such coupling will give the possibilities to determine

the role played by intrinsic and extrinsic factors and explain

the differences in dissolution rates observed in the laboratory

and field experiments (Goddéris et al., 2006; Hartmann et al.,

2014; Moore et al., 2012).

The objective of this work is to explore the integrated ef-

fect of physical weathering, clay migration, and plant uptake

processes on the silicate mineral dissolution rates with par-

ticular emphasis on physical weathering. The relationship be-

tween particle size distribution and chemical mineral weath-

ering is well-known. Holding other factors constant (eg. pH),

the smaller the grain size the larger the surface area per unit

mass and consequently the higher the rate of chemical weath-

ering (Hartmann et al., 2014). In most cases, a constant grain

size distribution has been assumed when estimating weath-

ering rates; this assumption could be invalid especially when

looking at longer timescales. This contribution applies a Soil-

Gen model (a model that simulates evolution of soil proper-

ties as a function of several interactive soil-forming processes

including water flow, chemical weathering, physical weath-

ering, carbon-cycling, cation exchange, clay migration, nutri-

ent uptake by plants, bioturbation, and leaching) to evaluate

the sensitivity of silicate mineral dissolution rates to other

soil-forming processes.

In summary, this study addresses the interactive effects of

intrinsic and extrinsic factors on chemical weathering using a

mechanistic soil model. We mainly focused on the effects of

physical weathering with the hypothesis that physical weath-

ering affects the magnitude of chemical weathering and this

could partly be the cause of systematic deviations between

laboratory and field approaches to estimate silicate mineral

dissolution rates.

Specific objectives are to (i) assess the effects of par-

ent material composition on the silicate mineral dissolution

rates, (ii) assess sensitivity of chemical silicate mineral dis-

solution rates to change in soil texture, (iii) assess the effect

of physical weathering of primary minerals on their disso-

lution rates, (iv) assess the effect of interactive soil-forming

processes on silicate mineral dissolution rates, and (v) com-

pare our modelled silicate mineral dissolution rates to rates

reported in literature.

2 Materials and methods

2.1 Study area

This is a sensitivity test study that is not specific to any

location. However, the choice was made to do this study

in the forested loess soils, in the Zonian forest in Belgium

(50◦46′31′′ N, 4◦24′9′′ E), primarily because the soil-forming

processes (clay migration, physical weathering, decalcifica-

tion, carbon-cycling) in the model have already been cali-

brated to this site (Finke and Hutson, 2008; Finke, 2012;

Opolot et al., 2015; Yu et al., 2013). In addition, the mea-

sured soil data (Finke, 2012; van Ranst, 1981) and other re-

constructed model input data (Finke and Hutson, 2008) were

readily available for this site.

2.2 Research set up

As the objectives (1 and 2) of this study are also to assess

the sensitivity of silicate weathering rates to differences in

parent material and soil texture, the research set up (Fig. 1)

is such that different initial textures and mineralogy are cap-

tured. Therefore, rather than using texture and soil miner-

alogy measurement from the study site, six different tex-

ture points were randomly selected from the USDA textural

triangle (Soil Survey Division Staff, 1993) to represent the

initial soil texture. Three different parent materials (granite,

basalt and peridotite) were selected in such a way that slow

(felsic igneous rock), moderate (mafic igneous rock), and

fast weathering (ultramafic) rocks were taken into account.

The geochemical data (oxide weight composition) typical of

granite, basalt and peridotite were obtained from literature

(Blatt and Tracy, 1996; Harris et al., 1967; Hartmann et al.,
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 Figure 1. Research set up.

2013) and the mineralogical compositions were estimated

from these geochemical data using the normative mineral-

ogy calculation method (Cross et al., 1902; Kelsey, 1965).

Only primary minerals were considered at this stage and their

weight compositions were rescaled to sum up to one.

At this stage two scenarios (with physical weathering,

PhyWE and without physical weathering, NoPhyWE) were

defined but in two different model setups (Model A and

Model B; Fig. 1). Model setup 1, hereafter referred to as

Model A, is intended to simulate majorly the effect of change

in particle size (due to physical weathering process) on sili-

cate weathering rates and therefore the effects of other pro-

cesses (clay migration, carbon-cycling, bioturbation) on sil-

icate weathering rates are minimized by deactivating these

processes in this model set up. Model setup 2, hereafter re-

ferred to as Model B, was intended to simulate the interac-

tive effect of other soil-forming processes (including physi-

cal weathering, clay migration, carbon-cycling, plant uptake,

bioturbation) on silicate weathering rates and therefore all

these processes are active. The soil-forming processes in-

cluded in the SoilGen and input data are briefly discussed

in the subsequent sections. In total, 72 cases were run in the

SoilGen model (i.e two set ups X two scenarios X six texture

points X three parent materials).

The output parameters from the model include soil tex-

ture (% mass fraction of clay, silt and sand), pH, base satu-

ration, weathering indices, mass of each mineral remaining,

etc. For this study the outputs of interest extracted included

pH, clay mass fraction, and mineral mass. The mass of each

mineral remaining after the simulation period (15 000 years)

was used to calculate the respective dissolution rates of each

mineral and was the basis for the sensitivity analysis as will

be explained in the subsequent sections.

2.3 The SoilGen model

The SoilGen model is a 1-D model designed to simulate time

- depth evolution of soil properties as a function of interactive

soil-forming processes (majorly driven by the soil-forming

factors (“CLORPT”): climate, living organisms, relief, par-

ent material, time). The governing processes in the model in-

clude unsaturated water flow simulated using Richard’s equa-

tion, heat flow described following heat flow equation, and

solute transport described by convection-dispersion equa-

tion (CDE). For unsaturated water flow, the model uses van

Genuchten parameters to characterize water retention and

hydraulic conductivity relations. The van Genuchten param-

eters are estimated each simulation year by a pedotransfer

function (HYPRES; Wosten et al., 1999) using texture, or-

ganic matter content and bulk density and all these three soil

properties are simulated in the model.

Other processes described in the model include carbon cy-

cling (based on RothC 26.3 approach; Jenkinson and Cole-

man, 1994 but applied per soil compartment in SoilGen),

clay migration, bioturbation, chemical and physical weather-

ing, and biogeochemical recycling by plants (Finke and Hut-

son, 2008; Finke, 2012). The model has successfully been

applied in several case studies e.g., to simulate clay migra-

tion in forest and agricultural land uses in northern France

(Finke et al., 2015), to reconstruct soil properties (texture,

bulk density, calcite content, pH and OC %) for archaeolog-

ical land evaluation (Zwertvaegher et al., 2013), to estimate

the effect of bioturbation (due to tree fall) on soil horizon

thickness (Finke et al., 2013), to explain the effect of slope

and exposition on soil properties and decalcification depth

(Finke, 2012), and to assess the effect of varying climate on

calcareous loess soils (Finke and Hutson, 2008). The SoilGen

model has also been applied to the Norway chronosequences

(start of soil formation between 11050–2100 years BP) to test

how well soil development would be described by modelling

(Sauer et al., 2012). Measured soil properties (e.g., pH, base

saturation, CEC, clay mass fraction and organic carbon con-

tent) of the chronosequences were compared to the respective

model simulations and the conclusion was drawn that model

quality was fairly good, although with differences between

output parameters, and that quality was not decreasing with

older soils. In general, the coupling of major soil interact-

ing processes (biological, chemical and physical) in the Soil-

Gen model makes its application domain versatile. State of

art overview of the SoilGen model including simulated pro-

cesses, data requirements, calibration, and quality test stud-

ies have been presented in (Opolot et al., 2015) and are not

discussed in detail here. Physical and chemical weathering

processes that form the basis of this study are, however, ex-

plained in detail in the subsequent subsections.
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2.3.1 Physical weathering

Physical weathering in SoilGen is defined as the stochastic

process through which soil particles are split up into smaller

particle sizes due to strain caused by temperature gradients.

The process of physical weathering consequently leads to the

reduction in grain size, producing material in the clay frac-

tion that may be moved by clay migration (Finke, 2012).

As a starting point, the fine earth fraction is divided into

particle size classes with boundaries at 2048–1024–512–

256–128–64–32–16–8–4–2 µm. It is assumed that all parti-

cles are cubes and have an edge size halfway between the

class limits: 1536, 768, 384, 192, 96, 48, 24, 12, 6, 3, and

1 µm. In principle, each particle has to be split in half up to

7 times to attain 8 equally sized particles in the next smaller

particle size class. The splitting probability of each particle,

Ps is assumed to follow Bernoulli process and depends on the

temperature gradient over a certain time interval, dt (Finke,

2012):

Ps =


Ps,max if

dT

dt
> B

Ps,max×
dT
dt

B
if

dT

dt
≤ B

(1)

where B is a threshold temperature gradient over dt , where

Ps,max is maximal, T is the temperature, and Ps,max is the

maximal split probability. Ps,max and B are normally sub-

jected to calibration in conjunction with parameters that de-

scribe clay migration (Finke et al., 2015).

The expected number of the potential splitting events,

E(N) that are needed to achieve successful splits, m (i.e.,

m= 7) are assumed to follow the negative binomial distribu-

tion and are defined as

E(N)=
m

Ps

(2)

Thus the number of grains, S in any particle size class i that

is split in time dt is obtained from Eq. (3):

Si, dt =min
(
ki, t−dtki, t−dt/E (N)

)
, (3)

where ki,t−dt is the number of grains in particle size class at

the start of dt and ki, t is defined as

ki,t = ki,t−dt − a× Si,dt + b× 8× Si−1,dt , (4)

where a = 0 for clay fraction (i = 11) and a = 1 else; b = 0

for the coarsest sand fraction (i = 1) and b = 1 else (Finke,

2012).

It has to be noted that physical weathering in SoilGen

is assumed to be caused solely by temperature fluctuations

and other mechanical processes that result in the breakup of

bedrock (e.g. by plant roots) are not modelled. The splitting

of gravel-sized particles is yet to be included in the descrip-

tion of physical weathering and this currently limits the use

of the SoilGen model to unconsolidated, non-gravelly de-

posits.

2.3.2 Chemical weathering

The weathering mechanism that is implemented here (i.e., in

SoilGen2.25) is different from the mechanism that has been

used in the previous version of the SoilGen model (Soil-

Gen2.24). The previous chemical weathering module (un-

weathered phase) of SoilGen considers the four most com-

mon primary minerals (Anorthite, Chlorite, Microcline, Al-

bite) that respectively release Ca, Mg, K, and Na. Congru-

ent weathering of Anorthite, Chlorite, Microcline and Al-

bite release Al. A detailed mechanism is already presented

in (Opolot et al., 2015; Sect. 2.1.2: Weathering processes).

In general, the approach is based on the acidification models

and takes only a few minerals into account. There was a need

to extend this module to allow simulation of chemical weath-

ering of a wider range of primary minerals such that more

chemical species may be simulated (Opolot et al., 2015).

The extended chemical weathering system presented here is

based on the transition state theory and similar to the ap-

proaches already presented in other weathering models e.g.

Sverdrup and Warfringe (1995) and Goddéris et al. (2006).

The release rate of cation, i from all the k minerals, ri,k
(mol m−2 s−1) can be computed as:

ri,k =
∑N

k=1
Akvi,krkmkt, (5)

where Ak (m2 mol−1) is the specific surface area of the kth

mineral, vi,k (−) is the stoichiometric number of the ith el-

ement in mineral k, and rk (mol m−2 s−1) is the dissolution

rate constant of the kth mineral. mk is the amount of the kth

mineral in the parent material expressed in (mol m−3 soil)

and t (m) is the thickness of the soil compartment (= 0.05 m

in SoilGen).

The total surface area of soil minerals, Aj (m2 g−1) can be

obtained based on the percentage fractions of sand, silt and

clay (Eq. 6; Sverdrup and Warfvinge, 1995). The individual

reactive area Ak is obtained as a product of weight composi-

tion of kth (kcomp)mineral and Aj . Ak is again multiplied by

the relative formula mass of the mineral (kRFM, g mol−1) to

give the mineral area Ak in m2 mol−1 (Eq. 7):

Aj = 8xclay+ 2.2xsilt+ 0.3xsand+ 0xcoarse. (6)

Coefficients 8, 2.2 and 0.3 represent the specific surface areas

(m2 g−1) of clay, silt and fine sand (< 256µ) sized particles,

respectively.

Ak = Aj × kcomp× kRFM. (7)

The use of the above texture function (Eq. 6) is based on the

assumptions that the particle size fractions of clay, silt, sand,

and coarse add up to 1, i.e 100 % (Sverdrup and Warfvinge,

1995) and that the particle grains are of the same shape over

time. It has to be noted here that the PROFILE model (Sver-

drup and Warfvinge, 1995) has been considerably criticised

(e.g Hodson et al., 1997), partly because of the use of this

Biogeosciences, 12, 6791–6808, 2015 www.biogeosciences.net/12/6791/2015/
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equation to estimate the mineral reactive area. The accurate

estimation of reactive mineral surface area in natural environ-

ments is still a subject of considerable debate (e.g. Hodson

et al., 1997; Brantley et al., 2008). Nevertheless, the use of

Eq. (6) along with experimental dissolution rates normalized

to the BET surface area allows for the good estimation of

mineral surface area in natural environments (Sverdrup and

Warfvinge, 1995). This function is therefore still widely used

as a reasonable first estimate of mineral surface areas (God-

déris et al., 2006; Gudbrandsson et al., 2011; Koptsik et al.,

1999; Koseva et al., 2010; Phelan et al., 2014; Stendahl et al.,

2013; Violette et al., 2010; Whitfield et al., 2010).

The dissolution rate of most silicate minerals, rk at far

from equilibrium conditions is calculated as a function of pH

(Eq. 8), is based on laboratory kinetic laws derived from the

concept of transition state theory (Eyring, 1935; Brantley et

al., 2008).

rk = kHa
n
H+
+ kH2O+ kOHa

m
OH−

(8)

where kH, and kOH are mineral dissolution rate constants at

acidic and basic conditions, respectively. The parameters kH

and kOH have to be corrected for temperature (Eqs. 9 and 10).

aH+ and aOH− are activities of H+ and OH−, respectively,

and superscripts n and m denote the reaction orders. kH2O is

a parameter describing the dissolution rate at neutral pH and

was not considered in the implementation because at neutral

conditions the dissolution rate of silicates is so slow that this

term makes an insignificant contribution to the overall sili-

cate dissolution rate (Brantley, 2004).

kH

kH25

= exp

[
kEaH

R

(
1

298.15
−

1

T

)]
(9)

kOH

kOH25

= exp

[
kEaOH

R

(
1

298.15
−

1

T

)]
(10)

where kH25 and kOH25 are measured dissolution rate con-

stants at 25 ◦C (298.15 K); kEaOH, kEaH (KJ mol−1 K−1)

are the activation energies of a kth mineral at acidic and

basic conditions, respectively, and R is a gas constant

(0.00831446 KJ mol−1 K−1). T is absolute soil temperature

(K) and it is simulated in the model.

2.4 Model input data

The SoilGen model was designed keeping in mind the gener-

ally accepted paradigm that soil is a function of soil-forming

factors; “CLORPT” (Jenny, 1941). Therefore the model uses

these factors either as initial conditions (e.g mineralogy, tex-

ture) or boundary conditions (e.g. climate, vegetation, biotur-

bation, slope, and exposition). The initial conditions specify

to the model the initial soil properties at the beginning of the

simulations and are usually assumed to be equal to the soil

properties from the analysis of samples taken from the C-

horizon. Initial texture and mineralogy used in this study are

Table 1. Texture points randomly selected from the USDA textural

triangle (Soil Survey Division Staff, 1993) and used as initial soil

texture in all the model runs.

Texture Sand (%) Clay (%) Silt (%) Textural class

Number

1 63.3 12.0 24.7 Sandy loam

2 41.6 18.7 39.8 Loam

3 5.5 27.4 67.1 Silty Clay Loam

4 86.8 6.1 7.0 Loamy Sand

5 8.7 10.7 80.6 Silt

6 51 4.1 44.9 Sandy Loam

shown in Tables 1 and 2, respectively. Other initial soil prop-

erties (e.g. initial OC %, bulk density, solution composition,

and exchange surface chemistry), and boundary conditions

(i.e., time series of climate, vegetation and bioturbation) were

taken from Finke (2012).

2.5 Calculating average silicate dissolution rates

Silicate mineral dissolution rate usually reported in units of

mol m−2 s−1 is defined as the amount of mineral (moles) that

is released in the form of constituent elements per unit area

(e.g., cm2, m2 or ha) or volume (cm3, m3) over a given pe-

riod time. Similar to the approach used in (White and Brant-

ley, 2003), congruent weathering was assumed and the moles

of each cation released during silicate mineral dissolution

was based on the stoichiometric coefficient of that particu-

lar element in the mineral. To calculate the dissolution rate

of a given mineral, the amount of mineral (mass per unit

volume) remaining after defined simulation period was sub-

tracted from the respective amount of each mineral initially

present. This difference was then converted to mol m−2 by

multiplying with the respective compartment thickness (t)

and dividing by the relative formula mass (RFM). The re-

sulting value was again divided by the simulation period to

give dissolution rates in mol m−2 s−1 (Eq. 11).

kdiss =
(mkinit− mkfinal)× 1000× t

RFMk × SP
(11)

where kdiss (mol m−2 s−1) is the dissolution rate of silicate

mineral, k, mkinit and mkfinal are the initial and the final mass

(kg m−3) of silicate mineral k, RFMk is the relative formula

mass (g mol−1) of mineral k, and SP is the simulation period

(s). The number 1000 is the conversion factor from Kg to g

of mineral k.

2.6 Sensitivity analysis

Morris’ sensitivity method (Morris, 1991) was used to assess

the sensitivity of average silicate mineral dissolution rates

to texture and physical weathering. It is one of the simplest

and most widely used sensitivity analysis methods (Saltelli

www.biogeosciences.net/12/6791/2015/ Biogeosciences, 12, 6791–6808, 2015



6796 E. Opolot and P. A. Finke: Sensitivity of silicate mineral dissolution rates to physical weathering

Table 2. Primary minerals and their relative weight composition.

The oxide weight composition typical of granite, basalt and peri-

dotite was obtained from literature (Blatt and Tracy, 1996; Harris et

al., 1967; Hartmann et al., 2013). The mineralogical compositions

were estimated from these data using the normative mineralogy cal-

culation method (Cross et al., 1902; Kelsey, 1965).

Parent material Primary silicate mineral (wt %)

type

Albite K-feldspar Quartz Forsterite

Granite 42.3 26.1 31.6 –

Basalt 32.1 34.5 – 33.4

Peridotite 10.9 0.3 – 88.8

et al., 2005). It is computationally cheaper than other sensi-

tivity methods and therefore suitable for especially long run

time models such as SoilGen (Finke et al., 2015; Yu et al.,

2013). The method basically aims to quantify the response

of model output due to differences in the levels of input pa-

rameter (the so-called elementary effects). In this study the

levels include different textures and whether physical weath-

ering is allowed or not. The output of interest in this case

is the amount of mineral (Kg m−3) lost over the simulation

period due to chemical weathering which is itself influenced

by differences in texture and physical weathering. The ele-

mentary effects of differences in texture (ui) on the amounts

of mineral lost were calculated following Eq. (12; Morris,

1991). Sensitivity of each silicate mineral was then evalu-

ated by plotting the mean and the standard deviations of the

elementary effects against each other (in the x and y axis,

respectively) for both PhyWE and NoPhyWE scenarios and

for each parent material.

ui =
Y (x1, x2,x3. . .xi +1xi)− Y (x1, x2,x3. . .xi)

1xi
(12)

where x1, x2,x3. . .xi are the different levels of input parame-

ter (i.e., different textures, in this study), 1xi is the variation

imposed on the input parameter measured as the Euclidean

distance between two points in the textural triangle, and Y is

the model output in response to each level of input parameter.

3 Results and discussion

3.1 pH evolution as a function of parent material

The evolution of pH as a function of parent material is shown

in Fig. 2a (Model A) and Fig. 2b for model B. There is erratic

behaviour of pH in the beginning of the simulations (between

15 000 and 12 000 years BP especially under granite). Gen-

erally, pH is increasing with depth and decreasing over time

across the different parent materials as well as the two dif-

ferent model set ups (i.e, Model A and Model B). pH is gen-

erally higher in basalt and peridotite parent materials than

granite but only in the first 5000 years of simulation (i.e., up

to 10 000 years BP). The trends are, however, reversed in the

subsequent years especially in Model A. There is generally

a more gradual evolution of pH under model B compared

to model A with a generally lower pH under model A than

Model B, when comparing respective parent materials.

The erratic behaviour of pH in the beginning of the simu-

lations (between 15 000 and 12 000 years BP especially un-

der granite parent material (Fig. 2a, b)) could be linked to

the sensitivity of dissolution rates to dilution due to variation

in precipitation. This period coincides with the drier periods

(see Fig. 3 in Finke, 2012) with incidences of precipitation

deficit in some years. Precipitation deficit means low dilution

as well as limited mineral dissolution and release of cations,

consequently keeping the pH low. At the current model ver-

sion, the assumption is that dissolution occurs at far from

equilibrium and thus the effect of the formation of secondary

mineral formation on pH is not yet accounted for. This is cer-

tainly a limitation of this study and work is on-going to in-

corporate this mechanism into the model. A number of stud-

ies (Casey et al., 1993; Goddéris et al., 2006; Maher et al.,

2009; Moore et al., 2012; Zhu, 2005; Zhu et al., 2010) have

already demonstrated that solute composition and secondary

mineral precipitation controls the reaction affinity of primary

minerals. The dissolution rates from this study are therefore

expected to be faster than they would be if secondary min-

eral precipitation were to be taken into account. The plunge

in pH after 10 000 years BP for basalt and peridotite (Fig. 2a

and b) could be linked to the depletion of forsterite at that

time and thus less release of Mg2+. Comparing Fig. 2a and b,

the effect of mineralogical composition on pH appears to be-

come less in Fig. 2b (particularly after year 10 000 BP; be-

tween 500–1400 mm) compared to that in Fig. 2a. This trend

is likely due to the cation exchange capacity (CEC) buffering

effect on pH in the zone of clay accumulation (Finke, 2012).

3.2 Evolution of clay mass fraction

Figure 3 shows the depth distribution of clay mass fraction

taken at the final year of simulation (present situation). There

is a clear difference between Model A and Model B, with a

clear effect of physical weathering (PhyWE; dashed lines)

on the amount of clay mass fraction in Model A (particu-

larly in the top 0.3 m depth) where up to 8 % of clay mass

is produced due to physical weathering (Fig. 3; texture num-

ber 3). The effects of other processes, notably clay migra-

tion on clay mass fraction, is clearly visible in model B with

likely formation of an illuvial horizon (Bt horizon). Physi-

cal weathering and clay migration processes in the SoilGen

model have been calibrated and their effect on the formation

of eluvial (E) and Bt horizons was demonstrated in a mod-

elling approach by Finke (2012). Although the clay contents

were generally underestimated, Finke (2012) was able to re-

produce the measurements of E and Bt horizon thicknesses

by van Ranst (1981) in all three loess profiles in the Zonian
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Figure 2. (a) Time-depth evolution of pH with physical weathering (Model A) for three parent materials with texture number 5 (Table 1).

forest (see Fig. 7 in Finke, 2012). Since the chemical and

mineralogical analyses presented by van Ranst (1981) did not

support any clay new formation, the increase in clay content

with time was mainly attributed to the physical weathering

process. The right part of Fig. 3 shows the clear effect of

clay migration process on clay mass fraction. The clay mass

that is produced by physical weathering (Fig. 3, left panel)

is subsequently transported from the top compartments into

the lower compartments (through clay migration), forming

E and Bt horizons (Fig. 3, right panel), respectively (Finke,

2012). The complete Bt belly could not be shown by our re-

sults probably because of our shallow profile which was con-

sidered to reduce the run-time of the model.

3.3 Mineral dissolution rates

3.3.1 Effect of parent material composition on

dissolution rates

Figure 4 shows the effect of parent material composition on

the average dissolution rates of K-feldspar, albite, quartz, and

forsterite over successive time intervals of 500 years. With

the exception of quartz whose rates were increasing with

time, the dissolution rates across the three parent materials

decrease with time. The dissolution rates of albite and K-

feldspar are higher (especially at the beginning of the sim-

ulation) under the granite parent material than in basalt and

peridotite. Model A dissolution rates across all the minerals

are generally higher than the rates from Model B. In granite

however, dissolution rates of albite and K-feldspar in Model

A between 15 000 and 13 000 years BP are lower than the re-

spective dissolution rates in Model B. From 13 000 years BP

until 9000 years the dissolution rates are similar between the

two models. In Basalt and peridotite, the dissolution rates of

albite and K-feldspar between 13 000 and 9000 years BP are

higher in model B than in Model A. From 9000 until 0 years

BP, the dissolution rates of all minerals (except for quartz)

across three parent materials are generally higher in model A

than in model B.

The properties of the parent material very much influ-

ence the chemical weathering rates (Hartmann and Moos-

dorf, 2011; Navarre-Sitchler and Brantley, 2007; Oliva et al.,

2003). Results from this study indicate that the composition

of the parent material influences directly the pH of the soil

solution in two different ways: (i) by the type of cation it re-

leases into the solution (i.e, monovalent, divalent, trivalent)

and (ii) by the amount of cations released which is directly

related to the amount of mineral that is reacting. Therefore

all the trends pointed above and shown in Fig. 4 can be
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Figure 2. (b) Time-depth evolution of pH with interactive soil-forming processes (Model B) for three parent materials with texture number

5 (Table 1).
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Figure 3. Clay mass fraction (%) evolution as a function of physi-

cal weathering (Model A, left panel) and as a function of interactive

soil-forming processes (Model B, right panel). Roman numerals 1–

6 represent texture numbers presented in Table 1. Solid lines repre-

sent initial textures while broken lines represent evolution of texture

as affected by other soil processes i.e., only physical weathering

(left hand side) and a combination of mainly physical weathering

and clay migration (right hand side). Notice that with only physical

weathering allowed (Model A), the initial textures (solid lines) do

not change whereas in model B, even the initial textures change due

to other processes notably clay migration.

explained by the influence that the parent material has on

pH (e.g., interpreting Fig. 2a for model A and Fig. 2b for

Model B). The higher dissolution rates (especially in the be-

ginning) of albite and K-feldspar observed in granite com-

pared to basalt and peridotite could therefore be due to lower

pH observed in granite than in Basalt and Peridotite at that

point in time. The Mg2+ released from forsterite (which is

absent in granite) keeps the pH in the soil solution higher in

basalt and peridotite than in granite and thus the lower disso-

lution rates of albite and K-feldspar in basalt and peridotite.

The differences in Model A and B across the parent mate-

rials also follow the pH trends. For example in granite, the

average pH (at 0.5 m depth) in Model B is generally lower

than the pH in Model A between 15 000 and 13 000 years

BP and therefore higher albite and K-feldspar dissolution

rates and lower quartz dissolution rates in Model B. In basalt

and peridotite, the average pH at this period (between 15 000

and 13 000 years BP) is more or less the same and therefore

the same dissolution rates of albite and K-feldspar between

for both Model A and Model B. However between 12 000

and 9000 years BP, the average pH in basalt and peridotite is

lower in Model B than in Model A, thus explaining the ob-

served rise in the dissolution rates of albite and K-feldspar in
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Figure 4. Example (based on soil texture number 5; Table 1) of time evolution of silicate dissolution rates in different parent materials

(Granite, Basalt and Peridotite). The modelled rates are calculated for a depth of 0.5 m for every 500 years. Model A: Circles; solid (no

physical weathering) open (physical weathering allowed). Model B: Triangles; solid (no physical weathering) open (physical weathering

allowed).

Model B that are not observed in Model A. From 9000 years

BP until 0 years BP, Model A dissolution rates of albite, K-

feldspar, and forsterite are higher than respective rates in

Model B owing to the lower pH in Model A (averaged over

0. 5 m) than in model B (Figs. 2a and b). Quartz is less sensi-

tive to pH less than 6 (Knauss and Wolery, 1988) and thus its

dissolution rates in Model A and model B were not any dif-

ferent and did not seem to change from 10 000 until 0 years

BP.

3.3.2 Effect of initial texture

The effect of initial texture on silicate mineral dissolution

rates for Model A and Model B is presented in Fig. 5. As

would be expected and consistent with previous studies (e.g.

Hartmann et al., 2014; Phelan et al., 2014), the mineral dis-

solution rates are higher for finer textures than for coarse

textures because of higher mineral surface area of clay and

silt-sized particles compared to the sand-sized particles. In

model A, albite and K-feldspar dissolution rates across all

initial textures, generally decrease with depth while dissolu-

tion rates of quartz generally increase with depth. In model B,

albite and K-feldspar dissolution rates across all initial tex-

tures, are generally constant with depth (except for texture

number 4), while dissolution rates of quartz generally follow

the same trend as in Model A and increase with depth. These

dissolution rate-depth trends are related to pH which is gen-

erally increasing with depth. High pH favours quartz disso-

lution rates and slows down albite and K-feldspar dissolution

rates.
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Figure 5. Effect of initial texture (shown in Table 1) on the depth distribution of silicate dissolution rates. The rates shown are taken from

granite parent material and are averaged over a 15 000-year simulation period.

3.3.3 Effect of physical weathering

The effect of only physical weathering (Model A) and

the integrated effect of all soil-forming processes (Model

B) on the average silicate dissolution rates are shown in

Fig. 6a and b, respectively. The rates are presented as a ra-

tio of physical weathering to no physical weathering (i.e.,

PhyWE/NoPhyWE), where a value greater than 1 implies

higher dissolution rate due to physical weathering. The re-

sults (both in model A and B) indicate that the dissolution

rates are generally higher in the top of the profile and de-

crease down the soil profile. Except for Forsterite, results

in Model A indicate a positive effect of physical weather-

ing on silicate dissolution rates (i.e., PhyWE/NoPhyWE > 1).

Dissolution rates due to physical weathering are particularly

higher in texture number 4 (solid black line) across all the
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Figure 6. (a) Effect of physical weathering on silicate mineral dissolution rates (Model A). Dissolution rates are presented here as a ratio

of physical weathering to no physical weathering (i.e., PhyWE/NoPhyWE). Values greater than one imply that the rates are higher when

physical weathering is allowed. Roman numerals 1–6 represent texture numbers presented in Table 1.

minerals and parent materials with the exception of Quartz

mineral (in Model A) where dissolution rate due to physi-

cal weathering is highest under texture number 1. In model

B however, the effect of physical weathering is almost not

visible (except for the texture number 4; solid line) as in-

dicated with unity PhyWE/NoPhyWe ratios of all minerals

across the different textures. Higher dissolution rates with no

physical weathering compared to with physical weathering

(i.e., PhyWE/NoPhyWE < 1) were only observed for Albite

and K-feldspar below 0.75 m under Model B (see Fig. 6b:

granite; texture number 4).

As already mentioned in the previous section, the direct

effect of texture on chemical weathering is through its influ-

ence on the mineral surface area. Based on Eq. 6, this would

imply that the higher the number of particles moved from

coarse to fine classes, the higher the mineral surface area

and thus the higher the mineral dissolution rate. This seems

to be the case especially for coarse texture (texture num-

ber 4) where the dissolution rates of albite and K-feldspar

in basalt and peridotite (Fig. 6a) are up to 1.4 times higher

with PhyWE compared to NoPhyWE. The effect of physical

weathering on the dissolution rates of albite and K-feldspar

seems to be more pronounced in basalt and peridotite where

pH is relatively higher and thus imposes less dominance on

the chemical dissolution rates of albite and K-feldspar. The

generally lower pH under granite could explain the higher ef-

fect of physical weathering on quartz dissolution rates under

coarse textures 1, 4 and 6 (Fig. 6a).

The effect of texture on the dissolution rates could also

be indirect through its relationship with hydrology. Our re-

sults imply that, although the physical weathering process

produced more clay-sized particles (Fig. 3, left panel) from

already fine textures (i.e., 3 and 5; Table 1), the slowing down

of water flow by this fine texture resulted into reduced leach-

ing and higher pH, consequently cancelling out the added ef-

fect of physical weathering. Hydrology (water flow) and fluid

residence time influence leaching and saturation levels of the

soil solution (Moore et al., 2012; Velbel, 1993). According

www.biogeosciences.net/12/6791/2015/ Biogeosciences, 12, 6791–6808, 2015



6802 E. Opolot and P. A. Finke: Sensitivity of silicate mineral dissolution rates to physical weathering

 

 

 

 Granite     Basalt    Peridotite (b)

Figure 6. (b) Integrated effect of soil-forming processes on silicate mineral dissolution rates (Model B). Dissolution rates are presented here

as a ratio of physical weathering to no physical weathering (i.e., PhyWE/NoPhyWE). Values greater than one imply that the rates are higher

when physical weathering is allowed. Roman numerals 1–6 represent texture numbers presented in Table 1.

to Moore et al. (2012), hydrology is a key physical extrin-

sic factor and perhaps one of the most important factors that

could explain observed differences between laboratory and

field measured rates.

3.3.4 Interactive effects of selected soil-forming

processes on chemical weathering rates

The interacting soil-forming processes that affect chemical

weathering and are discussed this study include clay migra-

tion, plant uptake, carbon cycling, and physical weathering.

The results of these processes are presented under model

B (in Figs. 2b, 3 (right panel), 4, 5, 6b, 7, and 8). These

processes have both direct and indirect effects on chemical

weathering rates (White, 2002) through their influence on

texture (e.g. clay migration, physical weathering, bioturba-

tion) and on pH (e.g. clay migration, plant uptake, CO2 pro-

duction by mineralisation of organic matter). As discussed in

Finke (2012), clay migration process moves clay mass from

the top part of the profile into the lower part of the profile

(Fig. 3, right panel), leading to the formation of an argillic

(Bt) horizon which slows down water flow thus increasing

solute concentration and lowering reaction affinity (Smeck

and Ciolkosz, 1989; White and Brantley, 2003). Clay migra-

tion process also has a pH buffering effect (Fig. 2b) through

its influence on cation exchange capacity (Finke, 2012). El-

ement cycling through plant uptake and release (through or-

ganic matter decomposition) influences the pH and conse-

quently mineral weathering rates (Brady et al., 1999; Drever,

1994; Moulton et al., 2000; Stillings et al., 1996). Higher pH

that is visible in the top 0.25 m (Fig. 2b) can therefore be

attributed to plant nutrient cycling process.

3.4 Sensitivity of mineral dissolution rates to physical

weathering

Sensitivity of silicate mineral dissolution rates to texture and

physical weathering is shown in Fig. 7. Results show low
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Increasing mean differences in mineral dissolution rates due to elementary effects 

Model A       Model B 

Figure 7. Sensitivity of mineral dissolution rates to physical weathering (Model A) and to other interactive soil-forming processes (Model

B). The data used in this sensitivity analysis were extracted from the top soil compartment (0.05 m depth). µ and δ are the mean and standard

deviation, respectively of elementary effects (ui) calculated from Eq. (12).

sensitivity (Model A) to no sensitivity of dissolution rates

(Model B) due to differences in texture and physical weather-

ing across different minerals and parent materials. The pH of

the soil solution seems to be a dominant factor to the chem-

ical weathering of silicate minerals. In addition, the indirect

effect of physical weathering on water flow and thus soil pH

seems to oppose and cancel out the direct effects of physical

weathering on the mineral surface area (as shown in Fig. 6b)

and consequently the mineral dissolution rates.
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Figure 8. Comparison of SoilGen average mineral dissolution rates (Model A and Model B) to laboratory and field determined dissolution

rates. Field rates were taken from Parry et al. (2015) and White (2009; Table 2) while lab rates were taken from Holdren and Speyer (1987);

Siegal and Pfannkuch (1984); Swoboda-Colberg and Drever (1993); Blum and Stillings (1995), Lee et al. (1998): K-feldspar; Stillings et

al. (1996); Welch and Ullman (1996); Oxburgh et al. (1994); Blum and Stillings (1995), Chou and Wollast (1985); Knauss and Wolrey (1986);

Hamilton et al. (2000): Albite; Brady and Walther (1990); Dove (1994): Quartz. The same field and laboratory rates are repeated for different

parent materials (Granite, Basalt and Peridotite). Laboratory and field dissolution rates for Forsterite are not shown.

3.5 Comparison between SoilGen-modelled average

mineral dissolution rates and Laboratory and

field-measured rates

SoilGen modelled silicate dissolution rates (Models A and B)

were compared with rates obtained from field and laboratory

experiments (Fig. 8). Rates plotted are for the whole profile

depth (1.5 m) and for all the six different texture positions

shown in Table 1. These rates are averaged for 15 000 years

BP and they generally fall between what is reported from

field measurements and what is reported from the laboratory

studies. Our results are, however, generally closer to the labo-

ratory rates than the field measured rates most likely because

we assumed far from equilibrium reactions.

There seems to be no difference between dissolution rates

from Model A and Model B across different parent materi-

als when looking at the average rates over the whole sim-

ulation period of 15 000 years (Fig. 8). However, when the

rates are calculated over short time intervals e.g. 500 years,

there is a clear difference at some points in time between the

two models and even across different parent materials (see

Fig. 4 for example). The evolution of silicate dissolution rates

with time (Fig. 4) is not linear and this is in line with other

previous studies (e.g. Hodson and Langan, 1999; White and

Brantley, 2003). In general, silicate dissolution rates decrease

with time due to depletion of reactive surfaces and the forma-

tion of leached layers and secondary minerals (Hodson and

Langan, 1999; White and Brantley, 2003). The comparison

of dissolution rates obtained at different timescales therefore

remains a challenge and could partly explain the significant

differences in silicate dissolution rates reported in literature

(White and Brantley, 2003). In addition, the various defini-

tions of chemical weathering rates used in different studies

e.g. cation chemical weathering rates (CCWR), chemical sil-

icate rock weathering rates (CSRWR), and total chemical

weathering rates (TCWR) make it difficult to compare re-

sults between studies (Hartmann and Moosdorf, 2011). Inter-

preting and comparing results from different studies should

therefore be done with utmost care.

In our comparisons (Fig. 8) we chose to use only field and

laboratory dissolution rates normalized to BET surface areas

because the texture equation (Eq. 6) used to model mineral
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surface area was based on the calibration study with mea-

sured BET surface area (Sverdrup and Warfvinge, 1995).

The field and laboratory rates were however not tied to the

timescales or parent materials which could also limit our

comparisons to some extent. There are also other questions

that could be raised and that could potentially limit our com-

parisons with field and laboratory measurements. For ex-

ample, would the calibrations already done for clay migra-

tion, physical weathering, and carbon cycling processes in

the quartz-dominated loess sediment (Zonian forest; Finke,

2012) hold for other sites with mafic and ultramafic parent

materials? And whether ignoring the differences in climate

and the timescales would invalidate the comparison between

the dissolution rates from this study and previous studies? To

answer such questions requires a more detailed study that is

specific to field sites with field data of soil age, silicate dis-

solution rates, climate, hydrology, mineralogy, and any other

important factors to enable the calibration and validation of

the model. Although still challenging, such studies are al-

ready feasible on well-studied chronosequences (e.g. Moore

et al., 2012). However the intention of these comparisons

(Fig. 8) is to show the general trends of our simulations rather

than the absolute values.

4 Conclusions and outlook

We have used a fully mechanistic soil evolution model (Soil-

Gen) to explore the sensitivity of silicate dissolution rates

to the interaction between intrinsic (mineral composition,

mineral surface area) and extrinsic factors (climate, physical

weathering, clay migration, plant uptake, hydrology). Results

from this study have shown consistency with both theoreti-

cal understanding of the effects of these factors on chemi-

cal weathering, and with observations from experiments and

some modelling studies. Our results have demonstrated that

although soil solution chemistry (pH) plays a dominant role

in determining the silicate dissolution rates, all processes that

directly or indirectly influence the soil solution composition

play a major role in driving silicate dissolution rates. For ex-

ample, although the sensitivity results did not confirm sensi-

tivity of dissolution rates to physical weathering, the effect

of texture (as influenced by physical weathering) on hydrol-

ogy could have a substantial effect on the water flow, ele-

ment leaching and consequently the pH and silicate dissolu-

tion rates.

Our dissolution rates results were in between field and

laboratory rates, however they were rather high and closer

to the laboratory rates owing to the assumption of far from

equilibrium reaction. This remains a limitation of this study

since near-to-equilibrium conditions have mainly been re-

ported from the field experiments. However these findings

are important and challenge us to include secondary mineral

precipitation mechanism in the model and perform a com-

parative study to quantify these effects. Furthermore, cali-

bration and validation of the model to the sites with detailed

chronosequence data (soil age, silicate dissolution rates, cli-

mate, hydrology, mineralogy) is needed.

Despite the limitations identified, this study is another im-

portant step to demonstrate the critical need to couple differ-

ent soil-forming processes with chemical weathering in order

to explain differences between silicate dissolution rates mea-

sured in the laboratory and in the field. In summary, results

showed an inverse relationship of silicate mineral dissolution

rates with time, an obvious effect of texture and an indirect

but substantial effect of physical weathering on silicate dis-

solution rates. Additionally, results have shown that clay mi-

gration and plant nutrient recycling processes influence the

pH and thus the silicate dissolution rates.

Code availability

The SoilGen model is freely available. The user man-

ual and the programs for previous versions can be

downloaded at http://users.ugent.be/pfinke/index_bestanden/

Page1167.htm. SoilGen2.25 version is not yet available on

the website but can be obtained on request (by sending an

email to peter.finke@ugent.be).
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