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This supplement provides more detail on the atmospheric observations, the wetland methane
(CH4) flux estimates, and the statistical methods used throughout the paper.

S1 Atmospheric observation sites

Here we describe, in greater depth, the atmospheric CH4 observations collected across the US
and Canada in 2007–2008. The observations used here are the same as those in Miller et al.5

(2013) and Miller et al. (2014b), and the discussion below summarizes the data descriptions in
those papers.

The CH4 analysis in the main article uses either real or synthetic data at US and Canadian
observation sites – a total of 14 703 observations. Of those measurements, 2 009 are from
observation towers in Canada. These towers (from east to west) include Chibougamau, Quebec10

(CHM, 50◦N, 74◦W, 30m above ground level); Fraserdale, Ontario (FSD, 50◦N, 83◦W, 40m agl);
East Trout Lake, Saskatchewan (ETL, 54◦N, 104◦W, 105m agl); and Candle Lake, Saskatchewan
(CDL, 54◦N, 105◦W, 30m agl, 2007 only). These sites, operated by Environment Canada,
measure CH4 continuously. In this study, as in Miller et al. (2014b), we use only afternoon
averages of the CH4 data and WRF-STILT model output (1pm - 7pm local time); small scale15

heterogeneities in the continuous data caused by turbulent eddies and incomplete mixing make
it difficult to model finer scale temporal patterns in the data. The 2 009 observations at these
Canadian sites represent the total after averaging.

An additional 4 984 CH4 observations were collected from US towers operated by the Na-
tional Oceanic and Atmospheric Administration (NOAA) and its partners. These observations20

include daily flask samples from a number of tower sites (weekly at Argyle and Ponca City):
Argyle, Maine (AMT, 45 ◦N, 69 ◦W, 107m above ground level (agl)); Erie, Colorado (BAO, 40
◦N, 105◦W, 300m agl); Park Falls, Wisconsin (LEF, 46◦N, 90◦W, 244m agl), Martha’s Vineyard,
Massachusetts (MVY, 41◦N, 71◦W, 12m agl); Niwot Ridge and Niwot Forest, Colorado (NWF,
NWR, 40◦N, 105◦W, 2,3,23m agl); Ponca City, Oklahoma (SGP, 37◦N, 97◦W, 60m agl); West25

Branch, Iowa (WBI, 42◦N, 93◦W, 379m agl); Walnut Grove, California (WGC, 38◦N, 121◦W,
91m agl), and Moody, Texas (WKT, 31◦N, 97◦W, 122, 457m agl).

A further 7 710 CH4 measurements were obtained from flask samples on regular NOAA air-
craft flights and from the START08 (Stratosphere-Troposphere Analyses of Regional Transport
2008) measurement campaign (Pan et al., 2010). As in Miller et al. (2013), we only use aircraft30

observations up to 2 500m above ground level. Observations at higher altitudes are less sensitive
to surface emissions and were instead used by Miller et al. (2013) to optimize the estimated
CH4 boundary condition or background concentrations. In this study, we only use aircraft and
tower-based observations collected during daytime hours.

We further screen the data for biomass burning influence at the Canadian sites and at Park35

Falls, Wisconsin. At these sites, we remove all days with CO that peaks above 200 ppb, as
was done in Miller et al. (2014b). When these sites see influence from distant anthropogenic
emissions, CO is often elevated, but it rarely exceeds 200 ppb except during time periods with
known fires (Miller et al., 2008).

S2 WETCHIMP CH4 flux models40

This section of the supplement details the WETCHIMP CH4 estimates from Melton et al.
(2013) and Wania et al. (2013). The seven CH4 estimates used in this study are shown in Fig.
S1. The wetland CH4 fluxes estimated by these models varies widely – both in magnitude and
in spatial distribution. For example, the SDGVM model places large fluxes over the US Corn
Belt relative to other regions while other models like Orchidee place large fluxes in Northern45
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Canada that extent far into the Northwest Territories. For a more in-depth inter-comparison
of these flux estimates, refer to Melton et al. (2013) and Wania et al. (2013).

S3 Additional information on the model selection setup

In the main article, we use synthetic CH4 data and a model selection framework to examine
whether atmospheric observations can detect aggregate wetland CH4 fluxes (Sect. 2.2 and 3).50

This section first describes the synthetic data experiments (Sect. 2.2) followed by additional
detail on the model selection runs that use real data (Sect. 2.3). The methods described here
are adapted from Fang et al. (2014), Shiga et al. (2014), and Fang and Michalak (2015), and
the discussion below parallels the descriptions in those studies.

The synthetic observations include contributions from anthropogenic sources, from wetlands,55

and from simulated model and measurement errors:

zsynthetic = H(santhro + swetland) + ε (S1)

In this equation, zsynthetic (n × 1) represents the synthetic observations generated for an ob-
servation site. The vector santhro (m × 1) represents emissions from anthropogenic sources,
and swetland (m× 1) represents wetland fluxes. The footprint or sensitivity matrix H (n×m),
generated from WRF-STILT, models the impact of these emissions at the observation sites.60

In this study, we use the a priori anthropogenic emissions estimates from Miller et al. (2013)
and Miller et al. (2014b) for santhro. Those studies used activity data from the EDGAR inven-
tory and a model selection framework to construct a prior anthropogenic emissions estimate.
These EDGAR activity datasets include economic or demographic data that may predict the
spatial distribution of CH4 emissions (e.g., human or ruminant population maps).65

The wetland fluxes (swetland) in Eq. S1 are taken from the WETCHIMP CH4 flux models
(experiment two in Melton et al. (2013)). For the synthetic data experiments, we scale these
models to match the Hudson Bay Lowlands (HBL) budget estimated by Pickett-Heaps et al.
(2011), Miller et al. (2014b), and Wecht et al. (2014). This scaling ensures more consistent or
representative results. The larger the wetland flux, the more likely that the observation network70

can detect a CH4 fluxes from wetlands. Therefore, if we conduct the synthetic data experiment
using a flux model that has an anomalously large magnitude, we would concomitantly obtain
anomalously optimistic results.

As in Miller et al. (2013) and Miller et al. (2014b), the emissions (santhro and swetland) are
regridded to a spatial resolution of 1◦ latitude by 1◦ longitude. The EDGAR activity data do75

not have any seasonality, so the anthropogenic emissions (santhro) are seasonally invariant. The
WETCHIMP models have a monthly temporal resolution, as in Melton et al. (2013). That
study provides flux estimates for the years 1993-2004; we use the mean of these ten years for
all analysis in this study.

The final term in equation S1, ε (n×1), represents simulated errors in the measurements, in
WRF-STILT, and in the fluxes (santhro and swetland). The errors in ε are distributed according
to the covariance matrix Ψ (n× n) (Eq. 1):

ε ∼ N (0,Ψ) (S2)

Ψ = HQHT + R (S3)

The variances and covariances within Ψ fall into two different categories. The first category80

are errors due to imperfect emissions, described by covariance matrix Q (m×m). In atmospheric
inversion studies, this matrix is typically termed the a priori covariance matrix. The diagonal
elements of Q describe a set of variances – differences between the prior fluxes and the unknown
true emissions over long spatial or temporal scales. The off-diagonal elements of Q describe any
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Figure S1: Annual mean wetland CH4 fluxes from seven different WETCHIMP estimates
(Melton et al., 2013; Wania et al., 2013). The fluxes shown here are averaged over the 1993-2004
study period. Note that the fluxes shown above are averaged over the entire grid cell, not per
m2 of wetlands.
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spatial and/or temporal covariances in these differences. In Eq. S3, the footprint or sensitivity85

matrix (H) projects Q from units of (flux)2 into units of parts per billion squared, (ppb)2.
We refer to the second type of errors as model-data mismatch errors, denoted by covariance

matrix R (n × n). These include all errors in the WRF-STILT model or the measurements
that are unrelated to an imperfect flux estimate. Examples of model-data mismatch errors
include measurement error, atmospheric transport error, or errors due to the spatial or temporal90

resolution of WRF-STILT.
The synthetic data simulations in this study use values of Q and R estimated in Miller

et al. (2013) and Miller et al. (2014b). In the synthetic data studies, we construct a statistical
model that is representative of a prototypical real data inverse model. Similarly, we want to use
values for Q and R that are representative of what one would likely encounter in a real-data95

setup. Miller et al. (2013) and Miller et al. (2014b) constructed real data inverse models over
the US and Canada, respectively, using the same atmospheric observations and WRF-STILT
simulations used in this study. Those studies used a model selection framework to find prior
models that show optimal fit against available observations. In each study, the authors then
estimated the elements of Q and R using that prior model. The resulting estimates of Q are100

representative of prior models that shows optimal agreement with atmospheric observations.
For case study (b) (no anthropogenic emissions), we estimate Q using the same approach as in
Shiga et al. (2014). In that study, the authors used the estimated variances and covariances of
the remaining fluxes (in this case wetland fluxes) to populate Q.

In the real data experiments (Sect. 2.3), we estimate unique values of Q and R each time we105

run the model selection framework. We estimate these parameters using Restricted Maximum
Likelihood (RML) (Corbeil and Searle, 1976; Kitanidis, 1995; Michalak et al., 2004; Gourdji
et al., 2012), the same procedure used in Miller et al. (2013) and Miller et al. (2014b).

We use these covariance matrices to compute ε through several steps. First, we compute
the Cholesky decomposition of the combined covariance matrix Ψ:110

Ψ = CCT (S4)

The covariance matrix Ψ has units of (ppb)2, but its Cholesky decomposition (C) has units of
ppb. With this decomposition in hand, we next simulate a set of errors, ε (e.g., Fang et al.,
2014; Shiga et al., 2014):

ε = Cu (S5)

u ∼ N (0,1) (S6)

where u represents a set of randomly-generated numbers with a mean of zero and variance of
one.

We simulate 1000 synthetic datasets for each experiment to adequately sample the random
errors in ε. We then use the model selection framework to find the optimal candidate model for
each of these datasets. The results presented in Fig. 3 are therefore the composite of thousands115

of model selection runs: one model selection run for each synthetic dataset. We also estimate
the coefficients (β) in Eq. 1 using Lagrange multipliers to ensure that none of the estimated
coefficients have unrealistic negative values (e.g., Miller et al., 2014a).

In the real data setup (Sect. 2.3), we run the model selection procedure once for each of
the seven WETCHIMP flux estimates. We only include one of the seven WETCHIMP flux120

models in each model selection run. As a result, the WETCHIMP models do not compete
against one another for selection. In each run, the model selection framework can select the
given WETCHIMP model in any of the four geographic regions and any of the four seasons.
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Figure S2: Total, summed footprint from the (a) Canadian and (b) US observation networks.
The observation sites incorporated into this figure are shown in Fig. 2. Each individual footprint
(associated with an individual atmospheric observation) has units of concentration per unit flux
(ppb per µmol m−2 s−1). In this figure, we sum all footprints for 2007–2008.

S4 Overall sensitivity of the observation network to CH4 fluxes

In this section, we describe the overall footprint or sensitivity of the observation network to125

CH4 fluxes. This sensitivity will play at least some role in network’s ability to detect wetland
CH4 fluxes. The WRF-STILT model quantifies this sensitivity in terms of a footprint. Each
row the matrix H is the footprint associated with a different atmospheric CH4 observation. In
Fig. S2, we plot these footprints, summed over all of 2007–2008.

This figure show several distinctive patterns. First, the US network has a higher sensitivity130

than the Canadian network. This pattern is due to the larger number of observation sites
over the US. Second, the highest sensitivities are clustered in distinctive regions with multiple
observation sites – Wisconsin, Texas/Oklahoma, and California, among other regions.

S5 Soil freeze/thaw estimates from NARR

Figure S3 shows the soil freeze/thaw cycle at different depths averaged across the HBL. These135

estimates are taken from North American Regional Reanalysis (NARR) (Mesinger et al., 2006),
and the values shown in Fig. S3 are average values for each month. The main article references
this figure in a discussion of the CH4 flux seasonal cycle (Sect. 4.3).

S6 Additional model-data time series

This section includes additional model-data time series analogous to those in Fig. 4. That140

figure compares averaged concentrations modeled by WRF-STILT against monthly-averaged
observations at four different observation sites. The sites displayed in that figure are located
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Figure S3: This figure displays the fraction of soil water that is unfrozen for the HBL in different
seasons and at different soil depths. Estimates are taken from NARR (Mesinger et al., 2006).

near large wetlands and in regions where the synthetic data experiments had a high success
rate (Fig. 3). The sites displayed in Fig. S4 in this section are located further from wetlands
and in regions that had a low success rate in the BIC experiments. At many of the sites in145

Fig. S4, the modeled wetland signal is difficult to distinguish. These sites contrast with those
in Fig. 4 which “see” a relatively large CH4 increment from wetlands.

S7 Validation of the WRF-STILT model

This section describes work that validates the atmospheric transport estimated by WRF-STILT.
The supplements to Miller et al. (2013) and Miller et al. (2014b) provide detailed validation of150

the atmospheric transport and boundary condition estimate; refer to those papers for additional
information. Those papers use the same WRF-STILT simulations and boundary condition
estimate as in the present paper. This section of the Supplement discusses a number of key
points or highlights.

A number of figures in Miller et al. (2013) and Miller et al. (2014b) illustrate the ability155

of the WRF-STILT model to reproduce daily and seasonal patterns in the observations at
different sites across the US and Canada. Those studies used a geostatistical inverse model to
estimate CH4 fluxes for the US and Canada, respectively. Figures S6 and S7 in Miller et al.
(2013) compare modeled concentrations using this estimate against observed concentrations.
The figures also display the estimated boundary condition and modeled concentrations with the160

EDGAR inventory for comparison. Modeled concentrations using the flux estimate in that paper
can reproduce day-to-day variations in CH4 concentrations at tall tower sites in Wisconsin,
California, and Texas (Fig. S6 in Miller et al. (2013)), among other tall tower locations.
Figure 4 in Miller et al. (2014b) further compares modeled concentrations against observed
concentrations at sites in Canada. WRF-STILT is able to reproduce seasonal variability in165
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CH4 concentrations at tower sites across Canada using the flux estimate from that study.
Miller et al. (2013) validate WRF-STILT’s ability to reproduce the vertical structure of the

atmosphere. Figure 4 in Miller et al. (2013) shows modeled and observed concentrations at
regular NOAA aircraft sites, averaged across the 2007–2008 study period. The first panel of
that figure displays observed and modeled concentrations averaged across all aircraft sites and170

the remaining panels display individual aircraft sites in Oklahoma, New Jersey, and Iowa. At
all of these sites, WRF-STILT is able to reproduce CH4 enhancements near the surface and can
reproduce vertical patterns in the aircraft observations.

The next section provides additional discussion of uncertainties and errors in the WRF-
STILT model.175

S8 Uncertainty in the model-data framework

A number of modeling and measurement uncertainties influence the results presented in this
paper. These uncertainties are discussed in detail by Miller et al. (2013), Miller et al. (2014b),
and Miller et al. (2014a). This section provides a summary of those discussions.

The model selection framework in this study accounts for modeling or measurement errors180

in the R covariance matrix (Eq. S3). This covariance matrix is typically included in a Bayesian
synthesis or geostatistical inverse model (e.g., Michalak et al., 2004). The errors described by R
are collectively referred to as model-data mismatch – any errors in the model-data framework
that are unrelated to an imperfect flux estimate. This mismatch includes errors in the modeled
winds, errors in the CH4 boundary condition, and any errors due to the finite spatial or temporal185

resolution of the model, among other possible error sources. This section of the supplement
first discusses the overall magnitude of these model-data mismatch errors and then discusses
individual components of the model-data mismatch, including potential errors in the estimated
winds and in the boundary condition.

Both Miller et al. (2013) and Miller et al. (2014b) estimate the magnitude of model-data190

mismatch errors for observation sites in the US and Canada, respectively. These studies used a
procedure known as Restricted Maximum Likelihood (RML) to estimate the parameters that
define both the R and Q covariance matrices (e.g., Corbeil and Searle, 1976; Kitanidis, 1995;
Michalak et al., 2004; Gourdji et al., 2012). The estimated mismatch errors range in magnitude
from 12-13 ppb (standard deviations) at Canadian tower sites to 20-30 ppb at tower sites near195

oil and gas operations in the southern US (refer to Fig. S2 in Miller et al. (2013) and Fig. S6
in Miller et al. (2014b)). This magnitude (12-30 ppb) is equivalent to 25–70% of the average
CH4 signal from North American emissions as seen at the various observation sites.

These model-data mismatch errors encompass numerous sources of error, but these errors
are likely dominated by uncertainties in atmospheric transport. Nehrkorn et al. (2010) gener-200

ated WRF meteorology for use in STILT and compared the estimated winds against US and
Canadian radiosondes. They computed a root mean squared error (RMSE) of 2.5–4 m s−1 in
the horizontal winds and found no change in error statistics at the top of the boundary layer.
Hegarty et al. (2013) further coupled the STILT model with several weather models and found
that simulations with WRF produced lower error statistics relative to other weather models.205

Several existing studies have shown consistent results between WRF-STILT and other atmo-
spheric models; this consistency may indicate a lack of large-scale bias in atmospheric transport
estimated by WRF-STILT. For example, constraints on summertime US carbon monoxide emis-
sions estimated with STILT and the GEOS-Chem model match to within 10% (Miller et al.,
2008; Hudman et al., 2008). CH4 budgets estimated for the HBL in Canada using WRF-STILT210

and GEOS-Chem are similar to within 10% (Pickett-Heaps et al., 2011; Miller et al., 2014b;
Wecht et al., 2014). Furthermore, CH4 budgets estimated for the US with WRF-STILT and
GEOS-Chem match to within ∼10% (Miller et al., 2013; Turner et al., 2015).
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The CH4 boundary condition or background concentrations are another, potentially large
source of uncertainty in the CH4 modeling framework. To create this boundary condition,215

we interpolate atmospheric CH4 observations near or over the Pacific and Arctic Oceans to
create a boundary “curtain.” This curtain estimates CH4 concentrations over the Pacific and
Arctic; it varies by latitude, altitude, and time (see Fig. S4 in Miller et al. (2014b)). We
then sample concentrations along this curtain depending upon the ending latitude, altitude,
and time of each WRF-STILT trajectory. These sampled concentrations become the boundary220

condition – an estimate of the CH4 concentration in air before that air reaches North America.
Miller et al. (2013) and Miller et al. (2014b) describe this setup in greater detail along with the
associated uncertainties. For example, Miller et al. (2013) compared the boundary condition
estimate against aircraft data collected above 3000m over the United States. They found an
average difference of 2.7 ppb between the aircraft observations and boundary condition estimate.225

Miller et al. (2013) then adjusted the boundary condition based upon this aircraft data. They
subsequently estimated a total US CH4 budget using boundary conditions with and without
the aircraft adjustment. The total CH4 budget using the aircraft-corrected boundary condition
was approximately 5% higher than the unadjusted boundary condition estimate. This result
indicates the possible effects of boundary condition uncertainties on a national-scale CH4 budget230

estimate.
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