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Abstract. Simulations of the spatiotemporal dynamics of

wetlands are key to understanding the role of wetland biogeo-

chemistry under past and future climate. Hydrologic inun-

dation models, such as the TOPography-based hydrological

model (TOPMODEL), are based on a fundamental parameter

known as the compound topographic index (CTI) and offer a

computationally cost-efficient approach to simulate wetland

dynamics at global scales. However, there remains a large

discrepancy in the implementations of TOPMODEL in land-

surface models (LSMs) and thus their performance against

observations. This study describes new improvements to

TOPMODEL implementation and estimates of global wet-

land dynamics using the LPJ-wsl (Lund–Potsdam–Jena Wald

Schnee und Landschaft version) Dynamic Global Vegetation

Model (DGVM) and quantifies uncertainties by comparing

three digital elevation model (DEM) products (HYDRO1k,

GMTED, and HydroSHEDS) at different spatial resolution

and accuracy on simulated inundation dynamics. In addi-

tion, we found that calibrating TOPMODEL with a bench-

mark wetland data set can help to successfully delineate the

seasonal and interannual variation of wetlands, as well as

improve the spatial distribution of wetlands to be consis-

tent with inventories. The HydroSHEDS DEM, using a river-

basin scheme for aggregating the CTI, shows the best accu-

racy for capturing the spatiotemporal dynamics of wetlands

among the three DEM products. The estimate of global wet-

land potential/maximum is ∼ 10.3 Mkm2 (106 km2), with

a mean annual maximum of ∼ 5.17 Mkm2 for 1980–2010.

When integrated with wetland methane emission submod-

ule, the uncertainty of global annual CH4 emissions from to-

pography inputs is estimated to be 29.0 Tg yr−1. This study

demonstrates the feasibility of TOPMODEL to capture spa-

tial heterogeneity of inundation at a large scale and highlights

the significance of correcting maximum wetland extent to

improve modeling of interannual variations in wetland area.

It additionally highlights the importance of an adequate in-

vestigation of topographic indices for simulating global wet-

lands and shows the opportunity to converge wetland esti-

mates across LSMs by identifying the uncertainty associated

with existing wetland products.

1 Introduction

For their ability to emit the greenhouse gas methane (CH4),

wetland ecosystems play a disproportionately important role

in affecting the global climate system through biogeochem-

ical feedbacks (Fisher et al., 2011; Seneviratne et al., 2010).

Wetlands are thought to be the largest natural source of CH4

emission by contributing 20–40 % of the total annual emis-

sions to atmosphere, which adds a strong radiative forcing

from CH4 (Bousquet et al., 2006; IPCC, 2013). The seasonal
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and interannual distribution of wetland area remains one of

the largest uncertainties in the global CH4 budget (Kirschke

et al., 2013), in particular for the roughly 60 % of wetlands

that are not inundated permanently (Petrescu et al., 2010).

Changes in the spatial extent of seasonally inundated wet-

lands was most likely a major driver for CH4 variations dur-

ing last glacial period (Kaplan, 2002) and are considered as

an important driver of the strong atmospheric CH4 growth

rate resumed in 2007 (Nisbet et al., 2014) and in future cli-

mate change scenarios (Stocker et al., 2013).

Improving our understanding of the role of wetlands in

global greenhouse gas budgets requires a representation of

wetlands and their biogeochemical processes in land-surface

models (LSMs) to both hindcast observed past variations

(Singarayer et al., 2011) and predict future trajectories in at-

mospheric CH4 and terrestrial C balance (Ito and Inatomi,

2012; Meng et al., 2012; Spahni et al., 2011; Stocker et al.,

2014; Zürcher et al., 2013). Dynamic wetland schemes in

LSMs were based on conceptual theories and physical pro-

cesses describing surface water processes (e.g., infiltration

and evapotranspiration) and water movement in the soil col-

umn using probability distributions derived from subgrid to-

pographic information (Beven and Kirkby, 1979) or using

analytical functional parametric forms with fixed parameters

(Liang et al., 1994). Currently, the most common approach

for global wetland modeling is to use a runoff simulation

scheme such as TOPMODEL (TOPography-based hydrolog-

ical MODEL) (Beven and Kirkby, 1979; Kleinen et al., 2012;

Ducharne et al., 1999; Ringeval et al., 2012; Zhu et al., 2014),

which includes the assumption that lateral soil water trans-

port driven by topography follows the same exponential de-

cline as the vertical decrease in hydraulic conductivity within

soil profiles in a basin (Sivapalan et al., 1987).

TOPMODEL-based implementations have proven suc-

cessful at capturing the broad geographic distribution of wet-

lands and their seasonal variability (Gedney and Cox, 2003;

Ringeval et al., 2012; Stocker et al., 2014; Zhu et al., 2014)

but have consistently overestimated both the extent of wet-

lands and duration of inundation at global and regional scale

when compared to existing surveys (Junk et al., 2011; Pri-

gent et al., 2007; Quiquet et al., 2015). For instance, sim-

ulations using the Earth system model HadGEM2 predict

much larger persistent Amazonian wetlands than an inven-

tory (Collins et al., 2011). In general, independently deter-

mined wetland area using hydrologic modules of LSMs in

the Wetland and Wetland CH4 Inter-comparison of Models

Projects (WETCHIMP) experiment simulated larger global

wetland extent than those informed by remotely sensed prod-

uct and inventories (Melton et al., 2013). This large dis-

agreement also exists across specific regions (Ringeval et al.,

2014). For example, Bohn et al. (2015) carried out a model

intercomparison of wetland extent on the West Siberian Low-

land, one of the major wetland regions in high latitudes, and

highlighted similar uncertainties of wetland extent simula-

tion in the LSMs participating in the WETCHIMP experi-

ment and using TOPMODEL.

Meanwhile, uncertainties in wetland area estimation partly

come from a paucity of observational data sets and different

definitions of wetland (Matthews and Fung, 1987). Remotely

sensed data sets have difficulties capturing small or isolated

water in saturated soils that are not flooded on the surface

(Prigent et al., 2007), as well as capturing the forested wet-

lands that obscure detection of inundation because of dense

forest canopies (Bohn et al., 2015). In addition, ground-based

surveys or inventories that determine wetlands are usually

limited by static distribution that cannot provide temporal

patterns for the inundated area, making it hard to evaluate

with simulated results. However, the definition of wetland

for regional- or global-scale modeling assumes the land sur-

face has both inundated and saturated conditions, which is

not necessarily the same as inundated area measured by satel-

lite observations (Melton et al., 2013).

While prognostic wetland dynamics schemes are promis-

ing to resolve these observational issues, the configuration

parameters for TOPMODEL are a potential source of un-

certainty in estimating wetland dynamics (Marthews et al.,

2015). Among all parameters in TOPMODEL, the com-

pound topographic index (CTI) is of critical importance for

determining inundated areas in terrain-related hydrological

applications (Ward and Robinson, 2000; Wilson and Gallant,

2000). It measures the tendency of soils to become saturated

(Beven and Cloke, 2012) and consequently it drives the accu-

racy of wetland area scaled to the larger grid cell (Ducharne,

2009; Mulligan and Wainwright, 2013). Although the impor-

tance of CTI has been highlighted, only few studies have so

far evaluated the effect of CTI on modeling the spatial and

temporal patterns of global wetland dynamics. This is due

to a limited availability of global CTI products. During the

last decade, the first CTI product at 1 km resolution from

HYDRO1k global data set released by US Geological Sur-

vey (USGS) in 2000 has become the most commonly ap-

plied global data set for large-scale applications (Kleinen et

al., 2012; Lei et al., 2014; Ringeval et al., 2012; Wania et

al., 2013). However, HYDRO1k has been proven to poten-

tially overestimate inundation extent due to a lack in quality

of the underlying digital elevation model (DEM) (Grabs et

al., 2009; Lin et al., 2010, 2013; Sørensen and Seibert, 2007).

With recent advances in the development of DEMs (Daniel-

son and Gesch, 2011; Lehner et al., 2008), there is both a

requirement and an opportunity to investigate uncertainties

caused by CTI parameter.

The primary goal of our study is to improve the modeling

of dynamically varying wetland extents with (i) a parameter

constraint to match integrated satellite and inventory obser-

vations and with (ii) a better parameterizations of CTI val-

ues for determining wetland seasonal cycles using new topo-

graphic data and aggregation schemes (i.e., grid vs. catch-

ment). To this end, we develop a new version of the Dy-

namic Global Vegetation Model (DGVM) LPJ-wsl (Lund–
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Potsdam–Jena Wald Schnee und Landschaft version) that in-

cludes the TOPMODEL approach for wetland extent model-

ing by also accounting for soil thermal dynamics and high-

latitude soil water freeze and thaw (FT) cycles and by in-

corporating the necessary physical processes (e.g., snow ag-

ing) that constrain global wetland dynamics. We utilize three

commonly used global DEM products to evaluate the effects

of sub-grid parameterizations on simulated global wetland

extent uncertainties. We perform six global simulations re-

sulting from the combination of three DEM products and two

aggregation schemes under the same common experimental

protocol. The specific aims are (1) to improve the perfor-

mance of estimated wetland extent based on TOPMODEL

for the purpose of large-scale modeling, (2) to develop a

new parameterization scheme using inventory in combina-

tion with satellite-based retrievals, and (3) to evaluate the un-

certainties and the spatial and temporal differences of the CTI

from three major DEM products in model behavior.

2 Model descriptions and experimental design

The model LPJ-wsl is a process-based dynamic global veg-

etation model developed for carbon cycle applications based

on development of the LPJ-DGVM (Sitch et al., 2003). LPJ-

wsl includes land-surface processes, such as water, carbon

fluxes, and vegetation dynamics, that are intimately repre-

sented by plant functional types (PFTs) (Poulter et al., 2011).

The distribution of PFTs is simulated based on a set of biocli-

matic limits and by plant-specific parameters that govern the

competition for resources. The soil hydrology is modeled us-

ing semi-empirical approach, with the soil treated as bucket

consisting of two layers each with fixed thickness (Gerten

et al., 2004). The LPJ-wsl CH4 model used in this study is

the same as presented in Hodson et al. (2011) and is a func-

tion of two scaling factors (rCH4:C and fecosys), soil temper-

ature, soil-moisture-dependent fraction of heterotrophic res-

piration, and wetland extent according to the following equa-

tion:

E(x, t)= rCH4:C · fecosys (x) ·A(x, t) ·Rh (x, t) , (1)

where E(x, t) is wetland CH4 flux, A(x, t) is wetland ex-

tent, Rh (x, t) is heterotrophic respiration, fecosys is a scaling

factor representing different wetland ecosystems, and rCH4:C

is the ratio C to CH4 fluxes.

LPJ-wsl has been evaluated in previous studies using

global inventory data sets and satellite observations and has

been one of the participating models in the WETCHIMP

study (Melton et al., 2013). Modifications made here to the

original LPJ-wsl model and a detailed description of changes

are summarized below.

– A permafrost module that simulates soil freeze and thaw

processes is implemented and modified following the

Wania et al. (2009) study (see description in Sect. 2.1).

– The snow module from Wania et al. (2009) was included

and modified to include some of the effects of snow

ageing on snow thermal properties. We use an updated

parameterization of soil thermal properties both for the

permafrost and the snow module, which is calibrated by

satellite observations specifically for global application.

– A new parameterization of soil texture was formu-

lated based on the Harmonized World Soil Database

(HWSD), which combines the recently collected exten-

sive volumes of regional and national updates of soil

parameter information (Nachtergaele et al., 2008). The

new soil texture in LPJ-wsl follows the US Depart-

ment of Agriculture soil classification with 14 soil types

grouped according to a particular range of particle-size

fractions (e.g., sand, clay, loam), instead of using the

original Food and Agriculture Organization of the UN

classification with nine soil types (Sitch et al., 2003).

Thus, the volumetric water holding capacity, also de-

fined as potential maximum soil water content, is as-

sumed to vary spatially, calculated as a function of the

surface soil texture using pedotransfer functions from

Cosby et al. (1984). Wilting point, porosity, mineral

soil content, and organic soil content for each soil type

are derived from a look-up table available from the Air

Force Weather Agency (2002) as listed in Table 1.

The modified LPJ-wsl version is thus the starting point

upon which the TOPMODEL-based wetland and permafrost

modules are included (Sect. 2.2).

2.1 Permafrost model

In order to consider the functional wetland area extension

during the spring thaw and their shrinking or disappear-

ances during autumn freeze, we added to LPJ-wsl a soil tem-

perature scheme and freeze–thaw processes, as in Wania et

al. (2009). The modified version considers the soil heat ca-

pacity and its thermal conductivity, which are both affected

by the volumetric fractions of the soil physical components,

such as water-ice fraction, mineral soil, or peat. The ther-

mal scheme of LPJ-wsl is discretized vertically using eight

layers of variable thickness, while the water-balance scheme

is kept the same as the original LPJ-DGVM, which means

the daily changes in water content are allocated to the “old”

upper and lower layer of LPJ while considering percolation

between these two layers and baseflow from the lower layer.

Fractional water and ice content in each of the eight layers is

calculated on a daily time step. Soil temperature is updated in

the thermal routine and then passed to the hydrological rou-

tine to determine the water-ice phase change in permafrost

routine.

www.biogeosciences.net/13/1387/2016/ Biogeosciences, 13, 1387–1408, 2016
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Table 1. Soil parameters for LPJ-wsl soil classes. f is a parameter describing the exponential decline of transmissivity with depth for each

soil type.

Soil type f Mineral Organic Wilting Porosity

content (%) content (%) point (%) (%)

Clay heavy 3.2 0.508 0.01 0.138 0.138

Silty clay 3.1 0.531 0.01 0.126 0.468

Clay 2.8 0.531 0.01 0.138 0.468

Silty clay loam 2.9 0.534 0.01 0.120 0.464

Clay loam 2.7 0.595 0.01 0.103 0.465

Silt 3.4 0.593 0.01 0.084 0.476

Silt loam 2.6 0.593 0.01 0.084 0.476

Sandy clay 2.5 0.535 0.01 0.100 0.406

Loam 2.5 0.535 0.01 0.066 0.439

Sandy clay loam 2.4 0.565 0.01 0.067 0.404

Sandy loam 2.3 0.565 0.01 0.047 0.434

Loamy sand 2.2 0.578 0.01 0.028 0.421

Sand 2.1 0.578 0.01 0.010 0.339

Organic 2.5 0.01 0.20 0.066 0.439

2.2 Dynamic wetland model

To represent the grid cell fraction covered by wetlands, we

have implemented an approach based on the TOPMODEL

hydrological framework (Beven and Kirkby, 1979). TOP-

MODEL was initially developed to operate at the scale of

large watersheds using the channel network topography and

dynamics contributing areas for runoff generation and was

later extended to perform over areas that are much larger than

a typical river catchment (Gedney and Cox, 2003). The fun-

damental information to determine the area fraction with soil

water saturation is derived from knowledge of the mean wa-

tershed water table depth and a probability density function

of combined topographic and soil properties (Sivapalan et

al., 1987). The CTI, which provides the sub-grid-scale topo-

graphic information in TOPMODEL, determines the likeli-

hood of a grid box to be inundated. It is defined as

λl = ln

(
αl

tanβl

)
, (2)

where λl represents local CTI value, αl represents the con-

tributing area per unit contour, and tanβl, the local topo-

graphic slope, approximates the local hydraulic gradient

where β is the local surface slope. The CTI distribution can

be generated from digital elevation models and near global

data sets are readily available, e.g., HYDRO1k data set from

USGS.

Following the central equations of TOPMODEL, the rela-

tionship between local water table depth zl and the grid mean

water table depth zm can be given as

λl− λm = f {zl− zm} , (3)

where λm is the mean CTI averaged over the grid box, and

f is the saturated hydraulic conductivity decay factor with

depth for each soil type. This equation is valuable in that it

relates the local moisture status to the grid box mean mois-

ture status based on the subgrid-scale variations in topogra-

phy. Higher CTI values than average are indicative of areas

with higher water table depth than average water table and

vice versa. We therefore calculate the inundated areas (Fwet)

of all the sub-grid points within a grid cell that have a local

water table depth zl >= 0:

Fwet =

∫ zmax

zl

pdf(λ)dλ, (4)

where instead of using the CTI values themselves, we fol-

lowed a common up-scaling approach to approximate the

distribution of CTI values within a grid cell in order to reduce

computation costs. Here, the discrete distribution of the CTI

for lowland pixels (i.e., λl ≥ λm) has been represented as an

exponential function, not as a three-parameter gamma distri-

bution as applied in recent applications for modeling wetland

extent (Kleinen et al., 2012; Ringeval et al., 2012). As shown

in Fig. 1, the new exponential function agrees well with the

three-parameter gamma distribution function when the CTI

is larger than the mean CTI λm. This change allows linking

the inundated fraction directly to water table depth, thus im-

proving the parameterization by providing physical meaning

and fewer calibration parameters. This change also improves

the parameterization of fractional saturated area, especially

in mountainous regions (Niu et al., 2005).

Finally, the wetland area fraction (Fwet) is represented as

Fwet = Fmaxe
−Csf (λl−λm), (5)

where Cs is a coefficient representing the topographic infor-

mation generated by fitting the exponential function to the

discrete cumulative distribution function (CDF) of the CTI.
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Figure 1. Cumulative distribution function (CDF) of the fitted expo-

nential curve (blue line) as a function of compound topographic in-

dex (CTI) in comparison with the three-parameter gamma function

(red line), as well as the observations (grey line) with in a sample

grid box.

Fmax is the maximum wetland fraction of a grid cell. Be-

cause of the uncertainties involved in determining the water

table depth, the hydraulic factor f , and the coarse-resolution

DEMs, the maximum soil saturated fraction calculated from

discrete CDF are prone to large uncertainties and thus com-

plicate the comparison of the saturated fraction with existing

observations (Ducharne, 2009; Ringeval et al., 2012). Here,

we introduce a calibration of maximum wetland fractions

Fmax. We used the inventory-calibrated satellite observations

(see description in Sect. 3.3) combined with inventory data

set to calculate representative long-term maximum wetland

extents within each grid box (0.5 ◦), i.e., the parameter Fmax

for each grid cell i:

Fmaxi =max(AGLWDi
,max(ASWAMP−GLWDi

)). (6)

AGLWD represents the wetland estimate from the Global Lake

and Wetland Database (GLWD), and ASWAMP-GLWD repre-

sents the long-term wetland estimate from a combination

of the satellite-based observation Surface Water Microwave

Product Series (SWAMPS) and GLWD (SWAMPS-GLWD).

The reason for combining these two data sets is to take ad-

vantage of satellite-based observations that capture temporal

wetlands and inventory-based data sets that estimate forested

wetlands and small wetlands ignored by remote sensing. This

calibration is also based on the assumption that water is stag-

nant within local grids at a large scale, in particular for model

using simple “bucket” concept to calculate grid-mean water

table depth.

In addition, we used nonlinear least squares estimates to

fit the discrete CDF curve of CTI for lowlands (λl < λm) to

calculate parameter Cs, the parameter that determines vary-

ing trend of wetland extent. Through this, the parameters

Fmax, λm and Cs for determining inundated areas are derived

(Fig. 2).

To account for the permafrost effects on soil infiltration

properties, we followed Fan and Miguez-Macho (2011) and

Kleinen et al. (2012) who modified f by a function k depend-

ing on January temperature Tjan. Since LPJ-wsl uses two soil

layers from the HWSD soil texture database (Nachtergaele et

al., 2008) to represent the different texture characteristics, the

modification depends on the combination of a look-up table

(Table 1) from soil types and water table depth:

k =


1 ∀Tjan >−5◦

1.075+ 0.015Tjan − 25◦ < ∀Tjan <−5◦

0.75 ∀Tjan <−5◦
. (7)

Since the observed CH4 emissions during winter are mainly

attributed to physical processes during soil freezing effects

(Whalen and Reeburgh, 1992), for the partially frozen wet-

land in high latitudes, we introduced an effective fraction of

wetland area (F eff
wet) defined by

F eff
wet =

(
ωliq

ωliq+ωfroz

)
50 cm

·Fwet, (8)

where ωliq and ωfroz are the fraction of liquid and frozen soil

water content in the upper soil (0–0.5 m), respectively. Since

the liquid water content in the lower soil layer gets trapped

and cannot contribute to CH4 emission when upper soil is

frozen, we did not consider the lower layer for surface wet-

land calculations.

3 Experimental setup and data sets

3.1 Topographic information

In this study we used three DEMs of varying spatial reso-

lution, HYDRO1k at 30 arcsec (USGS, 1996; https://lta.cr.

usgs.gov/HYDRO1K), Global Multi-resolution Terrain El-

evation Data 2010 (GMTED) at 15 arcsec (Danielson and

Gesch, 2011), and HydroSHEDS at 15 arcsec (Lehner et

al., 2008) to compare the effect of sub-grid topographic at-

tributes on simulated seasonal and interannual variability of

wetlands. HYDRO1k, developed from the USGS-released

30 arcsec digital elevation model of the world (GTOPO30),

is the first product that allowed spatially explicit hydrological

routines applied in large-scale applications (USGS, 2000).

HydroSHEDS, developed from satellite-based global map-

ping by the Shuttle Radar Topography Mission (SRTM), is a

significant improvement in the availability of high-resolution

DEMs covering all land areas south of 60◦N (the limit of

SRTM). For the areas at higher latitudes we used HYDRO1k

by aggregating the GTOPO30 DEM to provide global grids.

GMTED was produced using seven data sources including

SRTM, global Digital Terrain Elevation Data (DTED), Cana-

dian elevation data, Spot 5 Reference3D data, and data from

the Ice, Cloud, and land Elevation Satellite (ICESat), cover-

ing nearly all global terrain.

www.biogeosciences.net/13/1387/2016/ Biogeosciences, 13, 1387–1408, 2016
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Figure 2. TOPMODEL parameter maps in model experiments. Mean CTI (a, b) and Cs (c, d) aggregated by river-basin (denoted as “By

Basin”) and grid-cell (denoted as “By Tile”) schemes from HydroSHEDS were listed. Fmax (e) for calibration was generated using SWAMPS-

GLWD and GLWD. A map of the regions (f) was used to partition globe into boreal, temperate, and tropical biomes (Gurney et al., 2003).

To avoid mismatch of CTI value inherent in computing

CTI with different CTI algorithms, we generated three global

CTI maps based on the three DEM products instead of re-

lying on existing CTI products (e.g., HYDRO1k CTI, Hy-

droSHEDS CTI product from the Centre for Ecology and

Hydrology) (Marthews et al., 2015). Since studies show that

multiple flow direction algorithms for calculating CTI give

better accuracy compared to single-flow algorithms in flat ar-

eas (Kopecký and Čížková, 2010; Pan et al., 2004), thus we

selected an algorithm from R library “topmodel” (Buytaert,

2011), which applies the multiple flow routing algorithm of

Quinn et al. (1995) to calculate the global CTI maps. The

DEMs from HYDRO1k and HydroSHEDS had been pre-

viously processed for hydrological correction, meaning that

the DEMs were processed to remove elevation depressions

that would cause local hydrologic “sinks”. To include a com-

parison of (hydrologically) corrected and uncorrected DEMs

in our analyses as some studies have been done previously

(Stocker et al., 2014), the GMTED DEM was applied with-

out hydrological correction.

3.2 Description of the simulation

For running LPJ-wsl with permafrost and TOPMODEL,

we used global meteorological forcing (temperature, cloud

cover, precipitation, and wet days) as provided by the Cli-

matic Research Unit (CRU TS 3.22) at 0.5◦ resolution (Har-

Biogeosciences, 13, 1387–1408, 2016 www.biogeosciences.net/13/1387/2016/
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ris et al., 2014). To spin up the LPJ-wsl model using the CRU

climatology, climate data for 12 months were randomly se-

lected from 1901 to 1930 and repeated for 1000 years with

a fixed pre-industrial atmospheric CO2 concentration. The

first spinup simulation started from initial soil temperature

derived from LPJ-wsl simulated results on January 1901 and

continued with a land-use spinup simulation. These proce-

dures ensure that carbon stocks and permafrost are in equilib-

rium before performing transient simulations. The transient

simulations, with observed climate and CO2, were performed

with monthly climate disaggregated to daily time steps over

the 1901–2013 period. The 1993–2013 years were used for

evaluation against satellite data and inventories.

One of key assumptions in TOPMODEL is that the wa-

ter table is recharged at a spatially uniform and steady rate

with respect to the flow response timescale of the catchment

(Stieglitz et al., 1997). Given the fact that we consider the

water to be stagnant within each grid, the mean CTI parame-

ter was estimated with two alternative schemes: (1) a regular

“grid-based” or gridded approach, i.e., the subgrid CTI val-

ues were averaged per 0.5◦ grids, and (2) an irregular “basin-

based” approach, where mean CTI values were calculated

over the entire catchment area in which the respective pixel

is located. To generate a global catchment map at 0.5◦ reso-

lution, we applied a majority algorithm in the case of multi-

catchments in a grid while avoiding isolated pixels for the

specific river basin. There are two catchment area products

applied in this study, HYDRO1k (2013) and HydroSHEDS.

Similarly, the parameter Cs was generated using nonlinear

least squares estimates from both of these two different CTI

calculation strategies. Two sets of model experiments were

carried out to compare the wetland dynamics under basin and

grid-based TOPMODEL parameterizations (Table 2).

3.3 Evaluation and benchmarking data

Since the soil freeze–thaw cycles are a key component for

determining seasonal cycles of wetlands in cold regions, in

this study we benchmarked the general pattern of permafrost

locations by comparing the model output against satellite ob-

servations of freeze and thaw status and inventories of per-

mafrost extent. Since soil depth in LPJ-wsl is held at 2.0 m

for the permafrost module, the permafrost extent in this study

is defined as the lower soil (0.5–2 m) that is always at or be-

low the freezing point of water (0 ◦C) for multiple years. The

permafrost extent map at 0.5◦ resolution from the National

Snow and Ice Data Center (NSIDC) is adopted for bench-

marking (Brown et al., 2001). The global data set of freeze–

thaw Earth System Data Record (FT-ESDR) is derived from

satellite microwave remote sensing provided by the Numer-

ical Terradynamic Simulation Group (NTSG) at the Univer-

sity of Montana and is based on daily maps over a 34-year

record (1979–2012). It represents the FT status of the com-

posite landscape vegetation–snow–soil medium to constrain

surface water mobility and land–atmosphere carbon fluxes

(Kim et al., 2012).

Two global inundation products derived from satellite

observations were additionally used for evaluation pur-

poses: the Global Inundation Extent from Multi-Satellites

(GIEMS), derived from visible (AVHRR), active (SSM/I),

and passive (ERS) microwave sensors over the period

1993–2007; SWAMPS, derived from active (SeaWinds-on-

QuikSCAT, ERS, and ASCAT) and passive (SSM/I, SSMI/S,

AMSR-E) microwave sensors over the period 1992–2013.

This new SWAMPS global data set, denoted as SWAMPS-

GLWD, was first developed at NASA JPL (Schroeder et al.,

2016). We re-scaled this data set with the GLWD (Lehner

and Döll, 2004), a well-established global inventory of wa-

ter bodies at high resolution to match SWAMPS-GLWD

with the inventory estimates. This post-processed SWAMPS

product covers the required regions for forested wetlands,

which are not readily observable by passive or active mi-

crowave measurements (Poulter, et al., 2015). For evaluating

regional wetland patterns, we selected two study areas (the

largest peatland, West Siberian Lowland; the largest flood-

plain, Amazon River basin). Three wetland map products

over the WSL from Sheng et al. (2004), Peregon et al. (2008),

and Tarnocai et al. (2009) (denoted by “Sheng2004”, “Pere-

gon2008”, Tarnocai2009, respectively) and one up-to-date

high-resolution dual-season inundated area inventory for the

lowland Amazon basin from Japanese Earth Resources Satel-

lite (JERS-1) were applied (Hess et al., 2015, denoted by

“Hess2015”). We aggregated all above-mentioned data sets

from the native 25 km to a 0.5◦ spatial resolution and from

daily to monthly temporal resolution for comparison with

model outputs (Appendix Table A1).

4 Results

4.1 Evaluation against observations

We first evaluated the permafrost module that constrains

the seasonal cycles of wetland area in cold regions with

respect to inventory and remote sensing observations. Fig-

ure 3a compares the spatial distribution of permafrost extent

from inventory and the modeled permafrost extent over the

period 1980–2000. Figure 3b gives the spatial distribution

of spearman rank correlation between the simulated and ob-

served number of monthly frozen days. The modeled per-

mafrost extent shows high agreement with the benchmarking

data set, with a slightly higher coverage of permafrost re-

gions in northwestern Eurasia. The model successfully cap-

tures the seasonally frozen soil, which is closely linked to

surface wetland formation and seasonal variation of wetland

in cold regions. Most of the regions reveal a temporal correla-

tion > 0.9, while eastern Siberia and the southern permafrost

distribution edge is generally around 0.5. The lower correla-

tion in eastern Siberia probably originates from two issues:
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Table 2. Model experiments for different parameterization schemes and corresponding DEM products applied in this study.

Model DEM DEM source Resolution Coverage River basin Aggregation type Hydro-corrected

experiment (arc seconds)

HYDRO1k_BASIN Hydro1k GTOPO30 30 Global* HYDRO1K Catchment Yes

HYDRO1k_GRID Hydro1k GTOPO30 30 Global* HYDRO1K Grid Yes

GMTED_BASIN GMTED SRTM&others 15 Global HYDRO1K Catchment No

GMTED_GRID GMTED SRTM&others 15 Global HYDRO1K Grid No

SHEDS_BASIN HydroSHEDS SRTM 15 < 60◦ N HydroSHEDS Catchment Yes

SHEDS_GRID HydroSHEDS SRTM 15 < 60◦ N HydroSHEDS Grid Yes

Figure 3. Evaluation of permafrost simulation in LPJ-wsl. (a) Inventory-based (light blue) and simulated (dark blue) permafrost extent from

NSIDC and LPJ-wsl, respectively. The inventory contains discontinuous, sporadic, or isolated permafrost boundaries, as well as the location

of sub-sea and relict permafrost. We only compare the distribution of all permafrost against model outputs without distinguishing each

permafrost types. (b) Spatial distribution of Spearman correlation between simulated monthly frozen days from LPJ-wsl over 2002–2011

and satellite retrievals of freeze–thaw status from AMSR-E.

high snow depth in LPJ-wsl that insulates soil temperature

and the consequent delay of soil temperature to reach com-

plete freezing as well as the relatively large uncertainty of

FT-ESDR-derived soil frozen status in those regions (Kim

et al., 2012). This difference can be partly explained by the

different representation of frozen status between simulated

results and satellite retrievals. Remotely sensed maps reflect

the mixed condition of the upper vegetation canopy, snow

layer, and surface soil, while the simulated frozen days only

represent the frozen state of topsoil.

Figure 4 illustrates the model evaluation at the regional

scale over the West Siberian Lowland (Fig. 4). The model

generally captures the spatial extent of the seasonal maxi-

mum wetland area fraction across the whole WSL for the JJA

season successfully. However, the TOPMODEL approach

without calibration (denoted as “Original”) shows large areas

with relatively low wetland proportion and cannot capture

high values. This suggests poor model performance in simu-

lating wetland areas without Fmax calibration. The calibrated

model generally exhibits good agreement with inventories

and satellite retrievals. It is especially successful at captur-

ing the spatial heterogeneity of wetland areal extent over the

whole WSL regions. LPJ-wsl simulated results reveal ad-

ditional wetland area in the northeast, where wetlands en-

tirely lacked in the GLWD map, although they were captured

in other data sets. Meanwhile, LPJ-wsl captured the higher

wetland area in region between 61 and 66◦ N and 70 and

80◦ E regions compared with GLWD, where mire/bog/fen

was dominated across that region. LPJ-wsl also maintained

well the spatial pattern of wetlands in forested region south

of 60◦ N, which was captured by inventories (Sheng2004,

Peregon2008, and GLWD) but was missed by two satellite
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Figure 4. Comparison of TOPMODEL-based wetland areas and

Observational data sets over the region West Siberian Lowland

(WSL) for June–July–August (JJA) average over the period 1993–

2012. “Calibrated” and “Original” represent simulated wetland ar-

eas with and without Fmax calibration, respectively. For Sheng2004,

Tanocai, Pregon2008, and GLWD, it represents maximum wetland

extent per 0.5◦ cell as derived from static inventory maps. For

SWAMPS-GLWD and GIEMS, areas shown are averaged for JJA

over the period 1993–2007 and 2000–2012, respectively.

products (SWAMPS-GLWD, GIEMS) due to the limitation

of remotely sensed data sets in detecting water under vegeta-

tive canopy and/or due to reduced sensitivity.

As illustrated in Fig. 5, LPJ-wsl captured the spatial pat-

tern of simulated wetlands well with lower estimates of

the total wetland area in low-water season compared to the

JERS-1 observed maps. Differences between Hess2015 and

LPJ-wsl maps were primarily in two regions, Marañón–

Ucayali region of Peru (MUP; 3–7◦ S, 73–77◦W) and Llanos

de Moxos in Bolivia (LMB; 11–17◦ S, 60–68◦W). LPJ-wsl

shows higher wetland coverage in MUP while Hess2015 in-

dicates high wetland fraction in LMB in high-water season.

Global satellite products largely ignore the LMB region that

was partly captured in LPJ-wsl, indicating that LPJ-wsl using

hybrid TOPMODEL approach can yield estimates closer to

those of fine-resolution mapping, while large-scale satellite

products are likely to underestimate Amazon wetland extent

because of their coarse spatial resolution that limit the abil-

ity to detect inundation outside of large wetlands and river

floodplains (Hess et al., 2015).

To evaluate the effect of Fmax calibration on CH4 emis-

sion estimates, two estimates of CH4 (with and without

Fmax calibration) over the WSL regions were compared

with observation-based estimate from Glagolev et al. (2011)

(Fig. 6). The 3-year mean annual total emission from origi-

nal version is 6.29± 0.51 Tg CH4 yr−1, falling into the upper

part of range from land-surface models and inversions (Bohn

et al., 2015), whereas the calibrated version is close to the

estimate of Glagolev et al. (2011) (3.91± 1.29 Tg CH4 yr−1)
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Figure 5. Comparison of wetland areas (km2) between LPJ-wsl

simulated results (SHEDS_basin version) and JERS-1 satellite ob-

servation over the lowland Amazon basin for low-water season and

high-water season. The low-water season and high-water season in

LPJ were calculated by mean annual minimum and maximum, re-

spectively, during 1993–2013.

with 4.6± 0.45 Tg CH4 yr−1 during 2000–2012. In addi-

tion, the spatial pattern of CH4 emission with Fmax cali-

bration shows better agreement with observation than non-

calibration one with relatively larger emissions in Taiga

forests and central region (55–65◦ N, 65–85◦ E). We also

compared our estimates with recent airborne campaign ob-

servations for Alaska during the 2012 growing season. Es-

timates with Fmax calibration also falls well within the

range of recent estimate (2.1± 0.5 Tg CH4 yr−1) for Alaska

based on airborne observations (Chang et al., 2014) with

a total of 1.7 Tg CH4 yr−1 during the 2012 growing season

(3.1 Tg CH4 yr−1 from non-calibrated estimate), indicating

the necessity to calibrate Fmax to accurately capture annual

CH4 emission and spatial variability for boreal wetlands.

4.2 Spatial distribution

Several observations applicable to evaluate the difference

among sub-grid parameterizations of TOPMODEL are avail-

able for the WSL region. Figure 7 lists the spatial patterns of

simulated JJA (June–July–August) wetland area over WSL

regions to illustrate differences among wetland maps. The

general patterns of wetland extent are substantially similar,

because they both used the same calibrated Fmax map. Both

of these data sets show wetlands distributed across most of

the WSL, with extensive wetlands in the central region (55–

65◦ N, 60–90◦ E). However, the detailed pattern is differing

between the approaches and DEMs used, which indicate the

uncertainty of parameterizations on wetland distribution. The

basin-based parameterization can capture the higher wetland
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Figure 6. Observation-based estimate from Glagolev et al. (2011)

and two LPJ-wsl estimates using Hydro-SHEDS (calibrated

Fmax and non-calibrated Fmax) for annual CH4 emission

(g CH4 m−2 yr−1 of grid cell area). Averages from LPJ-wsl are over

the time period 2007–2010.

areas in regions with bog, mire, or fen vegetation in the cen-

tral east (63–67◦ N, 85–90◦ E) as was found in the GLWD

benchmark map. The grid-based parameterizations fail to

reproduce this pattern. It seems that the grid-based param-

eterizations are less sensitive capturing the spatial hetero-

geneity throughout most of the WSL. The difference in pa-

rameterization derived from DEM data sets also affects the

simulated regional pattern. Both of HydroSHEDS-based re-

sults successfully reproduce the high wetland fractions in the

southern-forested regions (55–60◦ N, 65–80◦ E), while nei-

ther HYDRO1k nor GMTED can capture this feature. Note

that GMTED is derived from the same DEM product SRTM

as HydroSHEDS but without hydro-correction, indicating

the importance of hydro-correction in simulating spatial pat-

terns of wetlands.

The comparison of simulated mean annual minimum,

maximum, and amplitude of wetland extent with obser-

vational data sets (Table 3) reveals that the simulated

wetland area for 1980–2010 falls within the range of

4.37± 0.99 Mkm2 (Mkm2
= 106 km2). This number is close

to GIEMS (5.66 Mkm2) (Prigent et al., 2012) and inventory-

based estimates (6.2 Mkm2) (Bergamaschi et al., 2007) after

exclusion of other water bodies like lakes, rivers, and rice

paddies (Leff et al., 2004). Considering potential underes-

timation of satellite-based observation in forested regions,

the realistic estimate could possibly be in the upper part of

our range. Note that one must be careful when directly com-

paring model results with the observational data sets based

on inventories or digitized maps, because these data sets

might represent the long-term maximal area as wetland po-

tential. The higher seasonal wetland extent in GIEMS com-

pared with LPJ-wsl could be partly due to permanent wet-

lands that are difficult to detect by GIEMS. Lastly, the def-

inition of wetland is another possible source of discrepancy.

Remotely sensed inundation data sets emphasize open wa-

ter while the wetland area in our study is specifically defined

from inventories following the National Wetlands Working
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Figure 7. Spatial distributions of average June–July–August (JJA)

wetland area (km2) over the West Siberian Lowland (WSL) area

from model experiments (see Table 2).

Group (1997) classification that include peatlands, mineral

wetlands, and seasonally inundated shallow waters.

4.3 Seasonal cycle

The shapes of the seasonal patterns in wetland area are gen-

erally similar in model simulation compared to satellite ob-

servations, despite disagreement in the timing of the sea-

sonal cycle of wetland area in some boreal regions (Fig. 8).

The modeled results show slightly larger wetland areas in

the SON (September–November) months than satellite-based

observations. The larger seasonal wetland areas during SON

may originate from the longer periods of unfrozen and rel-

atively water saturated soil in the model data. It thus seems

realistic that the satellite-based inundation product AMSR-

E observed a similar trend of seasonal inundation patterns

for North America and Boreal Eurasia (Jennifer et al., 2014).

This is also supported by field studies in boreal regions, indi-

cating that water table depth during the SON months is still

at a high level and soil temperature is above freezing sta-

tus (Rinne et al., 2007; Turetsky et al., 2014). In contrast,

the modeled seasonal cycle of wetland in tropical and tem-

perate regions shows a good agreement with GIEMS and

SWAMPS-GLWD. Given the difficulties of satellite-based

observations in detecting wetlands in forested regions and the

reduced sensitivity where open water fraction is low (< 10 %)

(Prigent et al., 2007), the inundation numbers by GIEMS

might slightly underestimate the area compared with the sim-

ulated results.

Figure 8 reveals that the six data sets of monthly wetland

extent for 1993–2007 based on different TOPMODEL pa-
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Table 3. Summary of simulated and observed mean annual minimum (MIN), maximum (MAX), and amplitude (AMP) of wetland extent for

1980–2010. All units are Mkm2 (106 km2) ±1σ , where standard deviation represents the interannual variation in model estimates except for

the row Average, which represents uncertainties of estimates from each model experiment.

Model Lowland Amazon basin West Siberian Lowland Global

MIN MAX AMP MIN MAX AMP MIN MAX AMP

SHEDS_BASIN 0.27± 0.02 0.38± 0.01 0.11± 0.01 0± 0 0.45± 0.05 0.45± 0.05 2.96± 0.06 5.17± 0.11 2.23± 0.10

SHEDS_GRID 0.32± 0.01 0.40± 0.01 0.08± 0.01 0± 0 0.45± 0.05 0.45± 0.05 3.56± 0.06 5.93± 0.11 2.38± 0.10

GMTED_BASIN 0.21± 0.02 0.35± 0.01 0.14± 0.02 0± 0 0.39± 0.06 0.39± 0.06 2.09± 0.05 3.75± 0.12 1.66± 0.12

GMTED_GRID 0.19± 0.02 0.34 ± 0.01 0.15± 0.02 0± 0 0.38± 0.06 0.38± 0.06 1.80± 0.05 3.32± 0.13 1.52± 0.13

HYDRO1k_BASIN 0.25± 0.02 0.37± 0.01 0.12± 0.01 0± 0 0.39± 0.06 0.39± 0.06 2.44± 0.05 4.32± 0.11 1.89± 0.11

HYDRO1k_GRID 0.22± 0.02 0.36± 0.01 0.14± 0.02 0± 0 0.36± 0.07 0.36± 0.07 2.12± 0.05 3.73± 0.13 1.61± 0.13

Average 0.27± 0.04 0.38± 0.02 0.11± 0.01 0± 0 0.40± 0.04 0.40± 0.04 2.49± 0.65 4.37± 0.99 1.88± 0.35

Observations

Hess2015 0.23 0.58

GIEMS 0.12± 0.01 0.25± 0.03 0.14± 0.04 0± 0 0.24± 0.05 0.25± 0.05 1.38± 0.09 4.47± 0.20 3.09± 0.19

SWAMPS-GLWD 0.22± 0.03 0.34± 0.01 0.12± 0.03 0± 0 0.50± 0.03 0.51± 0.03 3.03± 0.13 6.62± 0.18 3.63± 0.14
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Figure 8. Average seasonal variability of observed and simulated monthly total wetland area for Transcom regions (see Fig. 2). For consistent

comparison, two sets of simulated results were generated by masking out pixels for which GIEMS (red, dashed) or SWAMPS-GLWD (blue,

dashed) do not have observations (denoted as ‘-G’ and ‘-S’, respectively).

rameterization show the same general behavior in the dif-

ferent regions. The six data sets are highly correlated, with

largest differences at the maximal wetland extents during

growing seasons, especially in the boreal regions. In addition,

the differences in seasonal cycle among the six model ex-

periments are relatively small, mostly below 5 % regardless

of the month. This indicates that the averaged total wetland

area is not dependent on the introduction of the new sub-grid

parameterizations at the global scale. Among the DEM data

sets, HYDRO1k shows the largest difference between basin

and grid-based estimates with annual mean wetland area of

89 663 km2 in boreal regions, while HydroSHEDS has the

lowest difference of 6550 km2 between the two versions.

Examining the seasonal amplitude for basin-based schemes,

HydroSHEDS shows a better agreement with satellite-based

observations than the other two data sets.

4.4 Interannual variability

To evaluate the performance of all the sub-grid parameteriza-

tions, we calculated the Pearson’s correlation coefficient (r)

between modeled and satellite-based results (Table 4). Gen-

erally, the comparison demonstrates that simulated interan-

nual variability shows a good agreement with GIEMS and

SWAMPS-GLWD in most regions as defined in Fig. 2. For

boreal and tropical regions, all correlation coefficients range

from 0.7 to 0.8. The comparison of the interannual trends

(Fig. A1 in the Appendix) indicates that absolute values of

simulated interannual variations are close to satellite-based
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observation with good agreement in shape and timing in

these regions. This demonstrates the ability of TOPMODEL

to capture the large-scale variations in wetland/inundation.

The highest disagreements are found in temperate regions

that are strongly affected by human activities (likely a strong

global anthropogenic effect on continental surface freshwa-

ter), which is indicated by GIEMS (Prigent et al., 2012) but

not by modeled results.

The interannual variability originating from six different

sub-grid DEM parameterizations of these schemes is very

similar, with Spearman rank correlation coefficient r > 90 %.

Among the six schemes, the parameters calculated from Hy-

droSHEDS using basin-based statistics result in better agree-

ment between simulated and measured wetland area than the

other schemes. In most regions, the SWAMPS-GLWD and

GIEMS are consistent in their observed wetland area pat-

terns, except for temperate regions (e.g., temperate South

America, temperate North America, Europe). This confirms

that the differences in surface water extend detection between

GIEMS and SWAMPS-GLWD, which might be caused by

observational behaviors from different satellite instruments

and algorithms. In addition, parameters estimation based on

river basins are slightly better than grid-based results.

5 Discussion

5.1 Wetland modeling based on TOPMODEL concept

The coupling of LPJ-wsl with TOPMODEL with calibrated

parameters as described in this study, improves the dynamic

simulation of wetlands, in particular their geographic loca-

tion and extent. This is based on the recent discussions of

the suitability of TOPMODEL applications to simulate wet-

land variations at large spatial scale (Ringeval et al., 2012),

and intercomparisons of the wetland-area-driven model bias

in CH4 emission at regional scale (Bohn et al., 2015). The

large discrepancies of wetland area among LSMs so far have

shown extensive disagreement with inventories and remotely

sensed inundation data sets (Melton et al., 2013), which is

partly due to large varieties of schemes used for represent-

ing hydrological processes, or due to the inappropriate pa-

rameterizations for simulating inundations. Our results sug-

gest that benchmarking Fmax is necessary for global wetland

modeling.

The simulation of hydrological dynamics within LSMs

remains relatively simple because the physical processes

described in LSMs occur at much finer spatial scales

(Ducharne, 2009; Mulligan and Wainwright, 2013). The cou-

pling of TOPMODEL with process-based LSMs allows for

retrieving of the maximum saturated fraction (Fmax), which

is defined by the pixels with no water deficit estimated from

the partial integration of the spatial distribution of CTI in a

catchment. The estimated distribution of Fmax is much larger

than that obtained from the satellite-based observations (Papa

et al., 2010). As a key parameter for determining the soil sat-

urated area, the calculation of Fmax at large scale is prone to

large uncertainties, in particular linked to uncertainties in to-

pographic information, as well as the hydrological processes

implemented in large-scale LSMs. Ringeval et al. (2012)

pointed to the difficulty of two-layer bucket hydrological

model in estimating the mean deficit to the saturation over

each grid cell. This can lead to nonrealistic absolute values

of the contributing area in a watershed. We constructed sev-

eral strategies for optimizing Fmax by correcting topographic

information to match the wetland inventories (Gedney and

Cox, 2003; Kleinen et al., 2012). This is one possible solu-

tion for global wetland modeling as it assumes that wetland

area can be considered constant at coarse spatial resolution

(e.g., 0.5 or 1◦), following the classical approach of Beven

and Kirkby (1979). However, due to the uncertainties from

topographic information used in global applications and due

to limitations in model parameterizations, this approximation

cannot capture the fine-scale wetland extent, which compli-

cates the comparison with inventories.

The integration of satellite-based and inventory-based ob-

servations to calibrate Fmax is highlighted in this study.

Combining SWAMPS and GLWD led to simulated wet-

land area consistent with detailed regional distribution (Poul-

ter et al., 2015). Our estimation of global wetland poten-

tial/maximum is∼ 10.3 Mkm2 and in agreement with the de-

duction (10.4 Mkm2) from recent estimates at finer resolu-

tion for total open water (∼ 17.3 Mkm2) (Fluet-Chouinard et

al., 2015), lakes (∼ 5 Mkm2) (Verpoorter et al., 2014), and

rice paddies (1.9 Mkm2) (Leff et al., 2004). The calibration

of Fmax allows for simulating the dynamics of wetland on

decade-to-century-long timescales. As shown in Fig. 9, the

wetland potential for permafrost and arid/semi-arid regions

is high. Even in tropical regions, there is ∼ 20–30 % of po-

tential for areas to be inundated.

According to our evaluation using satellite-based observa-

tions and inventories, the spatial distribution of the wetland

areas and its temporal variability are generally well captured

by our model, both at regional and global scales. In addition,

the modeled wetland areas and interannual variability com-

pare well with inventories and satellite-based observations,

respectively. Unfortunately, the wide disagreement in simu-

lated wetland dynamics among estimates from WETCHIMP

hampers our ability to assess model performance (Bohn et

al., 2015). Narrowing down the uncertainty of wetland ar-

eas by existing maps could minimize the controversial use of

the definition between wetlands and inundations. Wetlands

have considerable variations in hydrologic conditions, size,

locations that make it difficult to reconcile a single definition

of wetlands. In current parameterizations, the connectivity of

wetlands cannot be represented since wetlands are consid-

ered invariant within grid cells.
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Table 4. Spearman correlations between satellite-based vs. modeled interannual anomalies of the grid cells contained in each region defined

in Fig. 2f at global scale. Values out and in parentheses are correlation efficient with SWAMPS-GLWD and GIEMS, respectively. The two

highest values within one column are in bold.

Regions SHDES

BASIN

SHDES

GRID

GMTED

BASIN

GMTED

GRID

HYDRO1K

BASIN

HYDRO1k

GRID

Boreal North America 0.770

(0.378)

0.768

(0.376)

0.751

(0.354)

0.745

(0.341)

0.765

(0.378)

0.748

(0.343)

Boreal Eurasia 0.785

(0.513)

0.782

(0.511)

0.763

(0.487)

0.764

(0.487)

0.763

(0.493)

0.760

(0.484)

Europe 0.604

(0.091)

0.595

(0.079)

0.313

(−0.198)

0.211

(-0.278)

0.588

(0.076)

0.218

(-0.272)

Tropical South America 0.723

(0.838)

0.725

(0.831)

0.724

(0.835)

0.666

(0.825)

0.708

(0.836)

0.726

(0.835)

South Africa 0.082

(0.736)

0.044

(0.725)

0.084

(0.735)

0.076

(0.734)

0.040

(0.717)

0.088

(0.740)

Tropical Asia 0.689

(0.674)

0.681

(0.673)

0.705

(0.682)

0.677

(0.625)

0.670

(0.660)

0.648

(0.632)

Temperate North America 0.359

(0.139)

0.380

(0.155)

0.406

(0.262)

0.347

(0.229)

0.518

(0.288)

0.479

(0.305)

Temperate South America -0.193

(0.633)

−0.205

(0.597)

−0.153

(0.622)

−0.162

(0.641)

−0.178

(0.627)

−0.166

(0.627)

Temperate Eurasia 0.742

(0.645)

0.760

(0.660)

0.735

(0.642)

0.721

(0.643)

0.732

(0.642)

0.716

(0.642
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Figure 9. Global wetland potential map, which is calculated by the ratio of the mean annual maximum wetland extent averaged for the time

period 1980–2010 and the long-term potential maximum wetland area (Fwet
max). Higher value represents higher availability for sub-grids to be

inundated.

5.2 CTI parameterizations

As shown in this study, global wetland simulations can ben-

efit from improved spatial resolution of topographic maps,

thus creating a more realistic representation of processes

at sub-grid resolution and correspondingly better inunda-

tion simulations. This is supporting the ideas of Wood et

al. (2011) who claimed that higher-resolution modeling leads

to better spatial representation of saturated and nonsaturated

areas, even though limitations in up-scaling parameteriza-

tions may potentially outrun this advantage. The compari-

son between HydroSHEDS and GMTED also indicated that,

for capturing inundated areas under the same spatial reso-

lution, the parameter maps derived from DEM without hy-

drological corrections have less accuracy compared to cor-

rected ones (Lehner and Grill, 2013). Without hydrological

corrections, valleys would appear as closed depressions in

www.biogeosciences.net/13/1387/2016/ Biogeosciences, 13, 1387–1408, 2016



1400 Z. Zhang et al.: Modeling spatiotemporal dynamics of global wetlands

the DEM, leading to an underestimation of inundated areas

(Marthews et al., 2015). It could be foreseen that if DEMs

in process-based models are being applied at higher resolu-

tion, this drawback could be amplified. The comparison be-

tween basin- and grid-based parameterizations suggests that

grid-based calculations are not appropriate and consequently

underestimates wetland areas even when assuming invariant

inundated areas at large scale.

The algorithm to calculate CTI is another potential source

of error for modeling inundations. The method we applied

here is based on calculating a CTI distribution map using a

simple algorithm in the R package “topmodel” instead of us-

ing an existing CTI product with improved contributing area.

The algorithm we applied using the multi-flow direction al-

gorithm that allows for multiple in-flow and out-flow of wa-

ter among neighboring pixels when generating topographic

values. This could potentially overestimate the contributing

areas (Pan et al., 2004). As a result, it might underestimate

the wetland areas within each grid cell and slightly under-

estimate the temporal pattern of saturated areas because of

improper estimates of parameter Cs (Güntner et al., 2004).

One limitation of HydroSHEDS is that its projection is not

equal-area like HYDRO1k (Marthews et al., 2015) and will

cause a potential bias in slope calculation along east–west

directions at high latitudes. However, since there is no com-

mon method to calculate slope or flow direction, we believe

that our calculations provide a reasonable approximation for

global applications.

In addition, variability in TOPMODEL parameterizations

have considerable influence on simulated CH4 fluxes, so that

the uncertainty of mean annual CH4 emissions from vari-

able topography inputs is estimated to be 29.0 Tg yr−1 (Ta-

ble 5). Nevertheless, all of the model estimates generally

fall within the value range of inversion estimates. The dif-

ferences of CH4 emissions among the model experiments is

related to simulated magnitude of wetland extents because

the fraction of CH4 emissions from the tropics (∼ 63 %) and

extratropics (∼ 27 %) remains constant due to the same pa-

rameters rC:CH4
and fecosys. The importance of hydrological

correction is highlighted by results based on GMTED, sug-

gesting that applying DEMs without hydro-correction may

potentially underestimate CH4 fluxes due to lower hydrologi-

cal connectivity, which dampen the generation of inundation.

In addition, fine-scale topography data like HydroSHEDS

reveal higher CH4 fluxes than HYDRO1k, highlighting the

importance of capturing small wetlands/inundated areas that

may be ignored by coarse-resolution products.

5.3 Future needs for global wetland modeling

Substantial progress has been made in the development of

wetland modeling, but the wide disagreement among esti-

mates from LSMs still exists (Bohn et al., 2015; Melton et al.,

2013). Considering that spatiotemporal variation of wetland

area can largely influence CH4 emissions, the selection of ap-

propriate maps needs to be done with care. The parameteriza-

tion and evaluation of multi-resolution topographic products

presented in this study would enhance global wetland mod-

eling if progress could be made in the following four areas.

5.3.1 Improved parameters of TOPMODEL for

large-scale application

Our results demonstrate that model simulation after calibrat-

ing TOPMODEL are comparable in absolute value with in-

ventories and satellite-based observations at coarser resolu-

tion. This supports the ideas of Beven and Cloke (2012) that

an appropriate scale-dependent subgrid parameterization is

the main challenge, regardless of whether it is carried out

at global modeling scales or landscape scales. The saturated

soil water content is the decisive unit that determines wet-

land distributions and reasonable estimates of global wetland

areas. Hydraulic parameters, which describe soil character-

istics for water movement, are critical for modeling wetland

seasonal cycles (Marthews et al., 2014). Assessing the un-

certainties introduced by aggregating sub-pixel to pixel areas

also need to be evaluated.

5.3.2 Implementing human impact within wetland

modeling

There is evidence from long-term satellite-based observa-

tions of a significant effect of human activities on wetland

drainage at continental scale (Prigent et al., 2012). At finer

scale, the variability of wetland extent has also been af-

fected by land-use change (e.g., wetland restoration, defor-

estation, drainage for forestry, agriculture, or peat mining)

and consequently influences spatiotemporal patterns of CH4

emission (Petrescu et al., 2015; Zona et al., 2009). Land-use

change may therefore add feedback water available to wet-

lands through altering water balance between land surface

and atmosphere (Woodward et al., 2014). An implementa-

tion of human impacts within LSMs at large scale may be

important for accurate estimation of interannual variations of

wetlands.

5.3.3 Improved modeling of soil moisture

The quality of soil moisture simulation using LSMs depends

largely on the accuracy of the meteorological forcing data,

surface–atmosphere interaction schemes, and a wide range

of parameters (Zhang et al., 2013) (e.g., CO2 concentra-

tion, albedo, minimum stomatal resistance, and soil hydraulic

properties). As the fundamental variable for determining wa-

ter table depth at global scale (Fan et al., 2013), soil moisture

plays a key role in simulating the spatiotemporal variabil-

ity of wetland dynamics. Since it is impossible to produce

accurate large-scale estimates of soil moisture from in situ

measurement networks (Bindlish et al., 2008; Dorigo et al.,

2011), simulation combined with long-term surface and root

zone remotely sensed estimates (de Rosnay et al., 2013; Kerr
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Table 5. List of global and regional wetland CH4 estimates from our model experiments (see Table 2) over the period 1980–2000. All units

are Tg CH4 yr−1
± 1σ , where standard deviation represents the interannual variation in the model estimates. Note that estimates from some

reference studies are not for the same period.

Estimates Global Regions Hotspot

Tropics Temperate Northern Central WSL Hudson Bay Alaska

(20◦ N to 30◦ S) (20–45◦ N, 30–50◦ S) (> 45◦ N) Amazonb

SHEDS_BASIN 171.9 109.3± 2.3 26.4± 1.0 36.1± 1.8 10.9± 0.3 5.4± 0.9 6.5± 0.5 1.7± 0.3

SHEDS_GRID 193.0 123.7± 2.2 31.4± 1.0 38.7± 1.9 11.4± 0.3 5.5± 0.9 7.1± 0.6 1.5± 0.3

GMTED_BASIN 130.1 85.5± 2.3 19.0± 0.9 26.3± 1.4 9.5± 0.4 4.5± 0.9 4.4± 0.6 1.6± 0.3

GMTED_GRID 117.2 76.7± 2.3 16.4± 0.9 24.2± 1.4 9.2± 0.4 4.1± 0.9 4.2± 0.6 1.4± 0.3

HYDRO1K_BASIN 148.3 96.4± 2.3 21.5± 0.9 30.3± 1.6 10.4± 0.3 4.4± 0.9 5.8± 0.6 1.7± 0.3

HYDRO1K_GRID 128.8 85.0± 2.3 17.8± 0.9 26.0± 1.4 10.0± 0.4 3.9± 0.9 4.8± 0.6 1.5± 0.3

Melton et al. (2013)a 190± 39 5.4± 3.2

Zhu et al. (2015) 209–245 38.1–55.4

Chen et al. (2015) 35 3.11± 0.45

Zhu et al. (2014) 34–58 3.1± 0.5

Ringeval et al. (2012) 193.8 102 51 40.8

Glagolev et al. (2011) 3.91± 1.3

Melack et al. (2004) 9.1

Zhuang et al. (2004) 57.3

Chang et al. (2014) 2.1± 0.5

Bloom et al. (2012) 111.1

Bousquet et al. (2011) 151± 10 91± 11

Bloom et al. (2010) 165± 50 91± 28 4.9± 1.4

a WETCHIMP estimates for 1993–2004. b Central Amazon (54–72◦W, 0–8◦ S).

et al., 2010) via data assimilation technology represents a

strategy to improve the capturing of global wetland variabil-

ity. Future hydrology-oriented satellite missions such as Soil

Moisture Active Passive (SMAP) (Entekhabi et al., 2010)

and Surface Water and Ocean Topography (SWOT) (Durand

et al., 2010) are expected to provide soil moisture and will

improve the capacity of global soil moisture simulations.

5.3.4 Improved satellite benchmark observations

Current satellite-based estimates of wetland area remain

generally uncertain, despite being important for monitoring

global wetland variability. Remotely sensed global inunda-

tion is prone to underestimate small wetlands, as well as

canopies covered with dense vegetation (Papa et al., 2010).

Moreover, estimated coastal areas show large bias due to in-

terference with the ocean surface (Prigent et al., 2007). This

raises the need for a benchmark data set to generate accurate

products with lower uncertainties. Downscaling methodol-

ogy has been made to refine existing satellite-based inunda-

tion estimates by coupling the mapping process with reliable

inventories (Fluet-Chouinard et al., 2015). This may improve

global inundation products, as well as the TOPMODEL pa-

rameter estimation in the future.

6 Conclusion

The new LPJ-wsl version incorporates a TOPMODEL ap-

proach and a permafrost module representing soil freeze–

thaw processes to simulate global wetland dynamics. Once

the Fmax parameter in TOPMODEL was calibrated against a

benchmark data set, the model successfully mapped regional

spatial pattern of wetlands in West Siberian Lowland and the

lowland Amazon basin and captured well the spatiotempo-

ral variations of global wetlands. The parameterization of

TOPMODEL based on three DEM products, HYDRO1k,

GMTED, and HydroSHEDS, revealed that HydroSHEDS

performed best in capturing the spatial heterogeneity and in-

terannual variability of inundated areas compared to invento-

ries. River-basin-based parameterization schemes using HY-

DRO1k and GMTED marginally but significantly improve

wetland area estimates. The estimates of global wetland po-

tential/maximum is ∼ 10.3 Mkm2, with a mean annual max-

imum of ∼ 5.17 Mkm2 for 1980–2010. This development of

the wetland modeling method reduces the uncertainties in

modeling global wetland area and opens up new opportuni-

ties for studying the spatiotemporal variability of wetlands

in LSMs that are directly comparable with inventories and

satellite data sets.
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Appendix A

Figure A1. Interannual variations of seasonal wetland area anomalies from LPJ-wsl and satellite-derived observations for the period 1993–

2012.
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Table A1. Reclassification table for aggregating JERS-1 lowland Amazon basin to 0.5◦ cell. Codes NA, 0, 1, and 2 refer to, respectively,

not-available, non-wetland, wetland that exists only in low-water season, and wetland that exists in high-water season.

DN Cover at Cover at Flag for

low-water stage higher-water stage minimum/maximum wetlands

0 Land outside Amazon basin Land outside Amazon basin NA

1 Non-wetland within Amazon basin Non-wetland within Amazon basin 0

11 Open water Open water 0

13 Open water Aquatic macrophyte 0

21 Bare soil or herbaceous, non-flooded Open water 2

23 Bare soil or herbaceous, non-flooded Aquatic macrophyte 2

33 Aquatic macrophyte Aquatic macrophyte 1

41 Shrub, non-flooded Open water 2

44 Shrub, non-flooded Shrub, non-flooded 0

45 Shrub, non-flooded Shrub, flooded 2

51 Shrub, flooded Open water 1

55 Shrub, flooded Shrub, flooded 1

66 Woodland, non-flooded Woodland, non-flooded 0

67 Woodland, non-flooded Woodland, flooded 2

77 Woodland, flooded Woodland, flooded 1

88 Forest, non-flooded Forest, non-flooded 0

89 Forest, non-flooded Forest, flooded 2

99 Forest, flooded Forest, flooded 1

200 Elevation >= 500 m, in basin Elevation >= 500 m, in basin NA

255 Ocean Ocean NA
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