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Abstract. Existing estimates of methane (CH4) fluxes from

North American wetlands vary widely in both magnitude and

distribution. In light of these differences, this study uses at-

mospheric CH4 observations from the US and Canada to an-

alyze seven different bottom-up, wetland CH4 estimates re-

ported in a recent model comparison project. We first use

synthetic data to explore whether wetland CH4 fluxes are de-

tectable at atmospheric observation sites. We find that the ob-

servation network can detect aggregate wetland fluxes from

both eastern and western Canada but generally not from the

US. Based upon these results, we then use real data and in-

verse modeling results to analyze the magnitude, seasonality,

and spatial distribution of each model estimate. The magni-

tude of Canadian fluxes in many models is larger than in-

dicated by atmospheric observations. Many models predict

a seasonality that is narrower than implied by inverse mod-

eling results, possibly indicating an oversensitivity to air or

soil temperatures. The LPJ-Bern and SDGVM models have

a geographic distribution that is most consistent with atmo-

spheric observations, depending upon the region and season.

These models utilize land cover maps or dynamic modeling

to estimate wetland coverage while most other models rely

primarily on remote sensing inundation data.

1 Introduction

CH4 fluxes from wetlands play a critical role in global cli-

mate change. CH4 is the second most important long-lived

greenhouse gas, and the radiative forcing of the current at-

mospheric burden is approximately 26 % of carbon diox-

ide (Butler, 2014). Wetlands are possibly the largest single

source of this gas to the atmosphere and account for roughly

30 % of global emissions (Kirschke et al., 2013).

Despite the important role of wetland CH4 fluxes in cli-

mate change, existing estimates of this source differ on the

magnitude, seasonality, and spatial distribution of fluxes,

from regional to global scales. In fact, a recent global model

comparison project named WETCHIMP (Wetland and Wet-

land CH4 Intercomparison of Models Project) found large

differences among existing CH4 wetland models (Fig. 1,

Melton et al., 2013; Wania et al., 2013). For example, exist-

ing estimates of maximum global wetland coverage differ by

about a factor of 6 – from 4.1× 106 to 26.9× 106 km2. Fur-

thermore, estimates of global natural wetland fluxes range

from 92 to 264 Tg CH4 yr−1. The relative magnitude of these

uncertainties increases at sub-global spatial scales; CH4 esti-

mates for Canada’s Hudson Bay Lowlands (HBL) range from
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0.2 to 11.3 Tg CH4 yr−1. These disagreements in current CH4

estimates do not bode well for scientists’ abilities to accu-

rately predict future changes in wetland fluxes due to climate

change (e.g., Melton et al., 2013).

A number of studies have used chamber measurements of

CH4 to parameterize or evaluate biogeochemical CH4 mod-

els (e.g., Livingston and Hutchinson, 2009). These measure-

ments usually encompass fluxes from a relatively small area,

and fluxes can often vary greatly with landscape heterogene-

ity at these spatial scales (Waddington and Roulet, 1996;

Hendriks et al., 2010). CH4 data collected in the atmosphere

observe the cumulative effect of CH4 fluxes across a broader

region (e.g., Winderlich et al., 2010; Pickett-Heaps et al.,

2011; Bruhwiler et al., 2014; Miller et al., 2014). Hence, at-

mospheric data can provide a unique tool for evaluating ex-

isting CH4 flux estimates across different countries or conti-

nents.

The present study compares the WETCHIMP CH4 flux es-

timates against atmospheric CH4 data and inverse modeling

results from 2007–2008 through two sets of analyses. First,

we construct a set of synthetic data experiments to under-

stand whether the atmospheric CH4 observation network can

detect CH4 fluxes from wetlands. We also explore the fac-

tors that might prevent the network from detecting wetland

fluxes. To answer these questions, we utilize a model selec-

tion procedure based upon the Bayesian information criterion

(BIC; Sect. 2.2, Shiga et al., 2014; Fang et al., 2014; Fang

and Michalak, 2015). This procedure determines whether

wetland fluxes from different regions and seasons are nec-

essary to describe variability in synthetic atmospheric CH4

observations. Based on these synthetic experiments, we con-

duct a second set of analyses using real atmospheric data and

inverse modeling results. We use these data to analyze the

magnitude, seasonal cycle, and spatial distribution of each

WETCHIMP CH4 estimate. We investigate these questions

over the US and Canada, using CH4 data collected from tow-

ers and regular aircraft flights operated by NOAA and its

partners and from towers operated by Environment Canada.

2 Methods

This section first describes the atmospheric CH4 data and the

atmospheric model that allows direct comparison between

the data and various flux estimates. Subsequent sections de-

scribe both the synthetic and real data experiments outlined

in the introduction (Sect. 1).

2.1 Data and atmospheric model

The present study utilizes atmospheric CH4 observations

from aircraft and tower platforms across the US and Canada,

a total of 14 703 observations from 2007–2008. These ob-

servation sites include 4 towers operated by Environment

Canada and 10 towers in the US operated by NOAA and its

partners. Observations at the NOAA towers consist of daily

(occasionally weekly) flasks, and observations at the Envi-

ronment Canada sites are continuous measurements. As in

Miller et al. (2014), we use afternoon averages of these con-

tinuous data. In addition to these towers, we utilize obser-

vations from 17 regular NOAA aircraft monitoring locations

in the US and Canada (Fig. 2). We incorporate aircraft data

up to 2500 m altitude as was done in Miller et al. (2013).

Observations above that height are usually representative of

the free troposphere with limited sensitivity to surface fluxes.

These observations and the associated model runs (described

below) are the same as those used in Miller et al. (2013) and

Miller et al. (2014).

We then employ an atmospheric transport model to relate

CH4 fluxes at the Earth’s surface to atmospheric concentra-

tions at the observation sites. The modeling approach here

combines the Weather Research and Forecasting (WRF) me-

teorological model and a particle-following model known as

STILT, the Stochastic Time-Inverted Lagrangian Transport

model (e.g., Lin et al., 2003; Nehrkorn et al., 2010; Hegarty

et al., 2013). WRF-STILT generates a set of footprints; these

footprints quantitatively estimate the sensitivity of each ob-

servation to fluxes at each surface location (with units of ppb

per unit surface flux). We multiply the footprints by a flux

model and add this product to an estimate of the “back-

ground” concentration – the CH4 concentration of air enter-

ing the North American regional domain. We estimate this

background concentration using CH4 observations collected

near or over the Pacific Ocean and in the high Arctic, a setup

described in detail by Miller et al. (2013) and Miller et al.

(2014). The resulting modeled concentrations can be com-

pared directly against atmospheric CH4 observations. The

observations, WRF-STILT runs, background concentrations,

and uncertainties in the modeling framework are described

in greater detail in the Supplement, Miller et al. (2013), and

Miller et al. (2014).

We can then estimate atmospheric concentrations using

fluxes from the WETCHIMP project (Fig. 1) and com-

pare those estimates against atmospheric observations. The

WETCHIMP project was designed to compare simulated

wetland distributions and modeled CH4 fluxes at multi-year,

continental scales (Melton et al., 2013; Wania et al., 2013).

The project entailed several sets of model runs, but Melton

et al. (2013) primarily reported on one set of runs – runs

for 1901–2009 that used the same observed climate and CO2

concentration data sets to force all models. Each CH4 model

utilized its own parameterization for wetland area and dis-

tribution. We use the outputs from this set of model runs in

the present study. Of the WETCHIMP models, seven provide

a flux estimate on a suitable time step for boreal North Amer-

ica and six provide an estimate for temperate North Amer-

ica. These models include CLM4Me (Riley et al., 2011),

DLEM (Tian et al., 2010), LPJ-Bern (Spahni et al., 2011),

LPJ-WHyMe (Wania et al., 2010), LPJ-WSL (Hodson et al.,

2011), ORCHIDEE (Ringeval et al., 2010), and SDGVM
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Figure 1. Mean of the annual methane fluxes estimated by the WETCHIMP models (a) and the range of fluxes estimated by the ensemble (b).

Note that the range in estimates is larger than the mean. The fluxes shown above are the average flux per m2 of land area, not per m2 of

wetland area.
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Figure 2. The US and Canadian atmospheric methane observation

network for 2007–2008 (14 703 total observations). Small yellow

dots indicate observations from the START08 measurement cam-

paign (Pan et al., 2010). Larger dots indicate tower and aircraft sites

with regular observations over the 2-year period (Andrews et al.,

2014). The grey background delineates the four regions used in the

synthetic data experiments (Sect. 2.2).

(Singarayer et al., 2011). All flux model outputs used from

the WETCHIMP study have a temporal resolution of 1

month, and we regrid all outputs to a spatial resolution of

1◦ lat. by 1◦ long. (the resolution of the WRF-STILT foot-

prints). These models are described in Melton et al. (2013),

Wania et al. (2013), and the Supplement.

2.2 Synthetic data experiments

We assess the ability of the CH4 observation network to

detect wetland fluxes using a model selection framework

adapted from the BIC. A model selection framework can sort

through a large number of potential explanatory variables and

will choose the smallest set of variables that best describe

the data set of interest (e.g., Ramsey and Schafer, 2012). In

the current setup, we generate synthetic atmospheric CH4

observations. The model selection framework then indicates

whether a wetland model and/or an anthropogenic emissions

inventory are necessary to describe variability in these obser-

vations. In this way, model selection can indicate the sensi-

tivity of the observation network to wetland CH4 fluxes.

We use a form of the BIC that has been adapted for use

within a geostatistical inverse modeling framework. This

setup has previously been used to select either bottom-up

models or environmental drivers of CO2 and CH4 fluxes

(e.g., Mueller et al., 2010; Yadav et al., 2010; Gourdji et al.,

2012; Miller et al., 2013, 2014; Shiga et al., 2014; Fang et al.,

2014; Fang and Michalak, 2015). The implementation here

mirrors that of Fang et al. (2014), Shiga et al. (2014), and

Fang and Michalak (2015):

BIC = ln |9| + (z−HXβ)T9−1(z−HXβ)︸ ︷︷ ︸
negative log-likelihood

+ p ln(n)︸ ︷︷ ︸
penalty term

. (1)

The first two terms in Eq. (1) are the negative log-likelihood,

a measure of how well the model fits the data. The last term

penalizes a particular model based upon the number of ex-

planatory variables (p). The best combination or candidate

model has the lowest BIC score.

The variable z (n× 1) represents the observations mi-

nus background concentrations and H (n×m) the footprints

(where m refers to the total number of flux or emissions grid

boxes in both space and time). These variables are based

upon two existing inverse modeling studies by Miller et al.

(2013, 2014) (refer to the Supplement). The matrixX (m×p)

contains p explanatory variables. In the current setup, X can

include a wetland flux estimate and/or individual emissions

sources from an anthropogenic inventory. β (p×1) is a set of

coefficients that scale the variables in X. We set these coef-

ficients to 1 in the synthetic data experiments. As a result,

the model selection framework cannot reproduce wetland

fluxes by simply upscaling anthropogenic emissions sources

that might have a similar distribution to wetlands. Lastly, 9

(n×n) is a covariance matrix derived from an atmospheric in-

version framework. This covariance matrix represents errors

in atmospheric transport and in the measurements – collec-
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tively referred to as model–data mismatch. This matrix also

represents uncertainties in the prior flux estimate. In a geo-

statistical inverse model, this prior flux model is given byXβ

(refer to the Supplement for more detail).

The first experiments described here use synthetic atmo-

spheric CH4 data. We generate the synthetic data using one

of the WETCHIMP models and the anthropogenic emissions

estimates from Miller et al. (2013, 2014). We then multiply

these fluxes by the footprints (H ) and add error that is ran-

domly generated from the covariance matrix (9).

Before generating the synthetic data, we scale the an-

nual HBL CH4 budget in each WETCHIMP model to match

the overall magnitude estimated by several top-down stud-

ies (Pickett-Heaps et al., 2011; Miller et al., 2014; Wecht

et al., 2014). If we did not downscale the magnitude of the

WETCHIMP models, the wetland fluxes would be a much

larger source relative to anthropogenic emissions and mod-

eling and/or measurement errors. The synthetic data experi-

ments would identify wetlands too easily, would understate

the relative role of model and/or measurement errors, and

would not be representative of the atmospheric methane ob-

servations.

We divide the WETCHIMP wetland fluxes into four re-

gions (Fig. 2) and four seasons (DJF, MAM, JJA, and SON).

The model selection framework then chooses variables that

are necessary to reproduce the synthetic data, variables that

include EDGAR and the 16 wetland flux maps. The penalty

term in Eq. (1) increases as we add wetland flux maps or add

EDGAR to the X matrix. Each variable added to X will in-

crease the penalty term by ln(n); an additional variable must

improve the log-likelihood by more than this penalty term to

be chosen by model selection.

We then run this framework 1000 times, generating new

synthetic data each time, and calculate the percentage of all

trials in which the model selection chooses a wetland model.

The 1000 repeats are needed due to the random or stochas-

tic nature of the synthetic data experiment; the results of the

model selection can vary slightly, depending on the partic-

ular random errors that we generate based upon the covari-

ance matrix (9). This procedure ensures that the model se-

lection results are not the output of a single realization. We

then report on how frequently each of the 16 wetland flux

maps is chosen by the BIC-based model selection. If a wet-

land flux map is chosen with high frequency, then a wetland

flux map is necessary to describe variability in the synthetic

CH4 observations, and the synthetic observation network can

detect aggregate wetland CH4 fluxes from the given region

and season. This setup mirrors that of Shiga et al. (2014),

who employed a model selection framework to explore the

detectability of anthropogenic CO2 emissions.

We also explore why the synthetic CH4 observations may

not be able to detect wetland fluxes. We run a series of case

studies and in each case remove a different confounding fac-

tor that might prevent the network from detecting wetland

CH4 fluxes. In one case, we remove anthropogenic emis-

sions. In subsequent cases, we remove model–data mismatch

errors and/or prior flux errors. In each case, we rerun the

model selection experiment and examine whether the results

improve when each of these confounding factors is removed.

2.3 Real data experiments

This paper subsequently compares the spatial distribution,

magnitude, and seasonality of each WETCHIMP estimate

against real atmospheric CH4 observations, using the syn-

thetic experiments to guide the analysis.

We first explore the spatial distribution of the WETCHIMP

flux estimates. We modify the model selection setup in

Sect. 2.2 to focus on the spatial distribution of each estimate

using a procedure developed by Fang et al. (2014) and Fang

and Michalak (2015). Instead of fixing the coefficients (β) to

1, we instead estimate the coefficients using real atmospheric

CH4 observations. We also include an intercept term that can

vary by month; the intercept for each month is represented

by a vector of ones in the matrix X, and this intercept is in-

cluded as part of each candidate model for X. We then run

model selection using real observations. As a result of this

setup, a wetland model is not necessary to reproduce either

the magnitude or seasonality of the atmospheric CH4 data;

the model selection framework can simply scale the intercept

term or scale EDGAR to reproduce the magnitude or season-

ality of the observations. The spatial distribution of wetland

fluxes, however, can only come from a wetland model. The

model selection procedure will only choose a wetland model

if the spatial distribution of that model describes sufficient

additional variability in the observations (e.g., Fang et al.,

2014).

Model selection can therefore indicate which

WETCHIMP models have the best spatial distribution

relative to the atmospheric observations; any WETCHIMP

model chosen by model selection has a spatial distribution

that improves model–data fit, and the model improves that

fit more than the penalty term in Eq. (1). A negative result

does not necessarily indicate that a WETCHIMP model has

a poor spatial distribution. In that case, the observations may

not be very sensitive to the spatial distribution of fluxes for

the given region or given season. Similarly, the spatial distri-

bution in a WETCHIMP model may improve model–data fit

but not by more than the penalty term in Eq. (1). By contrast,

a positive result indicates that a WETCHIMP model likely

has a particularly good spatial distribution. As in Sect. 2.2,

we divide the wetland fluxes into four sub-continental

regions and four seasons. The Supplement describes this

setup in greater detail.

We then analyze the magnitude and seasonality of the

WETCHIMP fluxes using a number of model–data time se-

ries. We model CH4 concentrations at a number of US and

Canadian observation sites using the WRF-STILT model, the

WETCHIMP estimates, and the EDGAR v4.2FT2010 emis-

sions inventory (Olivier and Janssens-Maenhout, 2012; Eu-

Biogeosciences, 13, 1329–1339, 2016 www.biogeosciences.net/13/1329/2016/
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ropean Commission, Joint Research Centre , JRC). We aver-

age the observations and model output at the monthly scale

and then compare the magnitude of these model estimates for

each month against the averaged observations.

We further compare the seasonality of existing bottom-up

models against the seasonality of a recent inverse modeling

estimate by Miller et al. (2014). We plot the monthly budgets

for both the bottom-up models and the inversion estimate,

and we plot the monthly CH4 budget as a fraction of the an-

nual total.

Note that inter-annual variability in existing CH4 flux

models is small relative to the differences among these mod-

els; as a result, conclusions from the 2-year study period

(2007–2008) likely hold for other years. For example, the

inter-annual variability in the total US and Canadian bud-

get is ±7.3–9.7% (standard deviation), depending upon the

model in question (note that LPJ-Bern has even larger inter-

annual variation due to an issue with model spinup described

in Wania et al., 2013).

3 Results and discussion: synthetic experiments

The synthetic experiments presented here explore the limits

of existing atmospheric data for constraining wetland fluxes.

If atmospheric observations are to constrain wetland CH4

fluxes, those observations must be able to detect wetland CH4

fluxes above errors in the transport model and above other

emissions sources such as fossil fuels and agriculture.

The four columns in Fig. 3a display the results from an

individual season in each of four geographic regions. In this

experiment, the synthetic CH4 observations can detect aggre-

gate wetland CH4 fluxes from eastern Canadian wetlands in

greater than 75 % of all trials for the summer and fall seasons.

In the eastern US, the model selection framework chooses

a wetland model in 25–50 % of all trials in multiple seasons.

By contrast, the synthetic CH4 data are least sensitive to wet-

land fluxes in the western US, and the model selection frame-

work chooses wetland fluxes from that region in fewer than

25 % of all trials irrespective of the season. That result may

be due, in part, to the scant wetlands and sparse atmospheric

observations in much of the west.

The results also vary by season. Of any region, the atmo-

spheric CH4 network is best able to constrain fluxes across

multiple seasons in eastern Canada. The largest wetland

fluxes in the WETCHIMP models are in Ontario and Quebec

(Fig. 1). It is therefore unsurprising that the network is best

able to detect wetland fluxes in that region, even though there

are relatively few observation sites in the area. In other re-

gions, the atmospheric CH4 network is less sensitive to wet-

lands during the winter, fall, and spring shoulder seasons.

We run several additional model selection experiments to

explore why the synthetic observations may not always be

able to detect wetland CH4 fluxes (Fig. 3b–e). We remove

anthropogenic emissions from the synthetic data set for the

  (d) No errors in the prior fluxes  (e) No mismatch or prior flux errors    

Eastern 
Canada

Western 
Canada

Eastern
US

Western
US
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Canada
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Canada
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Figure 3. This figure displays the results of the synthetic data ex-

periments. These experiments examine whether the observation net-

work can detect aggregate wetland CH4 fluxes. The figure shows

the percentage of trials that are successful. Darker shades indicate

that the network is more sensitive to wetland fluxes in the given re-

gion and season. Panel (a) shows the results for the standard setup

while panels (b–e) show the results of several test cases in which

anthropogenic emissions or different errors are set to zero.

experiment in Fig. 3b. We remove all model–data mismatch

errors in Fig. 3c; model–data mismatch encompasses errors

in atmospheric transport and in the measurements. Subse-

quently, we remove all errors due to the prior flux estimate

in Fig. 3d. In Fig. 3e, we remove both types of errors. In

each case, we rerun the model selection experiment to see if

the sensitivity of the atmospheric CH4 network to wetland

fluxes improves.

Anthropogenic emissions have only a modest effect on

the results in specific regions and seasons. In experiment b

(Fig. 3b) without anthropogenic emissions, the results im-

prove by ∼ 25–50 % in the fall and spring shoulder seasons

for several geographic regions.

By contrast, the model–data mismatch and prior flux er-

rors have a much larger effect on the model selection results.

The results improve incrementally across many regions and

seasons when we remove model–data mismatch errors in ex-

periment c. The results improve across the spring, summer,

and fall seasons and improve across all four geographic re-

gions. However, the magnitude of this improvement is never

more than 25 %. Model–data mismatch errors are likely dom-

inated by errors in modeled atmospheric transport. These re-

sults imply that transport errors play an incremental yet per-

vasive role in the utility of the atmospheric observations.

The prior flux errors have the largest effect on the results,

particularly during the warmest seasons. In experiment d,

the results show great improvement during fall, spring, and

summer and show little improvement during winter or in the

western US. In the setup here, the prior flux uncertainties

scale with the seasonal magnitude of the fluxes. When we

www.biogeosciences.net/13/1329/2016/ Biogeosciences, 13, 1329–1339, 2016
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remove the prior flux errors, the results concomitantly show

the greatest improvement in seasons that have larger over-

all CH4 fluxes. These results indicate that the prior estimate

greatly impacts the utility of the atmospheric CH4 observa-

tions. A geostatistical inverse model can leverage any combi-

nation of land surface maps, meteorological maps, and/or an-

thropogenic inventory estimates in the inversion prior. These

maps or estimates are incorporated into the X matrix in

Eq. (1). If accurate maps or estimates are not available, then

the prior flux errors will be large, and the model selection

framework will be less likely to choose any particular vari-

able. If these maps or estimates have high explanatory power,

then the prior flux errors will be small, and the model se-

lection framework will be more likely to choose any one

variable. As a result, the detectability of wetland CH4 fluxes

partly depends on the availability of land surface or meteo-

rological data that match those fluxes. The atmospheric net-

work can differentiate wetland CH4 fluxes from other CH4

sources better when accurate prior information can guide that

identification.

Experiment e (no model–data mismatch errors and no er-

rors in the prior flux estimate) shows large, ubiquitous im-

provements; the model selection chooses a wetland model

100 % of the time in almost all regions and seasons. The

results for eastern Canada during winter are the exception.

In winter, the wetland model cannot always explain enough

variability in the synthetic observations to overcome the BIC

penalty term in Eq. (1).

The density of the atmospheric CH4 network may also

play a role in these results. Wetlands in the eastern US are

sparse relative to eastern Canada, but the higher density of

observations in the eastern US may contribute to a moderate

success rate (25–50 %) for that region. Recent and planned

network expansions in the eastern US and in Canada could

play a key role in future efforts to constrain wetland fluxes

across these regions.

Overall, the synthetic experiment results indicate that the

observation network cannot detect wetland fluxes from the

US (i.e., model selection has a success rate < 50 %). Across

Canada, the results are more promising (i.e., near 100 % suc-

cess rate in some regions and/or seasons), despite the relative

sparsity of the observation network there.

4 Results and discussion: comparisons with

atmospheric data and inverse modeling results

4.1 Spatial distribution of the fluxes

We compare the spatial distribution of the WETCHIMP flux

estimates against CH4 data from the atmospheric observation

network. To this end, we use a version of the model selection

framework that chooses wetland models based upon their

spatial distribution (Fang et al., 2014; Fang and Michalak,

2015). WETCHIMP models that are chosen by the frame-

Table 1. Spatial flux patterns chosen by the model selection frame-

work.

Region Season Chosen models

E. Canada summer LPJ-Bern, SDGVM

E. Canada fall LPJ-Bern

W. Canada summer SDGVM

work have a spatial distribution that is more consistent with

atmospheric observations relative to those that are not se-

lected.

The results of this model selection analysis are displayed

in Table 1. This table lists the regions and seasons that had

a success rate > 50 % in the synthetic data experiment; the

atmospheric CH4 network is most sensitive to wetland CH4

fluxes in those regions and seasons. Two of the WETCHIMP

models were chosen by the model selection framework –

LPJ-Bern (in eastern Canada) and SDGVM (in eastern and

western Canada). The spatial distribution of these models

improve the model–data fit more than the penalty term in

Eq. (1).

The LPJ-Bern and SDGVM models have several unique

spatial characteristics that could explain these results. Over

eastern Canada, LPJ-Bern and SDGVM concentrate the large

fluxes in the HBL. Other models, by contrast, often distribute

the fluxes more broadly across Ontario and Quebec or put

the largest fluxes in Ontario outside of the HBL. In western

Canada, SDGVM distributes fluxes across northern, boreal

Saskatchewan and Alberta.

The LPJ-Bern and SDGVM models share another com-

mon characteristic: both model wetland area independently

instead of relying solely on remote sensing inundation data

sets. LPJ-WSL, ORCHIDEE, DLEM, and CLM4Me use re-

mote sensing inundation data sets like GIEMS (Global Inun-

dation Extent from Multi-Satellites, Prigent et al., 2007) to

construct a wetland map. Other models, like LPJ-Bern and

LPJ-WHyMe also use land cover maps and/or land surveys to

estimate wetland (or at least CH4-producing) area. SDGVM

estimates this area dynamically as a function of soil mois-

ture (Melton et al., 2013; Wania et al., 2013). Wetland maps

generated using these different approaches show substantial

differences. Remote sensing data sets estimate relatively high

levels of inundation in regions of Canada that are not forested

or have many small lakes (see further discussion in Melton

et al., 2013; Bohn et al., 2015). By contrast, modeling ap-

proaches that dynamically generate wetland area or use land

cover maps assign more wetlands over regions with high wa-

ter tables but little surface water as seen by remote sensing

based inundation data sets. As a result of these differences,

models like LPJ-Bern assign more wetlands and CH4 fluxes

in the HBL relative to other regions of eastern Canada.

Of note, LPJ-Bern and LPJ-WhyMe have many structural

model similarities but predict relatively different spatial dis-
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tributions of CH4 fluxes. The latter estimates fluxes that are

more broadly distributed across Quebec and Labrador. LPJ-

WhyMe only simulates fluxes from high latitude peatlands

and uses an estimated peatland distribution from Tarnocai

et al. (2009); this distribution extends across Quebec and

Labrador. LPJ-Bern, by contrast, includes fluxes from non-

peatland regions and applies a smaller scaling factor to peat-

land fluxes relative to LPJ-WHyMe (Wania et al., 2013). As a

result, the fluxes in LPJ-Bern have a spatial distribution that

is different from the peatland map and also different from

LPJ-WHyMe.

4.2 Flux magnitude

Next, we compare the magnitude of predicted concentrations

using the WETCHIMP models against atmospheric obser-

vations at individual locations. Unlike previous sections that

utilized model selection, this section employs several model–

data time series, displayed in Fig. 4. The model estimates

in Fig. 4 consist of several components: the background (in

green) is the estimated background concentration of CH4 in

clean air before entering the model domain as in Miller et al.

(2013, 2014). The estimated contribution of anthropogenic

emissions from EDGAR v4.2FT2010 is added to this back-

ground (in red). The contribution of wetland fluxes from the

WETCHIMP models is then added to the previous inputs,

and the sum of all components (blue lines) can be compared

directly against measured concentrations.

The various WETCHIMP flux estimates produce very dif-

ferent modeled concentrations at the atmospheric observa-

tion sites (Fig. 4). Overall, modeled concentrations with the

WETCHIMP fluxes usually exceed the CH4 measurements

during summer. At Chibougamau, Fraserdale, and Park Falls

in early summer, all seven WETCHIMP models predict CH4

concentrations that equal or exceed the observations. The

ORCHIDEE, LPJ-WHyMe, and LPJ-Bern models always

exceed the measurements during summer while DLEM and

SDGVM match the observations better at these sites. No-

tably, a number of previous studies report that the EDGAR

inventory may underestimate US anthropogenic CH4 emis-

sions (e.g., Kort et al., 2008; Miller et al., 2013; Wecht et al.,

2014; Turner et al., 2015). If EDGAR underestimates emis-

sions, then the WETCHIMP models would be an even larger

overestimate relative to the atmospheric data.

Many models appear to overestimate the magnitude of

fluxes across boreal North America, but this result does

not necessarily imply that these models have underestimated

fluxes elsewhere in the world. CH4 models that estimate the

largest fluxes across boreal North America do not always

compensate with smaller fluxes in other regions of the globe.

For example, the ORCHIDEE model not only estimates large

fluxes over North America but also estimates higher fluxes

over the tropics than any other model (Melton et al., 2013).
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Figure 4. These time series compare atmospheric methane mea-

surements at several observation sites against model estimates using

the WETCHIMP ensemble and the EDGAR v4.2FT2010 anthro-

pogenic emissions inventory. Refer to Fig. S4 for model–data time

series at additional sites, particularly sites that are distant from large

wetlands.

4.3 Seasonal cycle

Bottom-up CH4 flux estimates show variable features when

compared to atmospheric observations, and the seasonal cy-

cle of these estimates is no exception. Figure 5 compares the

seasonal cycle of the existing estimates over Canada’s HBL.

Eastern Canada is one of the largest wetland regions in North

America (Fig. 1), and nearby atmospheric observation sites

see a much larger CH4 enhancement from wetlands relative

to other regions (Fig. 4 and S4).

In this region, the bottom-up estimates diverge on the sea-

sonal cycle of fluxes. Most estimates predict peak fluxes

in July or August, though two variations of the LPJ model

predict seasonal peaks in September and October – LPJ-

WHyMe and LPJ-Bern, respectively. LPJ-WHyMe is a mod-

ule inside of LPJ-Bern, a possible explanation for the similar

seasonal cycle in these two models. Differences among mod-

els are also notable during the fall and spring seasons. For

example, fluxes in June account for anywhere between 6 and

21 % of the annual CH4 budget, depending upon the model.

Fluxes in October account for between 1 and 23 % of the an-

nual budget (Fig. 5b).

Figure 5 also displays the seasonality of an inverse mod-

eling estimate from Miller et al. (2014) for comparison. That

estimate incorporates observations from Chibougamau, Que-

bec, and Fraserdale, Ontario, atmospheric measurement sites

that are strongly influenced by fluxes from the HBL. Dif-
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Figure 5. The seasonal cycle in methane fluxes estimated for the

HBL (50–60◦ N, 75–96◦W). We include both the WETCHIMP es-

timates and an inverse modeling estimate from Miller et al. (2014).

Panel (a) displays the monthly budget from each estimate while

(b) displays each month as a percentage of the annual budget es-

timated by a given model.

ferences between this inverse modeling estimate and the

WETCHIMP models often exceed the 95 % confidence in-

terval of the inverse model. The WETCHIMP estimates are

often comparable to Miller et al. (2014) in magnitude dur-

ing fall and spring months but exceed the inverse model-

ing estimate in summer months (Fig. 5a). On whole, the

WETCHIMP models have a narrower relative seasonal cycle

than the inverse modeling estimate (Fig. 5b). That estimate

assigns a greater portion of the annual budget to the fall and

spring shoulder seasons.

Additional top-down studies exist for the HBL, but those

studies use a seasonal cycle drawn from an existing bottom-

up model and do not estimate the seasonal cycle indepen-

dently from CH4 observations (Pickett-Heaps et al., 2011;

Wecht et al., 2014; Turner et al., 2015). By comparison, a re-

cent inverse modeling study of the western Siberian lowlands

found parallel results for that region – existing models also

predict a seasonal cycle that is narrower than the seasonal-

ity implied by atmospheric observations (Winderlich, 2012;

Bohn et al., 2015).

Numerous possible explanations could underly differences

in the seasonal cycle of CH4 fluxes. For example, the temper-

ature threshold for CH4 production may be too high in some

models. Relative to summer months, the bottom-up models

predict small fluxes during fall and/or spring months when

air temperatures are near freezing but soils are still unfrozen

(Fig. S3 in the Supplement). According to estimates from

the North American Regional Reanalysis (NARR, Mesinger

et al., 2006), surface soils in the HBL (0 and 10 cm depth)

begin to thaw in April and are largely unfrozen in May

(Fig. S3). In the fall, surface soils (0 cm depth) begin to

freeze in November, but deeper soils (10 and 40 cm) remain

largely unfrozen until December. Compared to the bottom-up

models, the inverse modeling estimate predicts a wider sea-

sonal window, a result that would be consistent with dates of

deep soil freeze and thaw.

5 Conclusions

A recent model comparison study revealed wide differences

among several estimates of wetland CH4 fluxes. This study

uses atmospheric data and inverse modeling to evaluate those

differences across North America. In the first component of

this study, we use a synthetic data experiment to understand

whether the atmospheric observation network can detect wet-

land CH4 fluxes. We find that the network can reliably iden-

tify aggregate wetland fluxes from both eastern and western

Canada. The network can detect wetland fluxes from the east-

ern US in a smaller fraction of trials and rarely from the west-

ern US. This analysis also accounts for distracting signals in

the atmosphere from anthropogenic sources or simulated at-

mospheric transport errors.

In a second component of the study, we analyze each

bottom-up CH4 model from the WETCHIMP study us-

ing real atmospheric data. We find that the LPJ-Bern and

SDGVM models have spatial distributions that are most con-

sistent with atmospheric observations, depending upon the

region and season of interest. In addition, almost all mod-

els overestimate the magnitude of wetland CH4 fluxes when

compared against atmospheric data at individual observation

sites. The model ensemble may also estimate a seasonal cy-

cle for eastern Canada that is too narrow (i.e., place too much

of the total annual flux in the summer relative to the fall and

spring shoulder seasons).

The results of this paper suggest possible pathways to im-

prove future top-down estimates of wetland CH4 fluxes. The

ability of the atmospheric observation network to detect wet-

land fluxes depends largely upon the prior flux model. In a

geostatistical inverse model, this model can incorporate land

surface maps – wetland maps, estimates of land surface pro-

cesses, and maps of anthropogenic emissions sources. This

information plays a large role in whether atmospheric obser-

vations can detect wetland fluxes; the observations can more

adeptly identify wetland fluxes when accurate land surface

maps are available to guide that identification. By contrast,

atmospheric transport and measurement errors (i.e., model–

data mismatch errors) have a ubiquitous but smaller effect on

the utility of atmospheric CH4 observations.

The results presented here also hold a number of sugges-

tions for future bottom-up modeling efforts:

1. Spatial distribution: bottom-up estimates that use sur-

face water inundation as the only proxy for wetland

area do not perform as well relative to atmospheric ob-

servations. Bottom-up models that use satellite inunda-

tion data should incorporate additional tools like wet-

land mapping or dynamic modeling to capture wetlands

covered by vegetation.

2. Magnitude: existing top-down studies that use a diverse

array of in situ and satellite CH4 observations show

good agreement on the magnitude of CH4 fluxes from

the Hudson Bay Lowlands region (e.g., Pickett-Heaps
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et al., 2011; Miller et al., 2014; Wecht et al., 2014;

Turner et al., 2015). These studies could be used to cal-

ibrate the magnitude of future bottom-up estimates, at

least over the HBL where CH4 observations provide a

strong constraint on wetland fluxes.

3. Seasonal cycle: bottom-up models do not show con-

sensus on the seasonal cycle of wetland fluxes across

Canada. Few top-down studies estimate the seasonal cy-

cle independently using atmospheric observations. Ad-

ditional top-down studies would indicate the range of

seasonal cycle estimates that are consistent with atmo-

spheric observations, particularly studies that use a di-

verse set of atmospheric models and/or diverse observa-

tional data sets. These efforts could help reconcile dif-

ferences in the seasonal cycle among bottom-up mod-

els and between bottom-up models and the few, existing

top-down studies.

These steps will hopefully lead to better convergence among

wetland CH4 estimates for North America.

The Supplement related to this article is available online

at doi:10.5194/bg-13-1329-2016-supplement.
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