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Abstract. Changes in the phenology of physical and eco-

logical variables associated with climate change are likely to

have significant effect on many aspects of the Baltic ecosys-

tem. We apply a set of phenological indicators to multiple

environmental variables measured by satellite sensors for

17–36 years to detect possible changes in the seasonality in

the Baltic Sea environment. We detect significant temporal

changes, such as earlier start of the summer season and pro-

longation of the productive season, in several variables rang-

ing from basic physical drivers to ecological status indica-

tors. While increasing trends in the absolute values of vari-

ables like sea-surface temperature (SST), diffuse attenuation

of light (Ked490) and satellite-detected chlorophyll concen-

tration (CHL) are detectable, the corresponding changes in

their seasonal cycles are more dramatic. For example, the

cumulative sum of 30 000 W m−2 of surface incoming short-

wave irradiance (SIS) was reached 23 days earlier in 2014

compared to the beginning of the time series in 1983. The

period of the year with SST of at least 17 ◦C has almost dou-

bled (from 29 days in 1982 to 56 days in 2014), and the pe-

riod with Ked490 over 0.4 m−1 has increased from about 60

days in 1998 to 240 days in 2013 – i.e., quadrupled. The pe-

riod with satellite-estimated CHL of at least 3 mg m−3 has

doubled from approximately 110 days in 1998 to 220 days in

2013. While the timing of both the phytoplankton spring and

summer blooms have advanced, the annual CHL maximum

that in the 1980s corresponded to the spring diatom bloom in

May has now shifted to the summer cyanobacteria bloom in

July.

1 Introduction

Estuarine areas world-wide are experiencing rapid changes

due to anthropogenic pressures of both local and global na-

ture (Cloern et al., 2016). The ecosystem of the brackish

Baltic Sea has been under anthropogenic stress for many

decades (Elmgren, 1989, 2001). Both direct effects, such as

input of nutrients and various pollutants, and indirect effects

through climate change are important. Time series of envi-

ronmental variables show variability at multiple scales but

separating the effects of natural climate variability from the

effects of anthropogenic climate change is difficult. We ap-

ply a set of phenological indicators to multiple environmental

variables, mostly from satellite sensors, to detect changes in

the environment. It appears that phenological indicators are

very sensitive in detecting environmental change. We show

significant changes in the seasonality of both the physical

drivers and in ecological indicators of the Baltic Sea. Increas-

ing trends are detectable in the absolute values of sea-surface

temperature (SST) and water turbidity, but changes in their

seasonal cycles are more clear-cut. The seasonality of a num-

ber of abiotic and biotic variables for which data are available

has changed drastically during the last few decades. These

changes are likely to have major effects on many aspects of

the Baltic Sea ecosystem.
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Table 1. Satellite-derived data sets used here to produce phenological indicators.

Variable Acronym Units Sample sources

Surface incoming shortwave irradiance SIS W m−2 EUMETSAT, NOAA, NASA

Doi:10.5676/EUM

SAF_CM/SARAH/V001

Sea-surface temperature SST ◦C NOAA, NASA, GHRSST

http://www.nodc.noaa.gov/

SatelliteData/pathfinder4km/

http://ghrsst.jpl.nasa.gov

Near-surface wind WSP, directional wind m s−1 NASA

http://podaac.jpl.nasa.gov/datasetlist?

ids=Collections&values=CCMP;

EUMETSAT Ocean and Sea Ice SAF,

http://www.osi-saf.org/

Coefficient of diffuse light attenuation KED m−1 ESA

http://www.esa-oceancolour-cci.org/

Near-surface chlorophyll a concentration CHL mg m−3 ESA

http://www.esa-oceancolour-cci.org/

Fraction of cyanobacteria accumulations FCA unitless Kahru and Elmgren (2014)

2 Methods and data sets

2.1 Data sets

The data sets used in this analysis and their sources are

shown in Table 1. Surface incoming shortwave irradiance

(SIS) data were produced from geostationary Meteosat satel-

lites (Mueller et al., 2009, Müller et al., 2015) using a climate

version of the Heliosat algorithm (Cano et al., 1986, Beyer et

al., 1996) and obtained from the Satellite Application Facility

on Climate Monitoring (CM SAF, http://www.cmsaf.eu/EN/

Products/AvailableProducts/Dataset/Dataset_node.html).

SST data produced by NOAA and NASA were ob-

tained from http://www.nodc.noaa.gov/SatelliteData/

pathfinder4km (Casey et al., 2010).

Near-surface wind data were assembled from two

sources. Data for 1987–2011 are version 3.5a from the

Cross-Calibrated Multi-Platform (CCMP) Ocean Surface

Wind Components (Atlas et al., 2008), available from

ftp://podaac-ftp.jpl.nasa.gov/allData/ccmp/L3.5a/. Data for

2013–2015 are from ASCAT, produced by the KNMI Scat-

terometer Team and available from the EUMETSAT Ocean

and Sea Ice SAF (http://www.osi-saf.org/).

Satellite-detected coefficient of attenuation of diffuse

downwelling light at 490 nm (Ked490) and near-surface

chlorophyll concentration (CHL) are produced by the ESA

Ocean Colour Climate Change Initiative project (Lavender et

al., 2015) using satellite data archives of NASA’s SeaWiFS

and MODIS-Aqua sensors and ESA’s MERIS sensor. Ver-

sion 2.0 data sets were downloaded from ftp://oc-cci-data:

ELaiWai8ae@oceancolour.org/. The Ked490 algorithm uses

the Lee et al. (2005) semianalytic method. The CHL algo-

rithm is based on an empirical ratio of remote sensing re-

flectance (O’Reilly et al., 1998).

Fraction of cyanobacteria accumulations (FCA, Kahru et

al., 2007; Kahru and Elmgren, 2014) is a form of presenting

the frequency of cyanobacteria accumulations that is normal-

ized to the number of unobstructed satellite views of the sea

surface. This normalization is needed as clouds often cover

the sea surface and make it impossible to detect accumula-

tions.

2.2 Phenological and cumulative indicators

For the analysis of changes in the annual cycle we use the

following phenological indicators (Table 2):

1. Day of year when a threshold value is first reached

(DF= “day first”);

2. Day of year when a threshold value is last reached

(DL= “day last”);

3. Duration between the first and last reaching of a thresh-

old value (DD= “day duration”);

4. Day of year when the annual maximum occurs

(DM= “day maximum”) (e.g. Kahru et al., 2010);

5. Count of days above a threshold value (DC= “day

count”).

These indicators can be applied to different satellite-

derived or in situ variables. Satellite versions of these in-

dicators were spatially averaged over the area of interest –

e.g., the whole Baltic Sea or parts of it (Fig. 1). The nomen-

clature of indicators uses two characters showing the type

of indicator (e.g., DF, DL, etc.), followed by the variable
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Table 2. Summary of proposed climate indicators.

Explanation Type Example variable groups

First day of reaching a threshold DF DFSST, DFCHL, DFKED

Last day of reaching a threshold DL DLSST, DLCHL, DLKED

Duration of the period between DF and DL DD DFSST, DDCHL, DDKED

Count of days over the threshold DC DCSST, DCCHL, DCKED

Day of reaching the annual maximum DM DMSST, DMCHL, DMKED

First day of reaching a cumulative threshold DFCUM DFCUMSIS, DFCUMSST

Cumulative count of days above threshold DCCUM DCCUMSIS, DCCUMSST

(a) (b)

54

56

58

60

62

12 16 20 24 12 16 20 24

Figure 1. Maps of the study areas. (a) Baltic Sea area excluding

shallow coastal areas and the Bothnian Bay (Kahru et al., 2007).

(b) Central Baltic Sea including the following sub-basins: Northern

Baltic Proper, Western and Eastern Gotland Basin and the South-

eastern Baltic Proper. The shaded areas are used to calculate aver-

ages for, respectively, Baltic and central Baltic Sea.

type (e.g., SST for sea-surface temperature), and followed

by the threshold value (e.g., 16 for 16 ◦C of SST). For exam-

ple, DFSST16 shows the first day of year when the spatially

averaged SST reaches a threshold value of 16 ◦C; DLCHL3

shows the last day of year when the spatially averaged CHL

reaches 3 mg m−3. An example of a cumulative indicator is

DFCUMSIS500 – i.e., the day of year when the cumulative

sum of daily SIS irradiance reaches 500 W m−2.

The existence of trends and their significance was evalu-

ated with the nonparametric Sen slope (Sen, 1968) and the

Mann–Kendall test using 95 % significance level (Salmi et

al., 2002). In parallel, 95 % confidence limits of the least

squares linear regression slope (as implemented in NMath

numerical libraries, http://www.centerspace.net) were also

used.

3 Results

3.1 Surface incoming shortwave irradiance

The radiation budget at the Earth’s surface is a key vari-

able affecting other variables such as surface temperature,

primary production, etc. The incoming shortwave irradiance

(SIS, W m−2) shows highly regular annual cycles without

obvious trends (Fig. 2). However, a cumulative phenological
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Figure 2. Time series of the daily surface incoming shortwave irra-

diance (SIS, W m−2) derived from geostationary Meteosat sensors,

averaged over the shaded area of the Baltic Sea shown in Fig. 1a.

indicator, DFCUMSIS (Table 2) – i.e., the cumulative sum of

daily SIS – shows subtle but significant changes in its season-

ality (Fig. 3a). It appears that the annual cycle of incoming

shortwave energy has changed towards a decrease in the win-

ter and increase during the spring and summer. Therefore the

lower cumulative thresholds of total incoming irradiance are

reached later in the season and the slope is positive. However,

the higher cumulative thresholds of total incoming irradiance

are reached earlier and the slope of the year day of reach-

ing a threshold value against year is negative (Fig. 3a). The

shift from later towards earlier cumulative thresholds occurs

in spring, around year day 75 or approximately March 15.

The slope of the time of reaching a certain threshold value

as a function of time (Fig. 3b) has a clear pattern. The slope

is positive, indicating later cumulative totals in SIS early in

the year, until about 1000 W m−2, but becomes negative later

in the year, indicating earlier cumulative totals in late spring

and summer. As a result of the observed trends in timing,

the cumulative sum of 30 000 W m−2 was reached approxi-

mately on day 237 in 1983 but on day 214 in 2014 – i.e., 23

days earlier. In contrast to this significant change in timing,

no significant changes in the absolute daily values are evident

in the time series.

3.2 Sea-surface temperature

As global time series of SST are available for several decades

(Casey et al., 2010), SST is a good variable for phenological

analysis. While SST itself is an important driver affecting

the rates of biological processes, its indirect effects through

its influence on stratification are probably more important.

www.biogeosciences.net/13/1009/2016/ Biogeosciences, 13, 1009–1018, 2016
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Figure 3. Changing seasonality in cumulative surface incoming

shortwave irradiance (SIS, W m−2) averaged over the area of the

Baltic Sea indicated in Fig. 1a. (a) DFCUMSIS – i.e., day of year

when the annual sum of daily mean SIS reaches the following

thresholds: 200, 500, 1000, 2000, 3000, 5000, 10 000, 20 000 and

30 000 W m−2. For each threshold the circles show the day of the

year and the line shows the respective linear regression. (b) Slopes

of the linear regressions in panel (a).

Near-surface stratification suppresses vertical mixing in the

water column and affects many ecological processes, such

as the flux of nutrients to the surface layer or the accumula-

tion of cyanobacteria near the water surface. As cyanobacte-

ria growth in temperate environments is enhanced by higher

temperatures and near-surface stratification, SST is an im-

portant environmental driver for these blooms (Paerl and

Huisman, 2008). Cyanobacteria growth typically accelerates

when SST exceeds 12 ◦C and peaks above 17 ◦C (Hense et

al., 2013). We therefore estimated the start of the cyanobac-

terial growth season as the first day when the spatially aver-

aged SST reached 12 ◦C (DFSST12), the end of the growth

season as the last day with SST of at least 12 ◦C (DLSST12)

and the duration of the growth season as the number of days

between those dates (DDSST12=DLSST12 – DFSST12).

Similarly, the “peak growth season” is parameterized by the

respective indicators (DFSST17, DLSST17 and DDSST17)

for a SST of 17 ◦C. Significant trends towards an earlier start

and a later end of the growth season were detected for these

timing indicators (Fig. 4).

It appears that while the springtime warming of the sea

surface has become significantly earlier (i.e., the slope of

DFSST vs. year is negative), particularly for colder temper-

atures, the time in summer when the higher temperatures are

reached has not changed and the trend is not significant for

any SST above 16 ◦C (Fig. 5a). In contrast, the slope for

DLSST is positive, indicating delay of the fall cooling, with

the highest slopes for SSTs of 15 to 17 ◦C (Fig. 5a). As a

result of the earlier warming and later cooling, the period

with SST above a certain threshold (DDSST) has changed

quite dramatically, particularly for SST values of∼ 15–16 ◦C

(Fig. 5b). The rate of change for DDSST16 has been almost

a day per year (0.98 day year−1). As a result, the duration of

the period with a mean SST of at least 16 ◦C has increased

from about 40 days in 1982 to about 72 days in 2014 – i.e.,
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Figure 4. Changes in satellite-detected SST phenology in the Baltic

Sea (area indicated in Fig. 1a). The symbols and regression lines

are (left to right): first day when 12 ◦C is reached (DFSST12, open

circles), first day when 17 ◦C is reached (DFSST17, filled circles),

last day when 17 ◦C is reached (DLSST17, filled squares), last day

when 12 ◦C is reached (DLSST12, open squares).

by 32 days (Fig. 5b). Similarly, the duration of the period

with SST of at least 17 ◦C (DDSST17) has increased from 29

days in 1982 to about 56 days in 2014 – i.e., almost doubled.

These are drastic changes in the phenology of an important

driver of ecosystem processes. In contrast, the timing and the

duration of the period with the highest SST (∼ 22 ◦C) has

not changed significantly. It is important to note that while a

significant increase in the mean summertime SST is evident

in the Baltic Sea (Belkin, 2009), this increase is rather small

compared to the annual range of SST, from about 0 ◦C in the

winter to about 22 ◦C in the summer. The phenology of the

changes gives a more detailed and ecologically highly rele-

vant picture that complements the general increase in mean

SST.

3.3 Wind

Wind speed and direction are important variables that affect

the biology of the Baltic surface waters. In a previous study

(Kahru et al., 2007) we found a correlation between the lo-

cation of the major cyanobacteria accumulations either in the

southern or northern half of the Baltic and the strength of

wind in the northeasterly direction. We therefore examined

the mean annual cycle in the strength of winds in the north-

eastern direction (NE-ward winds) and the possible changes

to it. The annual cycle of the NE-ward winds has a mini-

mum in April and a subsequent increase after that (Fig. 6a).

We examined whether the onset of the summer increase in

NE-ward winds has changed. While the last 7 years (2008 to

2015) show a steady shift towards earlier start of the summer

wind increase (Fig. 6b), the large interannual variability pre-

cludes establishing a long-term trend and the changes in the

Biogeosciences, 13, 1009–1018, 2016 www.biogeosciences.net/13/1009/2016/
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Figure 5. (a) Rate of change (day year−1) in the day of year when a

certain SST level is first reached (DFSST, filled circles) and when a

certain SST level is last reached in a season (DLSST, open squares)

for the Baltic Sea (area indicated in Fig. 1a). (b) Increase in the

duration of a period with SST above a certain level (DDSST) from

1982 to 2014.

starting time of the summer increase in NE-ward winds are

not significant.

3.4 Attenuation of light, Ked490

The coefficient of downwelling light at 490 nm (Ked490) is a

commonly used indicator of water transparency (e.g., Kratzer

et al., 2003; Lee et al., 2005) that can be estimated from a

satellite sensor. It reflects both light absorption – e.g., by col-

ored dissolved organic matter (CDOM) and phytoplankton

pigments – and scattering of light by particles. The timing of

the increase in Ked490 has changed significantly during the

time period with reliable satellite data (1997 to present). The

summer period with high Ked490 corresponding to low water

transparency has become earlier and persisted longer into the

fall (Fig. 7). Significantly, these changes have been more pro-

nounced for the higher values of Ked490 than for the lower

values of Ked490. For example, using the regression lines in

Fig. 7, we can estimate that from 1998 to 2013 the period

with mean Ked490 over 0.1 m−1 has become longer by 35

days whereas over the same period the duration of the mean

Ked490 over 0.4 m−1 has increased from about 60 days in
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Figure 6. (a) Annual cycle in the mean monthly wind speed in the

NE direction in the Baltic Sea (area indicated in Fig. 1a). (b) Day

of the year when the 5-day mean wind in the NE direction exceeds

2 m s−1 for the first time after the April minimum.

1998 to 240 days in 2013 – i.e., has become longer by 180

days. However, the last 1–2 years seem to show a reversal of

the trend.

3.5 Near-surface chlorophyll a

The satellite-derived surface concentration of CHL is an

important measure of the amount of phytoplankton, but is

known to have large errors in the Baltic Sea (Darecki and

Stramski, 2004; Attila et al., 2013). This is due both to prob-

lems in the atmospheric correction procedures and in the

separation of phytoplankton pigments from the CDOM. The

standard CHL algorithm essentially measures total absorp-

tion of blue light by a mixture of phytoplankton pigments,

non-algal particles and CDOM. The separation of these com-

ponents is made difficult by the large and variable concentra-

tions of CDOM that are typical of the Baltic Sea. While the

satellite-derived CHL overestimates true near-surface CHL

in the Baltic Sea due to the high concentration of CDOM

(Darecki and Stramski, 2004), the phenology of CHL is still a

meaningful indicator of the timing of phytoplankton blooms,

as the early increase in turbidity is well correlated with phy-

toplankton spring bloom and the summer maximum in tur-

bidity is correlated with the cyanobacteria blooms in the cen-

tral Baltic Sea.

The time series of CHL in the central Baltic Sea (Fig. 8)

shows the well-known annual cycle with maxima corre-

sponding to the summer cyanobacteria and the spring diatom

blooms. A statistically significant increasing trend can be de-

tected in the 1998–2013 time series of mean CHL in cen-

tral Baltic Sea (Fig. 8) with a slope of 0.067 mg m−3 year−1.

However, it is not clear how much of the increase is truly due

to an increase in phytoplankton vs. increases in CDOM and

www.biogeosciences.net/13/1009/2016/ Biogeosciences, 13, 1009–1018, 2016
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Figure 7. Temporal changes in the start and end of

Ked490= 0.1 m−1 (a) and Ked490= 0.4 m−1 (b) for the central

Baltic Sea (area indicated in Fig. 1b). The circles show the first

day of the year (DFKED) and the squares show the last day of the

year (DLKED) with the respective value of Ked490. The regression

lines have been estimated for the time period of 1998–2013.

non-algal particles. As phytoplankton are expected to have a

strong annual cycle in the open Baltic Sea, it is likely that the

distinct spring increase in CHL is due to the phytoplankton

spring bloom. The timing of the annual satellite-derived CHL

maximum (DMCHL) averaged over central Baltic (Fig. 1b)

has advanced from 1998 to 2013. However, interpreting this

change is complex, as there are two main annual peaks, one

due to the mainly diatom-dominated spring bloom, the other

associated with the cyanobacterial summer bloom. It is no-

table that while in the 1980s (e.g., 1985–1989, Kahru et al.,

1991) the spring bloom concentration of chlorophyll a mea-

sured at sea was approximately double of that of the late sum-

mer cyanobacteria bloom (dashed line in Fig. 9a), currently

the satellite-estimated CHL during the summer cyanobacte-

ria bloom is significantly higher (solid line in Fig. 9a). A

similar change in chlorophyll values around 1990, with a

decrease in spring and an increase in summer, has been re-

ported from the western Gulf of Finland (Raateoja et al.,

2005). While the timing of both spring and summer blooms

has become earlier, the switching of the annual maximum

between those two can create large interannual fluctuations.

While the summer CHL maximum in 1985–1989 occurred

in late summer (August–September, year days 213–270), the

current satellite estimate of the summer maximum is around

July 7 (year day 188), in the period that in 1985–1989 coin-

cided with the summer minimum (Fig. 9a). Both an earlier

start and a later end of high CHL values are detected using

3 mg m−3 threshold value (Fig. 9b). The duration of the an-

nual period with CHL of at least 3 mg m−3 (DDCHL3) has

doubled, from approximately 110 days in 1998 to approx-

imately 220 days in 2013. This increase in the duration of

high absorption of light by CHL and various associated sub-

stances is likely to have important ecological consequences.

As with Ked490, the last 1–2 years deviate from the general

trend.

3.6 Frequency of cyanobacteria surface accumulations

Cyanobacteria are a major component of the Baltic phyto-

plankton community with some unique features. Their abil-

ity to fix nitrogen makes them important in driving the nitro-

gen cycle and stimulating summer primary production (e.g.,

Larsson et al., 2001; Karlson et al., 2015). The propensity of

the co-dominant genus Nodularia to form dense surface ac-

cumulations makes it feasible to map their distribution using

satellite sensors, including some not specifically designed for

ocean color applications (Kahru and Elmgren, 2014). This

makes it possible to create time series that are much longer

than the time series using only ocean color variables (e.g.,

CHL). A 36-year time series of the frequency of FCA shows

a trend towards earlier occurrence as measured by the cen-

ter of timing of the accumulations (Fig. 10). The estimates

of the start and end of the accumulation period are less reli-

able when based on the older, less sensitive AVHRR sensor

and are therefore given only for the second half of the study

period, based on the more sensitive and reliable ocean color

sensor data. The start and end of the accumulation period

are closely related to the center of timing. In years when the

accumulations are late (e.g., 2004), the total period of accu-

mulations also tends to be shorter.

4 Discussion

We have applied a uniform set of phenological indicators

to a number of variables ranging from physical drivers of

the environment, such as incoming shortwave energy, sea-

surface temperature and winds, to ecological (Ked490, CHL)

and biological (cyanobacteria) components of the Baltic Sea

ecosystem. Satellite-derived variables have the advantage of

providing extended areal coverage instead of a point sam-

ple, with a regular and frequent sampling that is required for

estimating phenological indicators. While satellite measure-

ments using the visible and infrared spectrum are limited

by cloudy periods, the effective sampling frequency is still

much higher than with shipboard monitoring. For variables

with large systematic errors such as satellite-detected CHL

in the Baltic Sea, the phenological indicators are preferred

as they have potentially less uncertainty compared to abso-
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Figure 8. Time series of the 5-day mean CHL (mg m−3) in the central Baltic Sea (area indicated in Fig. 1b) derived from the ESA-CCI

processing of SeaWiFS, MERIS and Aqua-MODIS satellite data (Lavender et al., 2015).

(b) 

(a) 

0 

1 

2 

3 

4 

5 

6 

7 

0
 

3
0

 

6
0

 

9
0

 

1
2

0
 

1
5

0
 

1
8

0
 

2
1

0
 

2
4

0
 

2
7

0
 

3
0

0
 

3
3

0
 

3
6

0
 

C
H

L 
(m

g 
m

-3
) 

Year day 

1997 
1999 
2001 
2003 
2005 
2007 
2009 
2011 
2013 
2015 

0
 

3
0

 

6
0

 

9
0

 

1
2

0
 

1
5

0
 

1
8

0
 

2
1

0
 

2
4

0
 

2
7

0
 

3
0

0
 

3
3

0
 

3
6

0
 

Year day 

Figure 9. (a) Mean annual cycle of CHL in central Baltic Sea (area

indicated in Fig. 1b) for 1997–2013 (solid line) compared with CHL

measured in situ in 1985–1989 (circles, dashed line, from Kahru et

al., 1991). (b) Temporal changes in the start and end of the “high

chlorophyll season” (CHL >= 3 mg m−3) in the Baltic Sea. The

connected markers and the respective regression lines are (from left

to right): day when CHL= 3.0 mg m−3 is reached for the first time

(DFCHL3, circles) and day when CHL= 3.0 mg m−3 is reached for

the last time (DLCHL3, squares) during the season.

lute values, particular during periods of rapid change like the

phytoplankton spring bloom. However, uncertainty in tim-

ing becomes bigger during periods of slow change. The ef-

fect of missing days due to cloud cover is another factor

causing errors in phenology. As we track the phenology of

variables averaged over large areas (e.g., most of the Baltic

Sea), the potential errors and quasi-random fluctuations are

smoothed out. Systematic differences in missing data due to

cloud cover (e.g., mostly southern or mostly northern areas)

are another source of uncertainties in our phenological indi-

cators and may be responsible for some of the interannual

wiggles in the time series. Total uncertainties in our pheno-

logical indicators are complex and caused by errors in indi-

vidual measurements, and the confounding effects of spatial

and temporal compositing. However, the interannual trends

in most variables are quite clear and that makes us confident

that the errors are much smaller than the observed trends.

While significant trends can be detected in the absolute

values of a number of variables – e.g., the increasing trends

of SST, Ked490 and CHL – the phenological indicators of-

ten show more marked change and clearer trends, even when

trends in the mean values are questionable or nonsignifi-

cant. For example, the time series of incoming shortwave

irradiance (SIS, W m−2) are highly regular with no appar-

ent trends in the absolute daily values but the timing of SIS

shows subtle but significant changes in seasonality, with en-

ergy input decreasing slightly in winter, but increasing dur-

ing spring and summer. As a result, the cumulative sum of

30 000 W m−2 was reached about 23 days earlier in 2013

than at the beginning of the time series in 1983. Over the

same period, the center of timing of the summer cyanobacte-

rial bloom (Fig. 10) became over 17 days earlier, a similar-

ity that is likely to be more than a coincidence. A probable

explanation for the reduced SIS input in winter is increased

cloudiness.

The mean annual SST has increased during the last

decades, in agreement with the overall warming trend. How-

ever, changes in the timing of the annual SST cycle are more

drastic. As a result of the earlier warming and later cooling,

the period with SST above 16 ◦C has increased at a mean

rate of 0.98 day year−1. Surprisingly, in contrast to the earlier

warming of the sea in the spring and early summer and later

cooling in the fall, the start and end of the summer tempera-

ture maximum (∼ 22 ◦C) have not changed and the duration

with the highest SST has stayed the same.

Dramatic changes have occurred recently in the annual cy-

cle of the coefficient of light attenuation (Ked490), an indi-
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Figure 10. Temporal change in the timing of cyanobacteria accumulations for the Baltic Sea. The circles connected with a solid line show

the “center of timing” (modified after Kahru and Elmgren, 2014, by adding 2014 data). The red line is the estimated linear regression for

the Baltic (area in Fig. 1a). The gray dotted lines show the mean start and end of the accumulations for the whole Baltic Sea. For reference,

1 July is year day 182 (183 in leap years), year day 200 is July 19 (in leap years, July 18).

cator of water transparency. The duration of the period with

elevated but intermediate Ked490 has somewhat increased

but the duration of the period with high mean Ked490 (over

0.4 m−1) has lengthened greatly – i.e., by approximately 180

days from 1998 to 2013. Similarly, the duration of the pe-

riod with high CHL (operationally defined as CHL of at least

3 mg m−3) has increased as the spring increase has advanced

at a mean rate of −1.6 day year−1 and the end of the high

CHL period in the fall bloom has been delayed at the mean

rate of 1.9 day year−1. These changes in the timing of high

Ked490 and CHL are clearly correlated with the changes to-

wards earlier warming and later cooling of SST, but the rate

of change is faster. Since the satellite-derived time series of

Ked490 and CHL are shorter and less reliable than the time

series of SST, their estimated mean rates of change are also

less accurate. However, it seems that the response of the bi-

ological system to climate change and eutrophication is am-

plified compared to the changes in the timing of the physical

environment.

The changes in the timing of Ked490 and CHL are related

and reflect increased turbidity and decreased water trans-

parency in the Baltic Sea. An obvious consequence of the

increased Ked490 is that less light reaches depths below the

surface. While this analysis was done for the central Baltic

with small areas of benthic photosynthesis, we can assume

that benthic communities in the coastal areas must also be

experiencing significant reduction in light intensity due to

the decreased water transparency. We can hypothesize that

the increased turbidity and decreased water transparency are

related to increased phytoplankton concentrations and in-

creased bacterial production. Likely effects on the rest of

the ecosystem including commercially important fisheries

should be further evaluated.

The phenological indicators that we applied to a number of

satellite-detected variables show significant climate-related

changes in the Baltic Sea ecosystem. It appears that the bio-

logical response to climate warming is amplified, compared

to the rate of change in the physical forcing (SIS and SST).

As satellite-derived CHL algorithms in the Baltic Sea are

inaccurate and noisy (e.g., Darecki and Stramski 2004) –

primarily due to the confounding influence of high concen-

trations of CDOM – trends in absolute values of CHL are

difficult to interpret. For example, an apparently increasing

trend in CHL could be influenced by increasing concentra-

tions of CDOM or non-algal particles. However, the start of

the annual increase in CHL is much more likely to reflect

the increase in phytoplankton due to the known phytoplank-

ton spring bloom and the dependence of photosynthesis on

the annual cycle of light and stratification. Elevated concen-

trations of CDOM and non-algal particles are perhaps more

likely to be partly responsible for extending the high CHL

period in the fall.

Cyanobacterial blooms are a worldwide phenomenon as-

sociated with eutrophication of lakes, reservoirs and estuar-

ies, toxic contamination of drinking water, and other undesir-

able effects. They cause major environmental problems in the

North American Great Lakes (Stumpf et al., 2012), in lakes in

China (Paerl et al., 2011) and in the Baltic Sea (Funkey et al.,

2014; Kahru and Elmgren, 2014). As cyanobacterial growth

in temperate zones is enhanced by higher temperatures and

near-surface stratification, these blooms are expected to be-

come more frequent as a result of climate change (Pearl and

Huisman, 2008, 2009; Wiedner et al., 2007). Cyanobacterial

growth typically accelerates above 12 ◦C and peaks above

17 ◦C (e.g., Hense et al., 2013). We can therefore assume

that the earlier start of the warm-up (measured as DFSST12)

and later start of cool-down (measured as DLSST12) indicate

improved conditions for cyanobacteria in the Baltic Sea. By

this measure, the duration of both the growth season and the

“enhanced growth season” (DDSST17) have become signif-

icantly longer. The duration of the period with a mean SST

of at least 16 ◦C has increased, from 40 days in 1982 to 72

days in 2014 – i.e., by about 32 days (Fig. 5b), and the pe-

riod with SST of at least 17 ◦C (DDSST17) from 29 days
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in 1982 to 56 days in 2014 – i.e., almost doubled. Indeed,

in accordance with these trends in SST, we see indications

that cyanobacteria are becoming more dominant in the phy-

toplankton community. That dominant cyanobacterial genera

in the Baltic Sea, especially Aphanizomenon and Nodularia,

are buoyant may both contribute to the higher turbidity and

favor them over non-buoyant phytoplankton. While in the

1980s the annual CHL maximum corresponded to the diatom

spring bloom (in May in the central Baltic), it has now shifted

to the cyanobacteria bloom in July, which has also advanced

from its previous mean timing in August.

Even though the Baltic Sea is one of the marine areas

in the world best covered by observations, the frequency of

long-term sampling is insufficient for a confident detection of

similar phenological indicators using measurements at sea.

Instead, comparisons can be made with mathematical mod-

els simulating ecosystem dynamics over decades with high

temporal resolution (e.g., Eilola et al., 2011; Hense et al.,

2013; Meier et al., 2012). For instance, BALTSEM (BAltic

Long-Term large Scale Eutrophication Model, Savchuk et

al., 2012) produces quite similar tendencies in the Central

Baltic Sea (Fig. 1b). The prolongation of the vegetative sea-

son from about 190 days in the beginning of 1970s to about

230 days in the middle of 2010s has been accompanied by

a tripling of the net primary production and shift of the an-

nual biomass maximum from spring to summer. Due to ear-

lier warming and delayed cooling, the duration of the period

with simulated surface water temperature exceeding 14 ◦C,

the assumed threshold for initiation of nitrogen fixation by

cyanobacteria in the model, has increased from about 75 days

in 1982 to about 110 days in 2014 – i.e., by 35 days (see

Fig. 5b). The center of timing of simulated cyanobacteria de-

velopment has become 17 days earlier (see Fig. 10).

5 Conclusions

Phenological indicators are sensitive in detecting environ-

mental changes that are often hardly detectable using abso-

lute values of the respective environmental variables. More-

over, these indicators – e.g., the duration of the growth season

– may have special ecological significance. Using these phe-

nological indicators we show significant and in some cases

drastic changes in the seasonality of the Baltic Sea. These

changes are evident in multiple variables from purely phys-

ical to ecological to biological. For several ecologically im-

portant variables (Ked490, CHL) the length of the annual pe-

riod of high values has increased by a factor of 2 or more

during the last 2 decades. The analyses reported above are

based on satellite data, meaning that the phenological analy-

ses of this type can be made for most areas of the globe and

not only for comparatively data-rich areas like the Baltic Sea.
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