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1 Mistake in the published paper and its impact

In our paper “Predicting biomass of hyperdiverse and struc-
turally complex central Amazonian forests – a virtual ap-
proach using extensive field data” (Biogeosciences, 13,
1553–1570, 2016), the biomass estimation models were fit
using fresh and not dry tree mass data. Thus, the models
reported in our paper are valid for the estimation of fresh
aboveground biomass (AGB) of trees and not dry AGB as re-
ported. A direct implication of this mistake is that our evalua-
tion of the pantropical biomass estimation model from Chave
et al. (2014) is incorrect in the published paper. The pantropi-
cal model was fit with dry mass data. For this reason, it under-
estimated the biomass of the heavier fresh trees used in our
paper. In this corrigendum we have redone the analyses in the
paper using dry mass data, which allowed us to reassess dif-
ferent models’ performance across our proposed forest sce-
narios. The correction from wet to dry mass affected both
the AGB values of trees and the models for predicting AGB.
Thus, the main conclusions in our paper about which models
best represent/capture the variations in AGB across our for-
est scenarios have not changed. However, the absolute values

of the models’ parameters are different (see Table 3, which
should replace Table S3 in the Supplement). For complete-
ness, we give the results of re-analysis here, i.e. the evalua-
tion of our models and the pantropical model from Chave et
al. (2014).

2 Obtaining dry mass data and estimating new model
parameters

A detailed description of the harvesting method was pro-
vided in Sect. 2.2 of the paper. Water content was mea-
sured for 66 randomly selected trees, following the proce-
dures also described in Sect. 2.2 of the paper and includ-
ing samples representing different components (i.e., trunk,
coarse branches, fine branches, leaves and flowers/fruits –
when available). The weighted water content of the 66 trees
was 47.4 %± 0.01 % (mean± 95 % CI). This value is similar
to those reported for otherterra firme forests in the eastern
(Araújo et al., 1999), central (Higuchi et al., 2004) and west-
ern (Brown et al., 1995; Lima et al., 2012) Amazon. For this
corrigendum, we calculated a weighted mean water-content
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2 D. Magnabosco Marra et al.: Predicting biomass of central Amazonian forests

Figure 1. (Correction to Fig. S1 of the Supplement). Comparison of the two best tree aboveground estimation models (M33 and M43) –
corrected now to predict dry AGB – with the prediction from the pantropical model from Chave et al. (2014). Note that the pantropical model
overestimates the biomass of small and, especially, of large-sized trees (diameter at breast height≥ 21 cm). This pattern was also observed
at the landscape level (see Fig. 2).

Figure 2. (Correction to Fig. S2 of the Supplement). Predicted vs. observed aboveground biomass (AGB) along six forest scenarios composed
of 100 1 ha plots. The line of equality (1: 1 line) is shown as a red/straight line. Forest scenarios were designed to reflect landscape-level
variations in floristic composition and size distribution of trees, typical of central Amazonterra firme forests. Floristic composition and
size-distribution scenarios followed the sampling scheme described in Sect. 2.4.2 (Fig. 2) of the paper. Here, the predictions were made by
using the pantropical model of Chave et al. (2014), which has diameter at breast height (DBH), tree total height (H) (estimated from a DBH:
H relationship), wood density (WD) and environmental stress as predictors.

value for each of our successional groups (i.e., pioneer, mid-
and late-successional species). There were 49.2, 45.0 and
43.8 %, for pioneer, mid- and late-successional species, re-
spectively (Table 1).

The mean water content of each successional group was
used to convert fresh mass to dry mass for each tree and
those (Table 2) were used in all subsequent re-analyses. Al-
though water content is related to wood density (Suzuki,
1999) and thus can vary among species (Muller-Landau,
2004; Williamson and Wiemann, 2010), individuals and tree
compartments (Higuchi et al., 1998; Plourde et al., 2015),
our approximation reflects both the variability among sites
and in community composition (i.e., from pioneer to late-
successional species). Moreover, Chambers et al. (2001) re-
ported little effect of the variation in water content (i.e., the
use of mean and individual-specific water-content values) on
prediction error for both individuals and groups of trees har-
vested in the same region as our study.

With respect to our models, since there was little variation
in water content among tree species and successional groups,

and because corrections affected both the predicted variable
and the models, we expected our analysis of how well the
various models performed to be the same as initially. How-
ever, those interested in using biomass estimation models to
estimate dry biomass need to use the new coefficients pro-
vided in Table 3 of this corrigendum, rather than those re-
ported in Table S3 of the Supplement.

3 Evaluation of the pantropical model

We evaluated the pantropical model from Chave et al. (2014)
with our corrected dry mass data. In our paper, the model un-
derstandably underestimated biomass because we were com-
paring estimated dry weight with our wet weight data. When
we compared the estimates with our data after correction, i.e.,
removing the weight of water, we found that the pantropical
model overestimated the biomass of individual trees on aver-
age by 29.8 % resulting in a root-mean-square error (RMSE)
of 210.2 kg (Fig. 1).
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Figure 3. Predicted vs. observed aboveground biomass (AGB) along six forest scenarios composed of 100 1 ha plots. The line of equality
(1 : 1 line) is shown as a red/straight line. Forest scenarios were designed to reflect landscape-level variations in floristic composition and
size distribution of trees, typical of central Amazonterra firme forests. Floristic composition and size-distribution scenarios followed the
sampling scheme described in Sect. 2.4.2 of the paper. Models’ predictors: diameter at breast height (DBH) (cm), species’ successional
group (SG) (pioneers, mid- and late successional) and wood density (WD) (g cm−3). See Table 2 for the variance modeling approach of
different equations. Note that models containing total tree height (H) as predictor were excluded here.

Figure 4. Profiles relating the bias and the root-mean-square error (RMSE) of 12-tree aboveground biomass estimation models tested across
six forest scenarios composed of 100 1 ha plots. Forest scenarios (for details see Sect. 2.4.2 of the paper) were designed to reflect landscape-
level variations in floristic composition and size distribution of trees, typical of central Amazonterra firme forests. Models’ predictors:
diameter at breast height (DBH) (cm), species’ successional group (SG) (pioneers, mid- and late-successional species) and wood density
(WD) (g cm−3). Variance modeling approaches: non-linear least square (NLS), ordinary least square with log-linear regression (OLS) and
non-linear with modeled variance (MOV). Note that models containing total tree height (H) as predictor were excluded here.
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Figure 5. (Correction to Fig. 6 of the paper). Overall performance of 12-tree aboveground estimation models across six forest scenarios
composed of 100 1 ha plots. Forest scenarios were designed to reflect landscape-level variations in floristic composition and size distribution
of trees, typical of central Amazonterra firme forests. Models are rated by the absolute mean bias and root-mean-square error (RMSE),
both in Mg. Solid points and bars represent mean and range values, respectively. Models’ predictors: diameter at breast height (DBH)
(cm), species’ successional group (SG) (pioneers, mid- and late-successional species) and wood density (WD) (g cm−3). Variance modeling
approaches: non-linear least square (NLS), ordinary least square with log-linear regression (OLS) and non-linear with modeled variance
(MOV). Note that models containing total tree height (H) as predictor were excluded here.

Table 1. Contribution of tree compartments to the total aboveground biomass (AGB) (mean), water content of different tree compartments
and weighted tree water content of the successional groups included in the paper and this corrigendum (mean± 1 standard deviation, both).

Compartments Contribution to H2O Weighted H2O
the total AGB (%) content (%) content (%)

Pioneer species (N = 39)

Trunk/bole 65.6 48.1± 6.1 49.2± 0.9
Thick/coarse branches 11.7 43.7± 4.1
Thin/fine branches 17.8 52.5+ 7.1
Leaves 4.7 64.8+ 7.4
Flowers/fruits 0.2 61.2± 4.8

Mid-successional species (N = 22)

Trunk/bole 77.4 43.0± 4.5 45.0± 1.0
Thick/coarse branches 0.0 0.0
Thin/fine branches 17.0 48.6± 3.9
Leaves 5.6 61.7± 9.6
Flowers/fruits 0.0 0.0

Late-successional species (N = 5)

Trunk/bole 60.9 41.6± 3.3 43.8± 1.1
Thick/coarse branches 0.0 0.0
Thin/fine branches 26.2 42.9± 7.7
Leaves 12.9 56.3± 11.8
Flowers/fruits 0.0 0.0

The pantropical model also systematically overestimated
the AGB of our scenarios (Fig. 2). We observed biases
ranging from+29.2 % (mid-succession) to+30.8 % (early
succession) (mean of+29.8 %) and RMSE raging from
40.5 Mg ha−1 up to 71.0 Mg ha−1 (mean of 56.4 Mg ha−1)

(Table 4). Overestimation was also reported in previous stud-
ies that tested pantropical models interra firme Amazon
forests (Alvarez et al., 2012; Lima et al., 2012; Ngomanda
et al., 2014).

In our study area, trees larger than 60 cm diameter at breast
height (DBH) occur in densities < 1 ha−1 (Vieira et al., 2004).
Moreover, trees≤ 40 cm DBH account for more than 90 %
of the total tree density (Higuchi et al., 2012). We attribute
the overestimation of the pantropical model to the great im-
portance that this model gives to large trees (Sect. 4.1 and
4.2, and Fig. S3 of the paper; Figs. 1 and 2 of this corrigen-
dum). As we have shown, the pantropical model does not
represent the size distribution of trees from our study region.
The results from this corrigendum highlight that site differ-
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Table 2. (Correction to Table 1 of the paper). Trees were harvested in the Estação Experimental de Silvicultura Tropical, a contiguousterra
firme forest reserve near Manaus, Amazonas, Brazil. The corrected AGB values have been calculated using the correction from wet to dry
weight.

Variables Old-growth Secondary forest Secondary forest
forest (23-year old) (14-year old)

NT 131 346 250
SR 81 63 50
DBH 5.0–85.0 5.0–37.2 5.0–33.1
H 5.9–34.5 3.9–27.0 4.2–27.0
WD 0.348–0.940 0.389–1.000 0.395–1.000
AGB 4.5–4216.5 2.7–861.6 3.9–859.3

Variables: number of trees (NT); species richness (SR); diameter at breast height
(DBH) (cm); total tree height (H) (m); wood density (WD) (g cm−3); and
aboveground biomass (AGB) (dry mass in kg).

ences in size distribution of trees need to be considered both
when parameterizing and applying biomass estimation mod-
els.

4 Fitting models with the dry mass data

We fit models for estimating dry biomass using the same
equations and predictors as in the paper. Before fitting the
models, we again tested our predictors for collinearity. Over-
all, the variance inflation factor (VIF) of the models did not
change.

As observed in our models fit with fresh mass data, the
non-linear least-square (NLS) approach yielded models with
higher coefficient of determination (R2) and adjusted coeffi-
cient of determination (R2adj) than the models fit with the or-
dinary least square with the log-linear regression (OLS) and
our non-linear with modeled variance (MOV) approach (Ta-
ble 5). Consequently, the models fit with the NLS approach
invariably had lowerSyx% values than those fit with the OLS
and MOV approaches. Nonetheless, when considering De-
viance Information Criterion (DIC) values as the most impor-
tant criterion for model selection, our results are consistent
with those we reported in the paper. Models fit with the OLS
and our MOV approach still yielded the best-fitting models
(lower DIC values). The models M33, M43 and M42 had the
first, second and third lowest biases for individual tree pre-
dictions (underestimation of 0.8 % and overestimation of 3.0
and 3.1 % of dry AGB, respectively).

5 Biomass predictions across the scenarios

The corrected mean AGB (dry) in our 1 ha plots ranged
from 107.2 to 170.9 Mg ha−1 (floristic composition scenar-
ios) and from 54.1 to 230.2 Mg ha−1 (size-distribution sce-
narios) (Fig. 3). This variation was proportional to that ob-
served for the fresh mass data reported in the paper and val-
ues are coherent with those reported for other Amazon re-
gions including secondary (Lima et al., 2007; Saldarriaga et

al., 1998) and old-growth forests (Higuchi et al., 2004; Lima
et al., 2012; Vieira et al., 2004).

The goodness of fit of the models for predicting individual
tree biomass (Table 5) was also reflected for the reliability
of models when predicting AGB across our forest scenar-
ios (Fig. 3). Overall, the patterns reported in the paper did
not change. While some models predicted AGB accurately
across all different scenarios, others systematically under-
or overestimated the “true” AGB values (Fig. 4). As pre-
viously reported, despite having the highestR2 andR2adj
values, the models fit with the NLS approach produced the
least reliable landscape-level predictions with biases rang-
ing from−5.4 % (underestimation) to+39.8 % (overestima-
tion) (both values from the model M11) leading to RMSE
of up to 68.6 Mg ha−1. The models fit with the NLS ap-
proach performed better (lower RMSE and bias) at the late-
successional and large-sized scenarios. The models fit with
the OLS and MOV approaches performed satisfactorily and
similarly across most of the scenarios. For model series 2 and
3, the models fit with our MOV approach performed slightly
better than those fit with the OLS approach. The models fit
with the OLS approach had biases raging from−18.4 to
+11.9 %, with maximum RMSE of 41.8 Mg ha−1; models
fit with our MOV approach had biases ranging from−19 to
9.9 %, and maximum RMSE of 43.2 Mg ha−1.

As observed from the DIC values of individual tree pre-
dictions (Table 5), our MOV and the OLS approaches pro-
duced the more reliable (smaller biases and RMSE) predic-
tions when challenged across all scenarios (Fig. 5). As for
the models fit with fresh data, independent of applied pre-
dictors, the NLS approach invariable had the highest mean
and range of values for bias and RMSE. As previously re-
ported, the best-performing model structures for predicting
tree AGB at the landscape-level included species-specific
predictors and either the OLS or MOV fitting approaches
(Table 5 and Figs. 3–5). The best-performing models across
all scenarios were M33 (bias of 2.1 % or 4.0 Mg ha−1), M43
(3.7 % or 7.3 Mg ha−1) and M32 (3.9 % or 7.7 Mg ha−1).

www.biogeosciences.net/13/1553/2016/ Corrigendum to Biogeosciences, 13, 1553–1570, 2016
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Table 3. Parameters (low [2.5 %] and high [97.5 %] confidence interval) of the 24-tree aboveground biomass estimation models fit in this
corrigendum. See the Table 2 of the paper for checking the equations and variance modeling approaches, and the Table 5 of this corrigendum
for checking models’ statistics. Models were fit with dry mass data summarized in the Table 2 of this corrigendum.

Series Model SG b1 b2 b3 b4 c1 c2

1 M11 0.504 (0.426,0.594) 2.078 (2.035,2.120) 108.8 (103.4,114.6)
M12 −1.762 (−1.883,−1.642) 2.329 (2.280,2.380) 0.368 (0.350,0.387)
M13 0.183 (0.162,0.207) 2.328 (2.274,2.380) 0.051 (0.041,0.064) 2.424 (2.334,2.517)

2 M21 pio 0.249 (0.130,0.416) 2.195 (2.025,2.379) 75.17 (71.41,79.16)
mid 0.153 (0.102,0.216) 2.436 (2.344,2.532)

lat 2.607 (2.226,3.010) 1.683 (1.646,1.723)
M22 pio −1.547 (−1.723,−1.376) 2.203 (2.133,2.274) 0.345 (0.327,0.363)

mid −1.940 (−2.175,−1.705) 2.418 (2.313,2.524)
lat −1.893 (−2.090,−1.694) 2.476 (2.395,2.556)

M23 pio 0.227 (0.191,0.268) 2.201 (2.131,2.270) 0.076 (0.054,0.105) 2.201 (2.067,2.334)
mid 0.156 (0.126,0.193) 2.408 (2.315,2.494) 0.106 (0.062,0.167) 2.105 (1.889,2.333)

lat 0.159 (0.134,0.187) 2.472 (2.403,2.538) 0.050 (0.032,0.073) 2.449 (2.289,2.619)
3 M31 0.885 (0.776,1.008) 2.061 (2.029,2.094) 1.113 (1.022,1.205) 80.35 (76.34,84.55)

M32 −1.438 (−1.557,−1.323) 2.370 (2.324,2.416) 0.863 (0.740,0.989) 0.330 (0.313,0.347)
M33 0.230 (0.207,0.257) 2.406 (2.366,2.446) 0.880 (0.752,1.012) 0.076 (0.061,0.094) 2.213 (2.125,2.304)

4 M41 pio 0.165 (0.086,0.280) 2.587 (2.395,2.788) 1.236 (0.977,1.500) 67.81 (64.38,71.51)
mid 0.138 (0.075,0.226) 2.457 (2.346,2.576)−0.098 (−0.460,0.266)

lat 2.152 (1.841,2.486) 1.786 (1.744,1.831) 0.555 (0.435,0.679)
M42 pio −1.229 (−1.401,−1.053) 2.279 (2.211,2.345) 0.872 (0.688,1.049) 0.323 (0.307,0.340)

mid −1.857 (−2.130,−1.581) 2.419 (2.319,2.518) 0.196 (−0.216,0.604)
lat −1.684 (−1.907,−1.461) 2.461 (2.384,2.538) 0.548 (0.234,0.867)

M43 pio 0.275 (0.231,0.325) 2.324 (2.251,2.396) 0.878 (0.680,1.078) 0.109 (0.075,0.153) 2.009 (1.869,2.155)
mid 0.182 (0.139,0.238) 2.409 (2.318,2.494) 0.353 (0.028,0.793) 0.102 (0.060,0.162) 2.121 (1.900,2.348)

lat 0.193 (0.159,0.233) 2.460 (2.392,2.527) 0.539 (0.254,0.835) 0.048 (0.031,0.071) 2.442 (2.277,2.619)
5 M51 0.033 (0.021,0.049) 1.561 (1.491,1.632) 1.423 (1.241,1.607) 93.60 (88.91,98.52)

M52 −2.687 (−2.886,−2.490) 1.930 (1.844,2.015) 0.715 (0.590,0.845) 0.341 (0.324,0.359)
M53 0.084 (0.066,0.104) 1.970 (1.872,2.062) 0.621 (0.488,0.765) 0.045 (0.036,0.056) 2.457 (2.363,2.551)

6 M61 pio 0.014 (0.004,0.035) 1.915 (1.715,2.111) 1.276 (0.906,1.664) 67.65 (64.27,71.25)
mid 0.068 (0.027,0.133) 2.269 (2.131,2.420) 0.448 (0.109,0.798)

lat 0.524 (0.356,0.739) 1.408 (1.349,1.470) 0.803 (0.647,0.955)
M62 pio −2.626 (−2.921,−2.337) 1.817 (1.713,1.927) 0.756 (0.581,0.925) 0.314 (0.298,0.331)

mid −2.743 (−3.046,−2.438) 1.942 (1.784,2.099) 0.742 (0.539,0.942)
lat −2.791 (−3.215,−2.353) 2.088 (1.904,2.270) 0.697 (0.393,0.994)

M63 pio 0.086 (0.059,0.118) 1.864 (1.745,1.979) 0.670 (0.482,0.879) 0.072 (0.051,0.100) 2.198 (2.059,2.335)
mid 0.078 (0.054,0.108) 2.004 (1.830,2.173) 0.634 (0.411,0.861) 0.081 (0.046,0.132) 2.193 (1.963,2.432)

lat 0.068 (0.044,0.099) 2.118 (1.953,2.273) 0.648 (0.386,0.936) 0.048 (0.031,0.071) 2.426 (2.263,2.599)
7 M71 0.063 (0.046,0.083) 1.581 (1.530,1.632) 1.342 (1.217,1.478) 1.024 (0.949,1.100) 64.91 (61.66,68.39)

M72 −2.253 (−2.441,−2.059) 2.027 (1.952,2.104) 0.605 (0.490,0.717) 0.773 (0.655,0.895) 0.308 (0.293,0.324)
M73 0.109 (0.088,0.134) 2.121 (2.047,2.194) 0.839 (0.711,0.966) 0.535 (0.416,0.657) 0.073 (0.057,0.092) 2.206 (2.110,2.305)

8 M81 pio 0.029 (0.010,0.061) 2.306 (2.118,2.513) 0.830 (0.523,1.167) 0.999 (0.764,1.231) 57.16 (54.30,60.21)
mid 0.058 (0.028,0.111) 2.072 (1.867,2.308) 0.761 (0.295,1.145) 0.420 (0.007,0.823)

lat 0.195 (0.134,0.281) 1.456 (1.401,1.514) 1.124 (0.967,1.276) 0.732 (0.636,0.831)
M82 pio −2.086 (−2.396,−1.784) 1.978 (1.865,2.089) 0.560 (0.392,0.735) 0.710 (0.538,0.885) 0.300 (0.285,0.316)

mid −2.671 (−3.016,−2.327) 1.946 (1.787,2.104) 0.737 (0.540,0.934) 0.162 (−0.221,0.548)
lat −2.545 (−3.010,−2.070) 2.120 (1.938,2.301) 0.621 (0.316,0.915) 0.388 (0.084,0.691)

M83 pio 0.131 (0.091,0.182) 2.087 (1.976,2.202) 0.761 (0.571,0.957) 0.471 (0.290,0.650) 0.106 (0.074,0.150) 2.005 (1.861,2.147)
mid 0.089 (0.059,0.127) 2.006 (1.835,2.170) 0.350 (0.037,0.733) 0.639 (0.427,0.872) 0.080 (0.045,0.132) 2.195 (1.962,2.432)

lat 0.087 (0.055,0.129) 2.154 (1.995,2.309) 0.435 (0.153,0.725) 0.575 (0.310,0.852) 0.050 (0.032,0.074) 2.401 (2.234,2.578)

Model series predictors: 1 (diameter at breast height [DBH]); 2 (DBH and species’ successional group [SG]); 3 (DBH and wood density [WD]); 4 (DBH, WD and SG); 5 (DBH and total tree height [H ]); 6 (DBH, H and SG); 7
(DBH, H and WD); and 8 (DBH,H , SG and WD). Species’ successional groups: pioneer (pio), mid-species (mid) and late-successional species (lat).

Our new results support that predicting biomass correctly
at the landscape level in hyperdiverse and structurally com-
plex tropical forests, such as the Amazon, still depends on
the collection of plot-based allometric data and forest in-
ventories including information on species composition, tree
height and wood density. In forests subjected to more intense
disturbance regimes (i.e., strong gradients of floristic compo-
sition and size distribution), reliable landscape-level biomass
estimates may require models that include predictors approx-
imating species-specific architecture and anatomy, and pos-
sible variations in the size distribution of trees.

We would like to emphasize the importance of the aspects
related to model parameterization, selection and applicabil-
ity, as discussed in Sect. 4 of our paper. Furthermore, we
confirm the efficacy of our best-performance models for es-
timating dry aboveground biomass of central Amazonterra
firme forests, and the adequacy of the methods that we em-
ployed. When data on species composition and wood density
are available or can be accurately compiled from the litera-
ture, we suggest the use of models M33, M43 or M42, re-
spectively. In case wood density data are not available or are
available but in insufficient resolution, we suggest the use of
model M23.
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Table 4. (Correction to Table S4 of the Supplement). Root-mean-square error (RMSE) and bias (absolute and relative values) from tree
aboveground biomass predictions across our forest scenarios by using the Chave et al. (2014)’s pantropical estimation model. Chave et
al. (2014)’s pantropical estimation model has diameter at breast height (DBH), tree total height (H) (estimated from a DBH:H relationship),
wood density (WD) and environmental stress as predictors.

Scenarios RMSE Bias Bias
(Mg ha−1) (Mg ha−1) (%)

Early-succession 40.5 40.1 30.8
Mid-succession 46.1 45.5 29.2
Late-succession 67.1 66.4 29.3
Small-sized 51.9 51.7 30.1
Mid-sized 61.8 61.6 30.0
Large-sized 71.0 70.8 29.6
Mean 56.4 56.0 29.8

Table 5.Statistics of aboveground biomass estimation models fit in this corrigendum. See Table 2 of the paper for the definition of models,
predictors and variance modeling approaches.

Series Model Dev pD DIC R2 R2adj Syx% CF

1 M11 8880.2 2.926 8883.1 0.889 0.888 3.315
M12 5924.7 2.963 5927.6 0.867 0.867 3.615 1.070
M13 5948.1 3.847 5952.0 0.867 0.867 3.619

2 M21 8342.3 3.647 8345.9 0.947 0.946 2.296
M22 5827.3 7.001 5834.3 0.552 0.548 6.593 1.061
M23 5827.5 10.534 5838.0 0.595 0.592 6.285

3 M31 8439.3 3.972 8443.2 0.939 0.939 2.449
M32 5762.9 4.014 5766.9 0.901 0.901 3.119 1.056
M33 5792.5 4.805 5797.3 0.882 0.881 3.412

4 M41 8193.2 1.271 8194.5 0.957 0.956 2.077
M42 5732.8 10.007 5742.8 0.719 0.715 5.223 1.053
M43 5737.6 13.126 5750.7 0.738 0.735 5.056

5 M51 8661.5 −0.071 8661.4 0.918 0.917 2.853
M52 5810.7 4.052 5814.8 0.887 0.886 3.340 1.060
M53 5858.2 4.652 5862.9 0.882 0.881 3.415

6 M61 8189.8 −55.307 8134.5 0.957 0.956 2.071
M62 5690.5 10.118 5700.7 0.753 0.750 4.895 1.050
M63 5720.5 11.602 5732.1 0.755 0.752 4.891

7 M71 8129.0 2.234 8131.2 0.960 0.960 1.980
M72 5663.5 5.025 5668.5 0.935 0.934 2.539 1.048
M73 5715.7 5.512 5721.2 0.927 0.927 2.681

8 M81 7944.2 −38.934 7905.3 0.969 0.969 1.753
M82 5624.8 13.226 5638.0 0.818 0.815 4.205 1.046
M83 5655.9 13.489 5669.4 0.821 0.818 4.187

Legend: models’ deviance (Dev), effective number of parameters (pD), Deviance Information Criterion (DIC),
coefficient of determination (R2), adjusted coefficient of determination (R2adj), relative standard error (Syx%)

and correction factor (CF) for models fit from ordinary least square with log-linear regressions.
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