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Abstract. Carbon transport in river systems is an impor-

tant component of the global carbon cycle. Most rivers of

the world act as atmospheric CO2 sources due to high river-

ine CO2 partial pressure (pCO2). By determining the pCO2

from alkalinity and pH, we investigated its spatial and tem-

poral variation in the Yellow River watershed using historical

water chemistry records (1950s–1984) and recent sampling

along the mainstem (2011–2012). Except the headwater re-

gion where the pCO2 was lower than the atmospheric equi-

librium (i.e. 380 µatm), river waters in the remaining water-

shed were supersaturated with CO2. The average pCO2 for

the watershed was estimated at 2810± 1985 µatm, which is

7-fold the atmospheric equilibrium. As a result of severe soil

erosion and dry climate, waters from the Loess Plateau in the

middle reaches had higher pCO2 than that from the upper

and lower reaches. From a seasonal perspective, the pCO2

varied from about 200 µatm to > 30 000 µatm with higher

pCO2 usually occurring in the dry season and lower pCO2

in the wet season (at 73 % of the sampling sites), suggesting

the dilution effect of water. While the pCO2 responded ex-

ponentially to total suspended solids (TSS) export when the

TSS concentration was less than 100 kg m−3, it decreased

slightly and remained stable if the TSS concentration ex-

ceeded 100 kg m−3. This stable pCO2 is largely due to gully

erosion that mobilizes subsoils characterized by low organic

carbon for decomposition. In addition, human activities have

changed the pCO2 dynamics. Particularly, flow regulation by

dams can diversely affect the temporal changes of pCO2, de-

pending on the physiochemical properties of the regulated

waters and adopted operation scheme. Given the high pCO2

in the Yellow River waters, large potential for CO2 evasion

is expected and warrants further investigation.

1 Introduction

Rivers play a crucial role in the global carbon cycle, be-

cause they can modulate the carbon dynamics not only of the

watersheds but also of the coastal systems into which river

waters are discharged (Aufdenkampe et al., 2011). Fluvial

carbon export represents an important pathway linking land

and the ocean. Approximately 0.9 Gt of carbon is delivered

into the oceans per year via inland waters (Cole et al., 2007;

Battin et al., 2009). However, rivers are not merely passive

conduits. Evidence is accruing to indicate that, while only

a small portion of carbon that enters a river network finally

reaches the ocean, a considerable fraction would be buried

within the river network or returned to the atmosphere en

route (Yao et al., 2007; Wallin et al., 2013). Consequently,

rivers are viewed as sources of atmospheric carbon dioxide

(CO2) (Cole et al., 2007; Butman and Raymond, 2011). Re-

cent estimates show that global inland waters can transfer

0.75–2.1 Gt C yr−1 into the atmosphere (Cole et al., 2007;

Tranvik et al., 2009; Raymond et al., 2013). Comparative

studies associated with lateral carbon fluxes have highlighted

the significance of CO2 evasion in assessing global carbon
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Figure 1. Location map of the sampling sites in the Yellow River

watershed. Acronyms for the mainstem dams: LYX – Longyangxia

since 1986; LJX – Liujiaxia since 1968; QTX – Qingtongxia since

1968; WJZ – Wanjiazhai since 1998; SMX – Sanmenxia since

1960; and XLD – Xiaolangdi since 2000.

budget (Melack, 2011). For example, Richey et al. (2002)

show that CO2 emission in the Amazon River basin is an or-

der of magnitude greater than fluvial export of organic carbon

to the ocean.

Decomposition of terrestrially derived organic carbon

and aquatic respiration are the primary sources of river-

ine CO2 (Humborg et al., 2010). As an important parame-

ter in estimating CO2 outgassing, partial pressure of river-

ine CO2 (pCO2) indicates the CO2 concentration in rivers

and the gradient relative to the atmospheric equilibrium (i.e.

380 µatm). Most rivers of the world have higher pCO2 than

the overlying atmosphere, suggesting a great emission poten-

tial (Cole et al., 2007; Striegl et al., 2012). While the river-

ine pCO2 of mainstem or estuary waters has been widely

recognized, such as the Amazon (Richey et al., 2002), Pearl

(Yao et al., 2007), and Columbia (Evans et al., 2013), a holis-

tic assessment concerning a complete river network is rare.

This is largely caused by the constraints of time and logistics

to conduct spatial sampling covering not only the mainstem

but also the lower stream-order tributaries. Indeed, tributaries

are physically and biogeochemically more active because

they have stronger turbulence and more rapid mixing with

the benthic substrate and the atmosphere than the mainstem

(Alin et al., 2011; Butman and Raymond, 2011; Benstead and

Leigh, 2012). For instance, Aufdenkampe et al. (2011) found

that the CO2 outgassing fluxes from small streams could be

2–3 times higher than from larger rivers. Thus, estimating

CO2 evasion based only on mainstem waters will underes-

timate the total efflux of a specific river system. Analysing

pCO2 at space- and timescales by high-resolution sampling

is a prerequisite for precisely evaluating CO2 outgassing and

its implications for the carbon cycle.

The Yellow River is characterized by high sediment and

total dissolved solids (TDS) among the world’s large rivers,

primarily because of severe soil erosion and intensive chem-

ical weathering and human activity. Its TDS concentration

of 452 mg L−1 is about four times the world median value

(Chen et al., 2005). Based on measurements at hydrologi-

cal gauges or in specific river reaches, prior studies have in-

vestigated its chemical weathering and carbon transport (e.g.

Zhang et al., 1995; Wu et al., 2008; Wang et al., 2012; Ran et

al., 2013). Soil respiration in terrestrial ecosystems and im-

pact of land use change on carbon storage have also been

analysed (Zhao et al., 2008; Li et al., 2010). By contrast,

few studies have examined its carbon dynamics in river wa-

ters and how riverine pCO2 has responded to catchment fea-

tures (Wang et al., 2012; Ran et al., 2013). Using historical

records across the watershed during the period 1950s–1984

and recent sampling along the mainstem, we calculated the

riverine pCO2 from alkalinity and pH. This study aimed to

investigate the spatial and temporal variation of pCO2 and

its responses to natural and human factors. The results will

provide insights into the coupling between soil erosion and

riverine pCO2 and the impact of dam operation on down-

stream riverine pCO2 changes.

2 Materials and methods

2.1 The Yellow River

The Yellow River drains 752 000 km2 of north China, orig-

inating in the Tibetan Plateau and flowing eastward into

the Bohai Sea (Fig. 1). Located in a semiarid–arid cli-

mate, its precipitation is spatially highly variable, decreas-

ing from 700 mm yr−1 in the southeast to 250 mm yr−1 in

the northwest (Zhao, 1996). Likewise, temperature changes

significantly, with the mean temperature in the upper (above

Toudaoguai), middle (approximately between Toudaoguai

and the Xiaolangdi Dam), and lower (below the Xiaolangdi

Dam) reaches being 1–8, 8–14 and 12–14 ◦C, respectively

(Chen et al., 2005). Because the Yellow River basin is in large

part surrounded by the Loess Plateau that has typically accu-

mulated huge erodible loess deposits (Fig. 1), it suffers from

severe soil erosion. Approximately 1.6 Gt of sediment was

transported to the ocean per year prior to the 1970s (Syvitski

et al., 2005). For comparison, the mean water discharge was

only 49 km3 yr−1 over the same period (Zhao, 1996).

Both hydrological regime and landscape within the water-

shed have been greatly altered due to intensive human ac-

tivity (Ran and Lu, 2012). While the water discharge has

dropped to 15 km3 yr−1 during the recent decade, the sedi-

ment flux has decreased to about 0.14 Gt yr−1 as a result of

massive soil conservation and sediment trapping by dams.

Among the numerous dams, these constructed on the main-

stem channel play fundamental roles in regulating deliv-

ery of water, sediment and dissolved solids (Ran and Lu,

2012), especially the joint operation of the Sanmenxia and

Xiaolangdi dams since 2000. With about 140 million people

currently residing within the watershed, the population den-

sity is 180 person km−2 (Chen et al., 2005), and it exceeds
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Table 1. pH at Luokou station during the period 1980–1984: a comparison of different data sources (arithmetic mean ± standard deviation).

Year

Data source 1980 1981 1982 1983 1984

GEMS/Water Programme 8.27± 0.11 8.21± 0.21 8.10± 0.20 8.14± 0.10 8.25± 0.09

This study 8.11± 0.13 8.14± 0.07 8.13± 0.07 8.10± 0.03 8.09± 0.05

% of variation 1.93 0.85 −0.37 0.49 1.94

300 person km−2 in some agricultural areas in the middle

reaches. Consequently, land use has become increasingly

both extensive and intensive.

The Yellow River basin was mainly developed on the Sino-

Korean Shield with Quaternary loess deposits overlying the

vast middle reaches and Archean to Tertiary granites and

metamorphic rocks in areas near the basin boundaries and

in the lower reaches (Chen et al., 2005). Chemical analy-

ses of loess samples show that feldspar, micas and quartz

are the most common detrital minerals with carbonates ac-

counting for 10–20 % (Zhang et al., 1995). Because the loess

deposits cover about 46 % of the total drainage area, the river

presents high alkalinity and intense rock weathering. With

exceptionally high TDS concentration the Yellow River de-

livers around 11 Mt of dissolved solids per year to the Bohai

Sea (Gaillardet et al., 1999).

2.2 Historical records of water chemistry

Historical records of major ions (e.g. Ca2+, Mg2+, Na+, K+,

Cl−, HCO−3 and SO2−
4 ) measured from a hydrological moni-

toring network were extracted from the Yellow River Hydro-

logical Yearbooks, which are yearly produced by the Yel-

low River Conservancy Commission (YRCC). Other vari-

ables concurrently measured at each sampling event, includ-

ing pH, water temperature, water discharge and total sus-

pended solids (TSS), were also retrieved from the yearbooks

for this study. The water samples for pH and temperature

were taken in the same time period as these for ion analy-

sis. Over the period from the 1950s to 1984, the sampling

frequency ranged from 1 to 5 times per month, depending on

hydrological regime. Sampling at some stations during the

period 1966–1975 were suspended or completely stopped.

Post-1984 records are not in the public domain. Given the

discontinuity in sampling, only the stations with at least 6

samples in a year were analysed. A total of 129 stations

with 15 029 water chemistry measurements were compiled

(Fig. 1).

Chemical analyses of the collected water samples were

performed under the authority of the YRCC following

the standard procedures and methods described by Alekin

et al. (1973) and the American Public Health Associa-

tion (1985). The pH and temperature were measured in field,

and total alkalinity (TAlk) was determined using a fixed end-

point titration method. Detailed description of the sampling

and analysis procedures can be found in Chen et al. (2002a).

The results are summarized in the Supplement (Table S1).

Use of historical records always raises the issue of data

reliability. No detailed information on quality assurance and

quality control is available in the hydrological reports. Ex-

tensive efforts have been made to assess the data quality by

analysing the parameter differences measured at the same

station but by different agencies. The Luokou station on

the lower Yellow River mainstem has been monitored under

the United Nations Global Environment Monitoring System

(GEMS) Water Programme since 1980 (only yearly means

available at http://www.unep.org/gemswater). As pCO2 is

considerably sensitive to pH changes (Li et al., 2012), the

pH values from the two sources were compared (Table 1),

which showed that the data set from the Hydrological Year-

books agreed well with the GEMS/Water Programme data

set with differences of < 2 %. High data quality of the hydro-

logical reports can also be confirmed from the concentration

comparison of major ions in the two data sets (see Chen et

al., 2005).

Given the data paucity for the upper Yellow River, data

collected at 17 sites in the headwater region were retrieved

from Wu et al. (2005) (Fig. 1 and Table S1 in the Supple-

ment). They measured pH and temperature along the main-

stem and major tributaries and determined the TAlk through

Gran titration. Comparison with previous sampling results

(Zhang et al., 1995) showed their data agreed well.

2.3 Recent field sampling

From July 2011 to July 2012, weekly sampling on the main-

stem was undertaken at Toudaoguai, Tongguan and Lijin

stations (Fig. 1). The frequency increased (i.e. daily) when

large floods occurred. Water column samples were collected

∼ 0.5 m below the surface water and kept in acid-washed,

but carefully neutralized, high-density polyethylene contain-

ers. Concomitant determination of pH and water temperature

was performed in situ using a Hanna HI9125 pH meter on

the NBS scale, which was calibrated prior to each measure-

ment against pH7.01 and pH10.01 buffers. Replicate mea-

surements showed the precision for pH and temperature were

±0.04 units and ±0.1 ◦C, respectively. The TAlk was deter-

mined by titrating 50 mL filtered water through 47 mm What-

man GF/F filters (0.7 µm pore size) with 0.02 M HCl solution

within 5 h after sampling. Three parallel titrations showed
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the analytical error was below 3 %. The parallel alkalinity

results were then averaged. In total, 163 samples were col-

lected. Ancillary data, including daily water discharge and

TSS, were acquired from the YRCC. Generally, the sam-

pling results at Toudaoguai and Tongguan reflect the TAlk

and pCO2 changes on the Loess Plateau, while the Lijin mea-

surements represent seaward export as it is located 110 km

upstream of the river mouth and free of tidal influences.

2.4 Calculations of DIC species and pCO2

Total dissolved inorganic carbon (DIC) species in river

systems include HCO−3 , CO2−
3 , H2CO3 and aqueous CO2

(CO2aq). Their relative concentration is a function of temper-

ature and pH (Li et al., 2012). DIC species can be determined

by Henry’s Law, from which the pCO2 can be calculated us-

ing the CO2SYS program (Lewis and Wallace, 1998):

CO2+H2O↔ H2CO3
∗
↔ H++HCO3

−
↔ 2H++CO2−

3
. (1)

At chemical equilibrium, the activities of the reactants and

products are determined from the thermodynamic reaction

constants (Ki) that are temperature (T ) dependent:

KCO2
= [H2CO3

∗
]/[pCO2] (2)

K1 = [H
+
][HCO3

−
]/[H2CO3

∗
] (3)

K2 = [H
+
][CO3

2−
]/[HCO3

−
], (4)

where H2CO∗3 is the sum of CO2aq and the true H2CO3. The

pKi values (negative log of Ki) can be calculated by the fol-

lowing equations (Clark and Fritz, 1997):

pKCO2
=−7× 10−5T 2

+ 0.016T + 1.11 (5)

pK1 = 1.1× 10−4T 2
− 0.012T + 6.58 (6)

pK2 = 9× 10−5T 2
− 0.0137T + 10.62 (7)

Then, the pCO2 can be simply expressed as:

pCO2 = [H2CO3
∗
]/KCO2

= [H+][HCO3
−
]/KCO2

K1. (8)

With the pH mostly ranging from 7.4 to 8.6 indicative of

natural processes for the Yellow River (Chen et al., 2005),

HCO−3 is considered equivalent to alkalinity because it rep-

resents > 96 % of the TAlk. This approach has been fre-

quently used and has demonstrated high pCO2 in Chinese

river systems (e.g. Yao et al., 2007; Li et al., 2012). To val-

idate the simplification, we also estimated the pCO2 using

the program PHREEQC (Hunt et al., 2011). The pCO2 re-

sult derived by PHREEQC are very close to that by CO2SYS

with < 3 % differences. However, the calculated pCO2 results

may have slightly overestimated the actual values (Cole and

Caraco, 1998; Abril et al., 2015).

Figure 2. Spatial variations of pH (a) and pCO2 (b) in the Yellow

River watershed.

3 Results

3.1 Characteristics of hydrochemical setting

To better investigate the spatial changes of hydrochemi-

cal variables, the watershed was divided into seven sub-

basins: the headwater region (HR), the Huang–Tao tribu-

taries (HT), the Qing–Zuli tributaries (QZ), the Ning–Meng

reaches (NM), the Wei–Yiluo tributaries (WY), the middle

reaches (MY), and the lower reaches (LY) (Fig. 2). The

Yellow River waters were characterized by high alkalinity

with the pH presenting significant spatial variations (Fig. 2a).

While high pH values were mostly observed in the HR sub-

basin where the highest was 9.1, relatively low pH (i.e.

< 7.71) was recorded at the QZ tributary sites with the low-

est being 6.4. For the waters from the Loess Plateau, the pH

ranged from 7.71 to 8.47. Towards the river mouth, it showed

a downward trend in the lower reaches (LY). With one ex-

ception at Lijin (Fig. 1), the pH values were all below 8.13

and even below 7 at some tributary sites. In addition to spa-

tial variations, it showed considerable seasonal changes. As

exemplified in Fig. 3a, the waters were generally more alka-

line in the dry season (October–May) than in the wet season

(June–September).

Similarly, with a range of 855–8633 µmol L−1, the TAlk

presented complex spatial variability throughout the water-

shed. While the HR and LY sub-basins showed the low-

est TAlk (< 2600 µmol L−1), the sub-basins on the Loess

Plateau had considerably high alkalinity with a mean TAlk of
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Figure 3. Seasonal comparison of pH (a) and box-and-whisker plot of TAlk (b) at Luokou station. The horizontal line is the median value,

the black square is the mean value, the boxes represent the 25th to 75th percentile, the whiskers represent the 10th and 90th percentile, and

the asterisks represent the maximum and minimum. Raw TAlk data are added to the left in (b).

3850± 1000 µmol L−1. The highest TAlk (8633 µmol L−1)

was measured in the QZ sub-basin. It is evident that

the TAlk and pH showed similar spatial variations, but

in the reverse direction with high TAlk coinciding with

low pH (Fig. S1). With regard to all the sampling re-

sults, about 58 % of the TAlk values fell into the range

of 3000–4000 µmol L−1 and 92 % into the range of 2000–

5000 µmol L−1. For the whole Yellow River watershed, its

mean TAlk was 3665± 988 µmol L−1. In addition, its TAlk

remained largely stable during the sampling period. Fig-

ure 3b shows an example of the TAlk changes at Luokou.

Despite the discontinuous measurement from 1968 to 1974,

the TAlk did not change significantly over time (p =0.48).

3.2 Spatial and temporal variability of pCO2

The pCO2 varied significantly throughout the watershed

with 2 orders of magnitude from ∼ 200 µatm to more than

30 000 µatm. Except the headwater region that showed lower

pCO2 than the overlying atmosphere, the remaining water-

shed had a considerably high pCO2 (Fig. 2b). The highest

pCO2 of 36 790 µatm was estimated on a tributary in the

QZ sub-basin resulting from low pH and high TAlk. For the

middle Yellow River, including the MY and WY sub-basins,

the waters were considerably supersaturated in CO2 with the

pCO2 ranging from 1000 to 5000 µatm (Fig. 2b). Moreover,

the pCO2 level in the lower Yellow River reaches (LY) was

much higher and can exceed 10 000 µatm. On average, the

pCO2 in the Yellow River watershed was 2810± 1985 µatm,

7-fold the atmospheric CO2 equilibrium. However, it must

be recognized that, unlike the historical data set that was

monthly measured, sampling in the HR sub-basin by Wu et

al. (2005) was conducted only during the late May and June

of 1999 and 2000 when the wet season had barely started.

Given the flushing effect of infiltrating rainfall and snowmelt

flows at the beginning of the wet season (Clow and Drever,

1996; Melack, 2011), the resultant TAlk and pCO2 are ex-

pected to be close to highest.

Similar to TAlk, the pCO2 at most sites also presented

strong seasonal variations. At 73 % of the sampling sites,

higher pCO2 occurred in the months before the onset of the

wet season. During the wet season, it decreased to a rel-

atively low level before going up from October onwards.

The seasonal ratio of pCO2, defined as the ratio of pCO2

in the dry season over that in the wet season, ranged from

0.8 to 2.3. To more clearly show its spatial and temporal

changes, Fig. 4 shows the high temporal-resolution results at

Toudaoguai, Tongguan and Lijin. Both the TAlk and pCO2

exhibited large spatial differences among the three sites. The

mean TAlk at Tongguan (4075± 796 µmol L−1) was higher

than at the upstream Toudaoguai and the downstream Lijin

(3664± 399 and 3622± 292 µmol L−1, respectively). Like-

wise, the mean pCO2 at Tongguan (4770± 3470 µatm) was

about 3 and 3.5 times that at Toudaoguai (1624± 778 µatm)

and Lijin (1348± 689 µatm), respectively. The highest pCO2

of 26 318 µatm was estimated at Tongguan in early May.

Compared with tributary streams showing pronounced

seasonal variation, the mainstem exhibited more complicated

seasonal patterns (Fig. 4). The TAlk was higher in the dry

season than in the wet season, in particular for Tongguan lo-

cated downstream of the Loess Plateau (Table 2; Fig. 1). The

pCO2 showed similar seasonal cycles. A contrast to the weak

seasonal changes at Toudaoguai and Lijin, the pCO2 at Tong-

guan in the dry season (6016 µatm on average) was twofold

that in the wet season. It is clear the pCO2 increased sub-

stantially in both seasons as waters from the Loess Plateau

entered the mainstem, and then decreased along the channel

course towards the ocean (Table 2). Furthermore, the pCO2

presented complex relationships with water discharge. While

the pCO2 changed synchronously with water at Toudaoguai,

it decreased with increasing water in the wet season at Tong-

guan and Lijin (Fig. 4). The pCO2 at all three stations was

significantly higher than the atmospheric equilibrium, though

the gradient varied substantially between different stations or

different seasons.

www.biogeosciences.net/12/921/2015/ Biogeosciences, 12, 921–932, 2015
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Figure 4. Weekly variations in water discharge (Q), TAlk, and

pCO2 at (a) Toudaoguai, (b) Tongguan and (c) Lijin from July 2011

to July 2012. The dotted line denotes the atmospheric CO2 equilib-

rium (i.e. 380 µatm) and the shaded grey represents the dry season.

Longitudinal variations of TAlk and pCO2 along the main-

stem indicated that the waters from the Loess Plateau had

higher TAlk and were more supersaturated in CO2 than the

upper and lower Yellow River waters (Fig. 5). Both the TAlk

and pCO2 decreased remarkably downstream of the Loess

Plateau. In addition, with extremely high suspended solids,

the Yellow River provides an excellent case study for un-

derstanding the responses of pCO2 to TSS export (Fig. 6).

Based on measurements in the sediment-yielding areas on

the Loess Plateau, the pCO2 increased exponentially with

increasing TSS concentration under low TSS scenarios (i.e.

100 kg m−3). When the TSS concentration was higher than

Figure 5. Longitudinal variations of TAlk and pCO2 along the

mainstem channel. The shaded region approximately represents the

Loess Plateau. Whiskers indicate the standard deviation.

100 kg m−3, however, the pCO2 decreased slightly and re-

mained stable thereafter (Fig. 6).

4 Discussion

4.1 Environmental controls on riverine pCO2

The alkalinity of river water reveals its buffering capacity in a

carbonate system to neutralize acids and bases. Due to abun-

dant carbonate outcrops, groundwater in the Yellow River

basin was highly alkaline (Chen et al., 2002b), which di-

rectly led to higher TAlk in the dry season when baseflow

constituted 90 % of the river runoff. High TAlk on the Loess

Plateau was probably the result of chemical weathering. With

widespread carbonates, chemical weathering in the loess de-

posits has generated high dissolved solids with HCO−3 be-

ing the dominant ion (Zhang et al., 1995; Chen et al., 2005).

Plotting TAlk against flow showed that they were negatively

correlated (Fig. 7). However, the TAlk did not change syn-

chronously with water in the wet season. It decreased more

slowly as revealed by the exponents of the fitted equations.

Compared with the flow changes, a narrower TAlk fluctua-

tion suggested the coupling results of enhanced alkalinity ex-

port in the wet season and the dilution effect of water (Piňol

and Avila, 1992; Raymond and Cole, 2003). Analysing the

temporal variations of major ions during 1958–2000, Chen et

al. (2005) found that they persistently increased due largely

to human impacts. In contrast, the long-term stable TAlk

(Fig. 3b) indicates that it is not significantly affected. Natu-

ral weathering processes must have played a more important

role in controlling the export of DIC species and TAlk.

Carbon in river waters is largely derived from bio-

geochemical processes occurring in terrestrial ecosystems.

Changes in terrestrial ecosystems will thus affect riverine

carbon cycle. Because soil respiration and CO2 production

Biogeosciences, 12, 921–932, 2015 www.biogeosciences.net/12/921/2015/
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Table 2. Inter-annual and seasonal differences of pH, TAlk, and pCO2 at the three stations. The number below the station name denotes the

channel length to the river mouth.

1950s–1984 2011–2012

Station Variable Wet season Dry season Wet season Dry season

Toudaoguai pH 7.89 8.01 8.19 8.11

(2002 km) TAlk (µmol L−1) 3595 4091 3513 3771

pCO2 (µatm) 3716 2708 1580 1655

Tongguan pH – – 7.91 7.72

(1147 km) TAlk (µmol L−1) – – 3356 4562

pCO2 (µatm) – – 2927 6016

Lijin pH 8.18 8.19 8.23 8.28

(110 km) TAlk (µmol L−1) 2942 3789 3576 3584

pCO2 (µatm) 1344 1349 1609 1132

Figure 6. Relationship between total suspended solids (TSS) and

pCO2 based on measurements on the Loess Plateau. The solid line

denotes the fitted line for the TSS concentration ranging from 0 to

100 kg m−3, and the dashed line indicates the stable trend of pCO2

when the TSS concentration is higher than 100 kg m−3.

are highly dependent on temperature and rainfall (Epron et

al., 1999; Hope et al., 2004; Shi et al., 2011), higher riverine

pCO2 is expected in the wet season due to soil CO2 flush-

ing. This is in contrast to the observed seasonal variations

in the Yellow River. A unique precipitation distribution and

hydrological regime may have contributed to these anoma-

lous observations. The Yellow River basin is characteristic of

high-intensity rainfalls; several storms in the wet season can

account for > 70 % of the annual precipitation (Zhao, 1996).

Coupled with its distinct soil surface microtopography with

texture consisted mainly of silt and clay, Hortonian overland

flow is the dominant runoff process (Liu and Singh, 2004).

As a result of greatly reduced soil infiltration capacity, the

generated overland flow by high-intensity rainfalls may have

diluted the TAlk and caused the lowered riverine pCO2.

Responses of the pCO2 to TSS concentration (Fig. 6)

reflect the soil erosion processes distinctive to the Loess

Plateau (Zhao, 1996; Rustomji et al., 2008). At the initial

stage of soil erosion, the surficial soils with abundant or-

ganic carbon are first eroded into river water. Decomposi-

tion of the labile organic carbon in the eroded soils will in-

crease the pCO2. Thus, it responded positively to soil erosion

and TSS. This positive response lasted until the topsoils were

completely eroded. The threshold of ca. 100 kg m−3 is con-

sistent with the commonly defined hyperconcentrated flows

(Xu, 2002). Hyperconcentrated flows indicating TSS concen-

tration greater than 100 kg m−3 are frequently recorded in

the Yellow River, in which gully erosion contributes > 50 %

of the fluvial sediment loads (Ran et al., 2014). Compared

with the organic carbon content in the topsoils (usually 0.5–

1.5 %), it is much lower in the subsoils (i.e. 0.2–0.3 %) and

shows uniformity with depth (Wang et al., 2010; Zhang et al.,

2012). The mobilized subsoils through gully erosion there-

fore have lower organic carbon quantity for decomposition,

resulting in the reduced and stable riverine pCO2 regardless

of the increasing TSS concentration.

Lower pCO2 in the HR sub-basin was caused by rela-

tively low TAlk and high pH. Statistical analyses showed

that its TAlk was 25 % lower than the basin average while

the pH was 7 % higher. Compared to other sub-basins, the

HR sub-basin is covered by an alpine meadow ecosystem

with soils being slightly eroded, which may have constrained

the leaching of organic matter. Moreover, this sub-basin is in

cold environments and its temperature falls below zero from

October to March. Microbial decomposition of organic mat-

ter and ecosystem respiration are kinetically inhibited as af-

fected by the low temperature (Kato et al., 2004), resulting

in the low pCO2. Unique climate also denotes the seasonal

patterns of pCO2 in the upper and middle Yellow River.

Occurrence of the highest pCO2 at Toudaoguai and Tong-

guan in March through May is likely controlled by ice-melt

floods (Fig. 4a and b). In the coldest months, water surface
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Figure 7. Dependence of TAlk on natural water discharge for different water discharge scales at typical sampling sites: (a) is from a tributary

and (b) and (c) are from the Yellow River mainstem (see Fig. 1 for locations).

Figure 8. Impacts of Qingtongxia (QTX) dam on riverine TSS, pH,

TAlk and pCO2. Measurements were conducted ∼ 850 m down-

stream of the dam that was built in 1968 (see Fig. 1 for its location).

in the northernmost reaches (between QTX and Toudaoguai;

Fig. 1) will freeze up (Chen and Ji, 2005). Aqueous CO2

could not be efficiently released due to ice protection and typ-

ically accumulates below the ice cover. Starting from early

spring, the ice begins to thaw and CO2-laden waters are ex-

ported downstream to the sampling sites, probably causing

the sharply increased pCO2. Also, the lower temperature in

the dry season would be responsible for the higher pCO2 as

the solubility of CO2 increases with decreasing water tem-

perature.

High pCO2 in the QZ sub-basin (Fig. 2b) was primarily

the result of high TAlk due to its geological background.

Its major rock types are carbonates, detritus (quartz and

feldspar) and red-beds (gypsum and halite) (Zhang et al.,

1995). These rocks are highly vulnerable to weathering, thus

producing TAlk (mainly HCO−3 ) into river. In fact, its mean

TDS was 8–14 times the basin average (Chen et al., 2005).

Further, this sub-basin has high drought index with its annual

evaporation being > 8 times the annual precipitation (Chen et

al., 2005). Such strong evaporation will result in not only the

precipitation of minerals with low solubility, but also the ele-

vated concentrations of solutes not removed during the crys-

tallization process. Another possible cause is the severe ero-

sion due to sparse vegetation cover. In addition to mobiliza-

tion of organic matter, soil erosion is able to enhance chem-

ical weathering by increasing the exposure surface of fresh

minerals to atmosphere (Millot et al., 2002). This would also

contribute to greatly condensed DIC species in river waters

and thus high pCO2.

As for the longitudinal variations (Fig. 5), severe soil ero-

sion on the Loess Plateau may be the major reason as dis-

cussed above. In addition, low groundwater table in the arid

climate allows deeper soil horizons to adequately interact

with the atmosphere, which could also facilitate the exposure

of mineral surfaces to weathering and generate huge quanti-

ties of alkalinity. Increasing pCO2 until Tongguan suggested

the integrated responses of pCO2 to these factors. Without

large tributaries joining the lower Yellow River (Fig. 1), the

decreasing TAlk and pCO2 along the mainstem revealed re-

duced TAlk input. Overall, the spatial changes of TAlk and

pCO2 were the combined results of differences in soil prop-

erty, hydrological regime, climate and landform develop-

ment.

4.2 Anthropogenic impacts on riverine pCO2

Agricultural activity within a watershed can affect its river-

ine pCO2. Tilling practices can not only expand the ex-

posure area of soil materials, but also alter the hydrology

of surficial soils, increasing the contact rate between water

and minerals and thus the alkalinity export (Raymond and

Cole, 2003). With a history of more than 2000 years, agri-

culture in the Yellow River basin is possibly an important

reason for the observed high TAlk (Chen et al., 2005). Fur-

ther, significant decreases in pH in the middle and lower Yel-

low River basin have been widely detected and are hypoth-

esized to result from acid rain that is likely caused by an-

thropogenic sulfur emissions to the atmosphere (Guo et al.,

2010). The reduced pH may have been partially responsible
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for the elevated pCO2 in these regions relative to the head-

water region that had higher pH (Fig. 2).

Differences in the hydrochemical parameters between his-

torical records and recent sampling clearly reveal the tem-

poral changes over the period. Significant increase in pH at

Toudaoguai was largely caused by widespread salinization

of agricultural soils. There are two large irrigation zones up-

stream of Toudaoguai; large quantities of water is diverted

for desalination and irrigation (Chen et al., 2005). The di-

verted water volume has gradually increased since 1960 due

to growing demand (Ran et al., 2014). When washed out

from irrigated farmlands, the return water characterized by

high pH caused the riverine pH to increase, leading further

to greatly reduced pCO2 despite the roughly stable TAlk

(Fig. 3b). Particularly, it is worth noting that the magnitude

of reduction was much higher in the wet season when the

high-pH return water reached the mainstem with floods (Ta-

ble 2).

Trapping of water and suspended solids by dams will

alter river-borne carbon dynamics (Cole et al., 2007). Ex-

tended residence time combined with sufficient organic mat-

ter availability may enhance CO2 production, causing a

higher pCO2. This is particularly true for tropical reservoirs

into which organic matter inputs are sufficient, especially

in the initial years after impoundment (Roland et al., 2010;

Raymond et al., 2013). On the other hand, reduced flow tur-

bulence and increases in water residence time would pro-

mote photosynthesis of aquatic plants and reduce aqueous

CO2 concentration (Teodoru et al., 2009; Wang et al., 2011).

An example of the impact of dams on downstream pCO2

changes is presented in Fig. 8. Located on the upper main-

stem channel (Fig. 1), operation of the Qingtongxia Dam

since 1968 has substantially affected the pCO2. Despite in-

significant changes of the TAlk between the pre- and post-

dam periods (Fig. 8), enhanced aquatic photosynthesis af-

ter dam operation owing to reduced TSS concentration may

have absorbed aqueous CO2 and resulted in increased pH by

shifting the chemical equilibrium of Eq. (1). Accordingly, the

riverine pCO2 declined during the post-dam period with the

elevated pH and roughly stable TAlk.

For the dams on the Loess Plateau constructed mostly in

1960–2000, however, aqueous photosynthesis appears to be

at a low level owing to its extremely high TSS concentra-

tion and limited light availability (Chen et al., 2005). In con-

trast, flow regulation plays a more important role in control-

ling the seasonal patterns of downstream pCO2. Man-made

floods have been regularly released from the Xiaolangdi Dam

sluice gates since 2000 to flush sediment deposition in the

lower Yellow River, usually from late June (Wang et al.,

2012; Ran et al., 2014). The deep waters supersaturated with

CO2 are first discharged, resulting in the high pCO2 at Li-

jin in the wet season (Fig. 4c). Unlike the seasonal varia-

tions at Toudaoguai and Tongguan as mentioned above, du-

ration of the high pCO2 at Lijin coincided well with the

sediment flushing period, indicating the impact of flow reg-

ulation on pCO2 dynamics. Operation of dam cascade has

also modified the TAlk and pCO2 levels at the inter-annual

scale. Affected by upstream dams (see Fig. 1), both the TAlk

and pCO2 at Lijin in the wet season were elevated during

the period 2011–2012, by 22 and 20 %, respectively, rela-

tive to the baseline period 1950s–1984 (Table 2). Further-

more, soil conservation and vegetation restoration conducted

on the Loess Plateau since the 1970s have contributed to the

inter-annual changes. More organic carbon has been seques-

trated as a result of these land management practices (Chen

et al., 2007). Given the strong flushing and leaching effects of

high-intensity rainfalls, riverine organic matter export tends

to increase in the wet season, and the accompanying decom-

position can elevate pCO2.

4.3 Implications for CO2 outgassing

CO2 outgassing from river waters into the atmosphere dur-

ing the carbon transport processes from land to the ocean

has not been fully realized until recent years (Richey et al.,

2002; Cole et al., 2007; Battin et al., 2009). Because riverine

pCO2 demonstrates the CO2 concentration in surface water,

a higher riverine pCO2 usually represents stronger CO2 out-

gassing under favourable environmental conditions, forming

a carbon source for the atmosphere. However, accurate esti-

mates of global CO2 outgassing have been hampered by the

absence of a spatially resolved pCO2 database. Previous es-

timates from rivers alone involve large uncertainties, varying

from 0.23 to 0.56 Gt C yr−1 (Cole et al., 2007; Aufdenkampe

et al., 2011). A recent study has even concluded that up to

1.8 Gt of carbon is annually emitted from global rivers (Ray-

mond et al., 2013), considerably higher than was previously

thought. This estimate accounts for about 32 % of the annual

carbon flux transferred from terrestrial systems to inland wa-

ters (Wehrli, 2013). Given the existing uncertainties, quan-

tifying pCO2 in different orders of streams of a complete

river network is critical to resolve a robust estimate of river-

ine CO2 evasion.

With respect to the Yellow River, the lower riverine pCO2

in the HR sub-basin relative to the atmospheric equilibrium

indicates a potential CO2 drawdown. In comparison, the river

waters in the remaining watershed are generally supersat-

urated with CO2, mostly greater than 1000 µatm (Fig. 2b).

With an average pCO2 of 2810± 1985 µatm for the whole

watershed comparable to the median of global rivers (i.e.

1300–4300 µatm; Aufdenkampe et al., 2011), the Yellow

River waters tend to act as a net carbon source for the atmo-

sphere. As stated earlier, despite the uncertainties associated

with outgassing calculation, recent studies on watershed-

scale carbon delivery demonstrate that CO2 efflux from rivers

can substantially exceed lateral carbon export (Richey et al.,

2002). The Yellow River has experienced abrupt reductions

in flow and TSS fluxes over the past decades and these re-

ductions will continue in future. Its carbon fluxes reaching

the ocean will therefore further decrease, and more carbon
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is likely to be emitted as CO2 into the atmosphere. In view

of the severe soil erosion and high TSS transport (Syvitski

et al., 2005), interpretation of these fluxes in the context of

climate change is of great importance for understanding the

role of Yellow River in the global carbon cycle.

5 Conclusions

The Yellow River was characterized by high alkalinity with

a mean TAlk of 3665± 988 µmol L−1. Although with sig-

nificant spatial variations, the TAlk remained largely stable

over the study period. However, it showed seasonal vari-

ability and decreased in the wet season, suggesting the di-

lution effect of water discharge. Except for the HR sub-basin

where the pCO2 was lower than the atmospheric equilib-

rium, river waters in the remaining watershed were supersat-

urated with CO2. The basin-wide mean pCO2 was estimated

at 2810± 1985 µatm. Similar to the pH and TAlk, the pCO2

also presented significant spatial and seasonal variations. The

middle reaches, mainly the Loess Plateau, showed higher

pCO2 than the upper and lower reaches, which were prin-

cipally resulting from severe soil erosion and the unique hy-

drological regime. The pCO2 correlated exponentially with

TSS transport when the erosion intensity was low and only

the topsoils rich in organic carbon were eroded. When the

TSS concentration exceeded 100 kg m−3 indicating the pre-

dominance of gully erosion, the subsoils with low organic

carbon content were mobilized. Owing to the reduced or-

ganic carbon available for decomposition, the pCO2 slightly

decreased and remained stable thereafter, regardless of the

increasing TSS concentration.

The observed spatial and temporal variations of river-

ine pCO2 were collectively controlled by natural processes

and human activities. High pCO2 in the upper and mid-

dle reaches was usually estimated from March through May

when ice-melt floods transported the accumulated CO2-laden

waters in winter. Human activities, especially flow regula-

tion, have significantly changed its seasonal patterns by al-

tering hydrological regime and riverine carbon delivery pro-

cesses. While reduced turbidity and extended residence time

due to dam trapping has enhanced aquatic photosynthesis and

resulted in a decreased pCO2, man-made floods through flow

regulation would increase downstream pCO2. Other anthro-

pogenic perturbations, such as acidification, soil conserva-

tion and irrigation, have also affected pCO2. The acceler-

ating human activity within the watershed is likely to ex-

pand the role of anthropogenic over natural factors on the

pCO2 dynamics, because stronger anthropogenic impacts are

certain to occur concerning present economic development.

Considerably high riverine pCO2 in the Yellow River wa-

ters with respect to the overlying atmosphere indicates that

substantial amounts of CO2 are emitted into the atmosphere.

Given the huge human impacts on flow, TSS and carbon

fluxes, future efforts to estimate CO2 evasion and assess its

importance in the global carbon cycle are urgently needed.

The Supplement related to this article is available online

at doi:10.5194/bg-12-921-2015-supplement.
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