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Abstract. Old-growth forests are subject to substantial

changes in structure and species composition due to the in-

tensification of human activities, gradual climate change and

extreme weather events. Trees store ca. 90 % of the total

aboveground biomass (AGB) in tropical forests and precise

tree biomass estimation models are crucial for management

and conservation. In the central Amazon, predicting AGB

at large spatial scales is a challenging task due to the het-

erogeneity of successional stages, high tree species diver-

sity and inherent variations in tree allometry and architec-

ture. We parameterized generic AGB estimation models ap-

plicable across species and a wide range of structural and

compositional variation related to species sorting into height

layers as well as frequent natural disturbances. We used 727

trees (diameter at breast height ≥ 5 cm) from 101 genera

and at least 135 species harvested in a contiguous forest

near Manaus, Brazil. Sampling from this data set we as-

sembled six scenarios designed to span existing gradients

in floristic composition and size distribution in order to se-

lect models that best predict AGB at the landscape level

across successional gradients. We found that good individ-

ual tree model fits do not necessarily translate into reliable

predictions of AGB at the landscape level. When predict-

ing AGB (dry mass) over scenarios using our different mod-

els and an available pantropical model, we observed system-

atic biases ranging from−31 % (pantropical) to+39 %, with

root-mean-square error (RMSE) values of up to 130 Mg ha−1

(pantropical). Our first and second best models had both

low mean biases (0.8 and 3.9 %, respectively) and RMSE

(9.4 and 18.6 Mg ha−1) when applied over scenarios. Pre-

dicting biomass correctly at the landscape level in hyperdi-

verse and structurally complex tropical forests, especially al-

lowing good performance at the margins of data availability

for model construction/calibration, requires the inclusion of

predictors that express inherent variations in species architec-

ture. The model of interest should comprise the floristic com-

position and size-distribution variability of the target forest,

implying that even generic global or pantropical biomass es-

timation models can lead to strong biases. Reliable biomass

assessments for the Amazon basin (i.e., secondary forests)

still depend on the collection of allometric data at the lo-

cal/regional scale and forest inventories including species-

specific attributes, which are often unavailable or estimated

imprecisely in most regions.
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1 Introduction

Allometries describe how relationships between different di-

mensions (e.g., length, surface area and weight) of organ-

isms change non-proportionally as they grow (Huxley and

Teissier, 1936). The lack of proportionality arises from the

fact that organisms change their shape while they grow (i.e.,

the dimensions differ in their relative growth rates). As one

important application, allometric relationships can be used

to relate simple dimensions of trees (e.g., diameter at breast

height, DBH, or tree total height,H ) to dimensions more rel-

evant for forest managers and basic ecological research, such

as wood volume or whole tree biomass (Brown et al., 1989;

Higuchi et al., 1998; Saldarriaga et al., 1998).

Allometric relationships and biomass estimation models

can differ substantially between different tree species, espe-

cially in species-rich regions with a high variation in tree

sizes and architectures such as in the tropical rainforests

(Banin et al., 2012; Nelson et al., 1999; Poorter et al., 2003).

This variation reflects differences in growth strategy and

life history, such as tree species occupying different strata

when mature (e.g., understory, canopy or emergent species),

successional groups (SGs) (e.g., pioneer or light-demanding

species, such as Cecropia spp. and Pourouma spp., in con-

trast to late-successional or shade-tolerant species, such as

Cariniana spp. and Dipteryx spp.) or environmental mi-

crosites (Clark and Clark, 1992; King, 1996; Swaine and

Whitmore, 1988).

Important and highly variable architectural attributes of

tropical tree species include stem shape (e.g., slender to

stout form), branch form and branching intensity (e.g., pla-

giotropic, orthotropic and unbranched), crown contour (e.g.,

round, elongated and irregular), crown position (e.g., under-

story, canopy and emergent), maximum DBH and H (Hallé,

1974; Hallé et al., 1978). In addition, there is large varia-

tion in growth rate (the speed at which a certain tree volume

is filled) and consequently in wood anatomy among species

(Bowman et al., 2013; da Silva et al., 2002; Worbes et al.,

2003). Wood density (WD), which is particularly important

for biomass estimation, varies significantly across regions

(Muller-Landau, 2004) and can differ between species by

more than an order of magnitude (Chave et al., 2006). Given

these sources of variation, it is not surprising that different

allometries were reported when comparing species (Nelson

et al., 1999), successional stages (Ribeiro et al., 2014), on-

togenies (Sterck and Bongers, 1998) and regions (Lima et

al., 2012). Unfortunately, transferring such estimation mod-

els to other contexts – other species, size ranges, life stages,

sites or successional stages – typically leads to predictions

that deviate strongly from observations, especially when the

sampling design does not allow the selection of relevant data

for proper estimation of the parameters of interest (Gregoire

et al., 2016) or when predictor ranges are limited or neglected

(Clark and Kellner, 2012; Sileshi, 2014).

In temperate and boreal forests, the size, ontogeny and

site variations have been captured by the development of

generic species-specific biomass estimation models (Wirth et

al., 2004; Wutzler et al., 2008) based on data from hundreds

of individuals from a single tree species. However, this ap-

proach is prohibitive in the tropics where thousands of tree

species coexist (Slik et al., 2015; ter Steege et al., 2013). In-

stead, the challenge is to develop generic local or regional

formulations that also generalize across species (Higuchi et

al., 1998; Lima et al., 2012; Nelson et al., 1999; Saldarriaga

et al., 1998). Ideally, they contain predictor variables that (1)

jointly capture a large fraction of the variation induced by the

underlying morphological and anatomical gradients and (2)

are still easy enough to obtain or measure.

The development and application of such generic models

pose a number of challenges. Finding the appropriate model

structure and estimating the model parameters requires a data

set with a large number of individual measurements contain-

ing the variable of interest (here aboveground biomass, or

AGB) and the predictor variables (i.e., DBH, H , species’

SGs and WD). Importantly, the data set should ideally cover

all possible real-world combinations of predictor values in

order to avoid error-prone extrapolations and unreliable pre-

dictions. However, in multiple regression models, this pre-

condition is rarely met, not even by large design matrices.

The ultimate prediction is typically at the landscape level,

which requires summing up individual predictions for several

thousands of trees varying in size and species assignment.

The larger the variation of predictor values within a stand, the

higher is the likelihood that extrapolation errors occur. This

calls for a validation at the landscape level, which requires

a plot-based harvest method. For obvious reasons, this has

rarely been attempted (Carvalho Jr. et al., 1995; Chambers et

al., 2001; Higuchi et al., 1998; Lima et al., 2012).

Notable effort has already been made to parameterize

global/pantropical AGB estimation models (Brown et al.,

1989; Chave et al., 2005, 2014). Commonly, these mod-

els are derived using several different data sets, each of

which is comprised of relatively few trees and species. Al-

though few opportunities exist to evaluate theses models at

the landscape level, they are used worldwide in different con-

texts, sites and across successional stages. For instance, the

pantropical model from Chave et al. (2005) (DBH +WD as

predictors) overestimated biomass when tested against trees

in Gabon (Ngomanda et al., 2014), Peru (Goodman et al.,

2014), Colombia (Alvarez et al., 2012) and Brazil (Lima et

al., 2012), but it also underestimated the AGB in mixed-

species Atlantic Forest stands in Brazil (Nogueira Jr. et al.,

2014).

The availability of such generic AGB estimation models

applicable to many species and contexts is particularly im-

portant for management, ecological and biogeochemical re-

search in tropical forest landscapes that encompass a partic-

ularly wide spectrum of floristic and structural variation. For

example, in the central Amazonian terra firme forests, 1 ha
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of old-growth forest can hold more than 280 tree species

(DBH≥ 10 cm) (de Oliveira and Mori, 1999) with a wide

range of architectures and anatomies (Braga, 1979; Muller-

Landau, 2004; Ribeiro et al., 1999). At the landscape scale,

this region encompasses a mosaic of successional stages

promoted by windthrows (Asner, 2013; Chambers et al.,

2013; Negrón-Juárez et al., 2010; Nelson et al., 1994). Dis-

turbed areas include a diverse set of species representing

the range from new regrowth to adult survivors, thereby in-

cluding different SGs (pioneers, mid- and late-successional

species), tree sizes and with a broader range of architec-

tures than old-growth forests (Chambers et al., 2009; Marra

et al., 2014; Ribeiro et al., 2014). Once floristic composi-

tion changes and structural gradients increase to this extent,

allometry becomes more complex and reliable landscape-

level biomass estimates rely on well-designed and well-

tested generic biomass models.

We report here a novel data set of 727 trees harvested in a

contiguous terra firme forest near Manaus, Brazil. This data

set includes biomass measurements from 101 genera and at

least 135 tree species that vary in architecture and are from

different SGs (pioneers, mid- and late successional). These

trees span a wide range of DBH (from 5 to 85 cm), H (from

3.9 to 34.5 m) and WD (from 0.348 to 1.000 g cm−3). We

used this data set to parameterize generic AGB estimation

models for central Amazonian terra firme forests applicable

across species and a wide range of structural and composi-

tional variation (i.e., secondary forests), using various sub-

sets of the available predictors; i.e., size (DBH and H), SGs

and WD.

We next evaluated our models, as well as the pantropical

model from Chave et al. (2014) at the landscape level using

a virtual approach. We created scenarios of simulated 100

1 ha forest plots by assembling subsets of the 727 known-

biomass trees in our data set. These scenarios were designed

to span gradients in (1) floristic composition, by assembling

stands with specific proportions of pioneer, mid- and late-

successional species, and (2) size distributions of trees. We

compared the known biomass of these forest assemblage sce-

narios to predictions based on the generic models, with the

goal of answering the following questions.

1. Which variance modeling approach and combinations

of predictors produced the best individual tree biomass

estimation model?

2. Which model most reliably predicted AGB at landscape

level, i.e., across successional gradients?

We expected that the best model, the one reducing both mean

deviation and error of single and landscape-level biomass

prediction, would require species-specific variables as well

as an additional parameter allowing the modeling of het-

eroscedastic variance. Our approach and the independence

of our data set allowed us to evaluate whether it is still im-

portant to build local/regional models or whether available

pantropical/global models are suitable for landscape biomass

assessments – under the assumption that they predict biomass

satisfactorily over all sorts of tropical forest types and succes-

sional stages.

2 Material and methods

2.1 Study site

Our study site is located at the Estação Experimental de Silvi-

cultura Tropical (EEST), a 21 000 ha research reserve (Fig. 1)

managed by the Laboratório de Manejo Florestal (LMF) of

the Brazilian Institute for Amazon Research (INPA), Man-

aus, Amazonas, Brazil (2◦56′ S, 60◦26′W). Averaged annual

temperature in Manaus was 26.7 ◦C for the 1910–1983 pe-

riod (Chambers et al., 2004). Averaged annual precipitation

ca. 50 km east of our study site was 2610 mm for the 1980–

2000 period (da Silva et al., 2003) with annual peaks of up

to 3450 mm (da Silva et al., 2002). From July to September

there is a distinct dry season with usually less than 100 mm

of rain per month. Topography is undulating with elevation

ranging from ca. 50 to 140 m a.s.l. Soils on upland plateaus

and the upper portions of slopes have high clay content (Ox-

isols), while soils on slope bottoms and valleys have high

sand content (Spodosols) and are subject to seasonal flood-

ing (Telles et al., 2003). In contrast to floodplains (i.e., igapó

and várzea) associated with large Amazonian rivers (e.g., Rio

Negro and Rio Amazonas), valleys associated with streams

and low-order rivers can be affected by local rain events and

thus have a polymodal and unpredictable flood-pulse pattern

with many short and sporadic inundations mainly during the

rainy season (Junk et al., 2011).

The EEST is mainly covered by a contiguous closed

canopy old-growth terra firme forest with high tree species

diversity and dense understory (Braga, 1979; Marra et al.,

2014). The terra firme forests are among the predominant

forest types in the Brazilian Amazon (Braga, 1979; Higuchi

et al., 2004) and ca. 93 % of the total plant biomass is

stored in trees with DBH≥ 5 cm (Lima et al., 2012; da Silva,

2007). The tree density (DBH ≥10 cm) in the EEST is 593±

28 trees ha−1 (mean± 99 % confidence interval) (Marra et

al., 2014). Trees larger than 100 cm in DBH are rare (< 1 in-

dividual ha−1) and those with DBH > 60 cm accounted for

only 16.7 % of the AGB (Vieira et al., 2004). In the study

region, tree mortality rates can be influenced by variations in

topography (Marra et al., 2014; Toledo et al., 2012). Floristic

composition and species demography can also vary with the

vertical distance from drainage (Schietti et al., 2013).

2.2 Allometric data

We used data from 727 trees harvested in this region (dos

Santos, 1996; da Silva, 2007), each with measured biomass

and predictor variables. This data set comprised 101 genera

and at least 135 species with DBH≥ 5.0 cm (Table 1; all data
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Figure 1. Study site of terra firme forest near Manaus, Amazonas,

Brazil.

are given in Table S1 in the Supplement). The trees were

harvested through the plot-based harvest method in an old-

growth forest and in two contiguous secondary forests (14-

year-old regrowth following slash and burn and 23-year-old

regrowth following a clear cut) (Fig. 1). Rather than an indi-

vidual selection, our plot-based method relies on the harvest-

ing of all trees found in selected plots. This method allows for

a valid/faithful representation of the DBH distribution of the

target forests and a landscape validation of the fitted models

(Higuchi et al., 1998; Lima et al., 2012).

Before selecting plots, we surveyed both the old-growth

and secondary forests to assure that no strong differences in

structure and floristic composition existed and that the se-

lected patches were representative of our different succes-

sional stages. In the old-growth forest the trees were har-

vested in eight plateau and three valley plots (10 m× 10 m)

randomly selected within an area of 3.6 ha (da Silva, 2007).

In each of the secondary forests the trees were harvested in

five plots (20 m× 20 m), each randomly selected within a

1 ha plateau area (dos Santos, 1996; da Silva, 2007). By in-

cluding trees from secondary forests we were able to increase

the variation in floristic composition and consequently the

range of species-related variation in architecture and allome-

try (Table 1 and Table S1). Since our secondary forests were

inserted in the contiguous matrix from which old-growth

plots were sampled, we also controlled for the effects of im-

portant drivers of tree allometry and architecture, such as

variations in environmental conditions (e.g., soil, precipita-

tion rates and distribution), forest structure and wood density

(Banin et al., 2012); the last is intrinsically related to varia-

tion in floristic composition.

Table 1. Summary of the data set applied in this study. Trees were

harvested in the Estação Experimental de Silvicultura Tropical,

a contiguous terra firme forest reserve near Manaus, Amazonas,

Brazil.

Variables Old-growth Secondary forest Secondary forest

forest (23 years old) (14 years old)

NT 131 346 250

SR 82 63 51

DBH 5.0–85.0 5.0–37.2 5.0–33.1

H 5.9–34.5 3.9–27.0 9.0–15.5

WD 0.348–0.940 0.389–1.000 0.395–1.000

AGB 8.3–7509.1 5.4–1690.2 7.5–1562.8

Variables: number of trees (NT), species richness (SR), diameter at breast height

(DBH) (cm), tree total height (H) (m), wood density (WD) (g cm−3) and

aboveground biomass (AGB) (dry mass in kilograms).

Trees were harvested at ground level. For each tree, the

DBH (cm), H (m) and fresh mass (kg) were recorded in the

field by using a diameter tape, a meter tape and a mechani-

cal metal scale (300 kg× 200 g), respectively. The DBH was

measured before, while H was measured after harvesting.

For trees with buttresses or irregular trunk shape, the di-

ameter was measured above these parts. Each tree compo-

nent (i.e., stem, branches and leaves) was weighted sepa-

rately. For large trees, stems were cut into smaller sections

before weighing. The mass of sawdust was collected and

weighted together with its respective stem section. Leaves

and reproductive material, when available, were collected to

allow species identification accordingly to the APGIII sys-

tem (Stevens, 2012). Botanical samples were incorporated

in the EEST collection. The water content for each tree was

determined from three discs (2–5 cm in thickness), collected

from the top, middle and bottom of the bole, and samples (ca.

2 kg) of small branches and leaves. The samples were oven

dried at 65 ◦C to constant dry mass. The dry mass data were

calculated by using the corresponding water content of each

component (Lima et al., 2012; da Silva, 2007). Dry mass for

each tree was used for subsequent model fits and compar-

isons.

2.3 Species’ architecture attributes

Each of our tree species or genera was assigned to one of

three SGs known to vary in their architecture, namely pi-

oneer, mid- and late-successional groups. To make this as-

signment, we considered several attributes related to species’

architecture (i.e., shape and life history), growth position

(i.e., stratum), morphology, wood density and ecology (Ta-

ble S1 and Table S2). We validated this approach by check-

ing our assignments against those of classic studies (Clark

and Clark, 1992; Denslow, 1980; Saldarriaga et al., 1998;

Shugart and West, 1980; Swaine and Whitmore, 1988), lo-

cal/regional studies conducted in the Amazon (Amaral et al.,

2009; Chambers et al., 2009; Kammesheidt, 2000; Marra
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et al., 2014) and species descriptions available in the Mis-

souri Botanical Garden (http://www.tropicos.org), species-

Link (http://www.splink.cria.org.br) and Lista de Espécies da

Flora do Brasil (http://www.floradobrasil.jbrj.gov.br/). More

importantly, we considered empirical field observations, ar-

chitectural information from our data set and data for species

presence/absence from a network of permanent plots repre-

senting a wide range of successional stages in central Ama-

zon (Table S2). This network includes plots in old-growth

forests (LMF unpublished data (census from 1996 to 2012);

da Silva et al., 2002), secondary forests (Carvalho Jr. et al.,

1995; dos Santos, 1996), and small and large canopy gaps (≥

ca. 2000 m2) created by windthrows that are 4, 7, 14, 17, 24

and 27 years old (LMF unpublished data; Marra et al., 2014).

Since reported WD values for the same species or gen-

era can vary strongly among different studies (Chave et al.,

2006) and sites (Muller-Landau, 2004), we compiled WD

values mainly from studies carried out in the Brazilian Ama-

zon (Chave et al., 2009; Fearnside, 1997; Laurance et al.,

2006; Nogueira et al., 2005, 2007). For species where WD

data were not available for the Brazilian Amazon, we con-

sidered studies from other Amazonian regions (Chave et al.,

2009). For species where no published WD was available,

or where the identification was carried out to the genus level

(63 in total), we used the mean value for all species from

the same genus occurring in central Amazon. For trees iden-

tified only to the family level (seven in total), we used the

mean value of genera from that family excluding those not

reported in the study region (Table S1).

2.4 Statistical analyses

2.4.1 Individual tree biomass estimation model fits

The AGB estimation models we applied varied in the num-

ber and combination of our predictor variables (eight combi-

nations/series) as well as the strategy of modeling the vari-

ance (three model types – see below), yielding a set of

24 candidate models (Table 2). We used DBH (cm), WD

(g cm−3) and H (m) as predictors. Furthermore, we used the

species’ SG assignment as a “categorical predictor” (factor 1

is pioneer, 2 is mid-successional and 3 is late-successional

species), thereby representing functional diversity along a

main axis of tree successional strategies, functional and ar-

chitectural variation. Depending on the model-type parame-

ters, the continuous variables were allowed to vary for cap-

turing the successional aspects of functional diversity. We

consider the SG grouping factor as integral part of the model.

Fitting all SGs in one model in an Markov chain Monte Carlo

context is different than fitting separate models because the

joint model also absorbs the covariance structure of the pa-

rameters across groups, especially in models where not all

parameters are allowed to vary among SGs.

We tested variables for collinearity by calculating the vari-

ance inflation factor (VIF). A conservative VIF > 2.0 in-

dicates significant collinearity among variables (Graham,

2003; Petraitis et al., 1996). Model series 1–4 had VIF < 1.5

(Table 2), which indicated no significant collinearity among

predictors. For model series 5–8, we found VIF > 2.0 for

DBH andH , which indicates significant collinearity between

these two variables. This pattern was previously reported

for other data sets from Amazon and other tropical regions

(Lima et al., 2012; Ribeiro et al., 2014; Sileshi, 2014).

We fit models representing the eight different predictor

combinations to our entire data set of 727 trees using three

variance modeling approaches: nonlinear least square (NLS),

ordinary least square with log-linear regression (OLS) and a

nonlinear approach in which we modeled the heteroscedastic

variance of the data set (MOV). In the MOV approach we

modeled the variance as a function of DBH with a normally

distributed residual error:

εi =N
(
ŷi, σi

)
, (1)

where i is the subscript for individuals (i = 1, ..., n) and σi is

modeled with a heteroscedastic variance according to

σi = ci ·DBH
c2

i . (2)

Model series 1 (M11, M12 and M13) used DBH as the sole

predictor (Table 2). For model series 2 (M21, M22 and M23),

we allowed the b regression parameters and c heteroscedas-

tic variance to vary according to the SG assignment (1, 2

or 3). This approach allowed us to account for differences

among the SGs without splitting the data set into three differ-

ent groups. This method has increased analytical power and

allowed us to assess the relationships between tree allometry

and architecture.

For model series 3 (M31, M32 and M33), we ignored the

SG assignment but introduced WD (which did not correlate

strongly with SG). For model series 4 (M41, M42 and M43)

we allowed each SG to have its own wood density effect. For

model series 5 and 6, we replaced the WD with H . In model

series 5 (M51, M52 and M53), we restricted the SG variation

of b and c, while in series 6 (M61, M62 and M63) we allowed

these parameters to vary according to SG. For model series

7 (M71, M72 and M73), we combined DBH, H and WD

but restricted the SG variation of b and c. Finally, for model

series 8 (M81, M82 and M83), we combined DBH, H and

WD and allowed b and c to vary with SG (Table 2).

In contrast to prior approaches, we did not test mod-

els based on compound (e.g., log[AGB] ∼ log[b1] +

b2[logDBH2HWD]) or quadratic/cubic derivatives (e.g.,

log[AGB] ∼ log[b1] + b2[logDBH] + b3[logDBH2] +

b4[logDBH3]) (Brown et al., 1989; Chave et al., 2005, 2014;

Ngomanda et al., 2014). These structures would have limited

our ability to include biological variation by defining SG-

specific parameters for DBH, H and WD separately.

We fit the AGB estimation models with non-informative

uniform priors using WinBUGS 1.4.3 (Lunn et al., 2000;

Spiegelhalter et al., 2002). For each model, three chains were

www.biogeosciences.net/13/1553/2016/ Biogeosciences, 13, 1553–1570, 2016
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Table 2. Tested equations for estimating aboveground tree biomass (AGB) in a terra firme forest near Manaus, Amazonas, Brazil.

Series Model Equation Variance VIF

modeling (range)

approach

1 M11 AGB ∼ b1DBHb2 NLS 1

M12 log(AGB) ∼ log(b1) + b2(logDBH) OLS 1

M13 AGB ∼ b1DBHb2 MOV

2 M21 AGB ∼ b1[SG]DBHb2[SG] NLS 1.001

M22 log(AGB) ∼ log(b1[SG]) + b2(logDBH[SG]) OLS 1.005

M23 AGB ∼ b1[SG]DBHb2[SG] MOV

3 M31 AGB ∼ b1DBHb2WDb3 NLS 1.007

M32 log(AGB) ∼ log(b1) + b2(logDBH) + b3(logWD) OLS 1.017

M33 AGB ∼ b1DBHb2WDb3 MOV

4 M41 AGB ∼ b1[SG]DBHb2[SG]WDb3[SG] NLS 1.016–1.468

M42 log(AGB) ∼ log(b1[SG]) + b2(logDBH[SG]) + b3(logWD[SG]) OLS 1.017–1.395

M43 AGB ∼ b1[SG]DBHb2[SG]WDb3[SG] MOV

5 M51 AGB ∼ b1DBHb2H b3 NLS 3.382

M52 log(AGB) ∼ log(b1) + b2(logDBH) + b3(logH ) OLS 3.342

M53 AGB ∼ b1DBHb2H b3 MOV

6 M61 AGB ∼ b1[SG]DBHb2[SG]H b3[SG] NLS 1.019–3.439

M62 log(AGB) ∼ log(b1[SG]) + b2(logDBH[SG]) + b3(logH [SG]) OLS 1.010–3.360

M63 AGB ∼ b1[SG]DBHb2[SG]H b3[SG] MOV

7 M71 AGB ∼ b1DBHb2H b3WDb4 NLS 1.014–3.428

M72 log(AGB) ∼ log(b1) + b2(logDBH) + b3(logH ) + b4(logWD) OLS 1.038–3.469

M73 AGB ∼ b1DBHb2H b3WDb4 MOV

8 M81 AGB ∼ b1[SG]DBHb2[SG]H b3[SG]WDb4[SG] NLS 1.523–3.624

M82 log(AGB) ∼ log(b1[SG]) + b2(logDBH[SG]) + b3(logH [SG]) + b4(logWD[SG]) OLS 1.422–3.547

M83 AGB ∼ b1[SG]DBHb2[SG]H b3[SG]WDb4[SG] MOV

Predictors: diameter at breast height (DBH) (cm), species’ successional group (SG) (pioneers, mid- and late successional), tree total height (H) (m) and wood density (WD)

(g cm−3). Variance modeling approach: nonlinear least square (NLS), ordinary least square with log-linear regression (OLS) and nonlinear with modeled variance (MOV).

Since NLS and MOV rely on the same equation, they have analogue variation inflation factor values (VIF).

run in parallel, and convergence of the posterior distribution

for each parameter was assessed by convergence of the ratio

of pooled to mean within-chain central 80 % intervals to 1 or

by the stability of both intervals (Brooks and Gelman, 1998;

Brooks and Roberts, 1998).

To select the best model we calculated the deviance

information criterion (DIC). The DIC is a generalization

of Akaike’s information criterion and consists of a cross-

validatory term that expresses both the goodness of the fit and

the models’ complexity. The lower the value the higher the

predictive ability and parsimony (Spiegelhalter et al., 2002).

We also checked whether the 95 % credible intervals of the

parameter’s posterior distributions excluded 0. However, we

did not attempt to test the null hypothesis that a particular

parameter is 0 (Bolker et al., 2013; Bolker, 2008). Contrasts

were evaluated by monitoring differences between parame-

ters or predictions based on their posterior distribution. For

communicating the results we consider two parameters sig-

nificantly different if the 95 % credible interval of the poste-

rior distribution of their difference does not include 0.

To allow for comparisons of different model structures and

approaches with the available literature, we calculated the

coefficient of determination (R2), the adjusted coefficient of

determination (R2adj) and the relative standard error (Syx%).

The Syx% was calculated as follows:

Syx% =

(
2s

ŷ
√
N

)
, (3)

where s, ŷ andN are the standard deviation of the regression,

the mean of the focal independent variable and the number

of observations, respectively. As in all allometric data sets

relating linear to volume-proportional data, there is indeed

heteroscedasticity in our data, which restricts the use of the

Syx% for model selection. Nonetheless, this measure is pre-

scribed for assessing models’ uncertainty (IPCC, 2006) and

is commonly used (Chave et al., 2014; Lima et al., 2012;

Ribeiro et al., 2014; Sileshi, 2014).

For the OLS approach including log-transformed vari-

ables, we calculated the Syx% using untransformed data. To

correct for the bias introduced by the log-transformed data, a

correction factor (CF) was calculated as follows:

CF= exp

(
SSE2

2

)
, (4)

where SSE is the standard error of the estimate (Sprugel,

1983).
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Figure 2. Sampling schemes applied to assemble the six forest

scenarios designed to reflect changes in floristic composition and

size distribution of trees, typical of central Amazonian terra firme

forests.

2.5 Landscape-level biomass predictions across

scenarios

To evaluate the models outlined in Table 2, we predicted

AGB at the landscape level for six forest scenarios assembled

by a stratified random selection of individual trees from our

data set of 727 trees. Our scenarios were designed to span

a successional gradient created by natural disturbances in

which the interaction of tree mortality intensity and species

vulnerability and resilience produce complex communities

varying in species composition and size distribution of trees

(Chambers et al., 2009, 2013; Marra et al., 2014). We as-

sembled three scenarios to reflect variations in floristic com-

position and three scenarios to reflect variations in size dis-

tribution. Each scenario was sampled 100 times, resulting

in 100 1 ha plots per scenario with different combination of

trees randomly (with replacement) assembled according to

the scenario-specific design principles.

To address the effect of variations in floristic composition

on estimated AGB, we created scenarios where we varied

the proportion of pioneer, mid- and late-successional species.

The early-successional scenario comprised 50 % from trees

sampled randomly from the species classified as pioneer,

40 % from mid- and 10 % from late-successional species

(as survivors of disturbances). The mid-successional sce-

nario comprised 10 % from trees sampled randomly from

the species classified as pioneer, 70 % from mid- and 20 %

from late-successional species. The late-successional sce-

nario comprised 10 % from trees sampled randomly from

the species classified as pioneer, 40 % from mid- and 50 %

from late-successional species (Fig. 2a and c). We con-

strained our floristic composition scenarios to a stem density

of 1255 trees ha−1 (DBH≥ 5 cm) typical for the old-growth

terra firme forests at the EEST (Lima et al., 2007; Marra et

al., 2014; Suwa et al., 2012).

To address variations in size distribution, we varied the

proportion of small and big trees fixing a threshold value

of 21 cm, which represents the mean DBH (trees with

DBH≥ 10 cm) of our studied forest (Marra et al., 2014). Our

size-distribution scenarios included a small-sized stand, with

90 % from small (DBH < 21 cm) and 10 % from big trees

(DBH≥ 21 cm); a mid-sized stand with equal numbers of

trees smaller and greater than or equal to 21 cm in DBH;

and a large-sized stand, with 10 % small and 90 % big trees

(Fig. 2b and d). As for our floristic composition scenarios, in

order to produce reliable size-distributions, we constrained

our sampling effort to a basal area value of 30.3 m2 ha−1

also typical of our studied old-growth forest (trees with

DBH≥ 5 cm) (Marra et al., 2014; Suwa et al., 2012). Both

our floristic and size-distribution scenarios produced the J -

inverse distribution pattern, typical of tropical forests (Clark

and Clark, 1992; Denslow, 1980).

AGB at the landscape level was determined by adding up

the measured AGB for “sampled” trees in each scenario. To

test how well our biomass estimation models predicted the

AGB at the stand level, we related biases and root-mean-

square error (RMSE). In order to assess the accuracy of dif-

ferent predictions in the context of models’ uncertainty, we

additionally reported the overall performance of the tested

models along all forest scenarios. When doing so, we present

the bias and RMSE in the same unit (Mg), which allow for

assessing the magnitudes of deviations in model predictions

(Gregoire et al., 2016; McRoberts and Westfall, 2014). Be-

cause data on tree height are normally unavailable or esti-

mated imprecisely in Amazonian forest inventories, we fo-

cused on models including only DBH, WD and SG as pre-

dictors (model series 1–4). In addition to the “internal eval-

uation” of our models, we tested the pantropical model from

Chave et al. (2014):

̂logAGB∼−1.803− 0.976E+ 0.976
[
logWD

]
+ 2.673

[
logDBH

]
− 0.0299[logDBH]2, (5)

which was parameterized with data from 4004 trees

(DBH≥ 5 cm) harvested in 53 old-growth and five secondary

forests. This model has DBH, H (estimated from a DBH :H

relationship), WD and a variable E (environmental stress) as

predictors and was suggested for estimating tree AGB in the

absence of height measurements.

We performed all analysis using the R 3.2.1 software plat-

form (R Core Team, 2014). We use the R2WinBUGS (Sturtz

et al., 2005) package for running WinBUGS from R and

the ggplot2 package (Wickham, 2009) for producing figures,

with the exception of Fig. 1, which was produced in the Envi-

ronment for Visualizing Images software (ENVI, ITT Indus-
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Table 3. Statistics of aboveground biomass (AGB) estimation models fit in a terra firme forest near Manaus, Amazonas, Brazil. See Table 2

for predictors and applied variance modeling approaches and Table A3 for the models’ parameters.

Series Model Dev pD DIC R2 R2adj Syx% CF

1 M11 9694.5 2.919 9697.4 0.894 0.894 3.130

M12 6808.0 2.990 6811.3 0.865 0.865 3.542 1.066

M13 6821.0 3.856 6825.2 0.864 0.864 3.544

2 M21 9216.0 3.773 9219.9 0.946 0.945 2.259

M22 6751.0 6.943 6758.3 0.557 0.540 6.458 1.061

M23 6739.0 10.465 6749.5 0.558 0.554 6.381

3 M31 9291.0 4.052 9294.7 0.949 0.939 2.373

M32 6683.0 4.062 6687.0 0.885 0.884 3.280 1.056

M33 6698.0 4.918 6702.5 0.865 0.865 3.527

4 M41 9057.0 2.303 9059.8 0.957 0.956 2.030

M42 6657.0 10.006 6667.5 0.701 0.699 5.215 1.054

M43 6649.0 13.059 6661.6 0.701 0.699 5.239

5 M51 9479.0 0.023 9479.3 0.921 0.921 2.702

M52 6680.0 4.017 6684.3 0.899 0.898 3.060 1.055

M53 6720.0 4.674 6724.7 0.897 0.896 3.103

6 M61 9183.9 −71.746 9112.2 0.948 0.947 2.214

M62 6614.0 10.078 6624.1 0.754 0.750 4.845 1.050

M63 6631.0 11.754 6642.9 0.740 0.737 4.896

7 M71 8998.0 0.951 8999.1 0.959 0.959 1.942

M72 6570.0 5.023 6574.9 0.934 0.933 2.480 1.047

M73 6610.0 5.697 6615.4 0.922 0.920 2.707

8 M81 8812.0 −42.073 8770.3 0.968 0.967 1.719

M82 6548.0 13.031 6561.3 0.811 0.804 4.200 1.046

M83 6566.0 13.778 6580.0 0.801 0.800 4.262

Parameters: models’ deviance (Dev), effective number of parameters (pD), deviance information criterion (DIC),

coefficient of determination (R2), adjusted coefficient of determination (R2adj), relative standard error (Syx%)

and correction factor (CF) for models fit from ordinary least square with log-linear regressions.

tries, Inc, Boulder CO, USA). All codes used in this study

were written by the authors.

3 Results

3.1 Individual tree biomass estimation model fits

Although the NLS approach produced models with overall

higher values of R2 and R2adj and lower values of Syx%,

the DIC values indicated that the MOV and the OLS ap-

proaches produced the best models. The models M33 (DBH

and WD as predictors) and M43 (DBH, SG and WD) were

the two best fitting models across all tree individuals (high

R2 and R2adj and low Syx% and DIC values compared to

other models). These two models also produced more reli-

able landscape predictions (see Sect. 3.2). The statistics for

the goodness of fit for the 24 models are given in Table 3.

For the models fit with OLS, which rely on log-transformed

variables, the addition of other predictors together with DBH

systematically decreased the CF values. This pattern suggests

a reduction in the biases resulting from back transformation.

As expected, the addition of other predictors to a model

containing only DBH systematically increased the models’

parsimony, as indicated by the lower DIC values (Table 3).

The inclusion of the SG assignment resulted in models with

slightly lower R2adj and higher Syx% compared to the same

model structure without SG.

We observed differences with respect to the parameters

b and c among pioneer, mid- and late-successional species

in most of the models that included the SG assignment (Ta-

ble S3 and Fig. S1). The late-successional species tended to

have higher intercepts and steeper slopes. Pioneer and mid-

successional species had lower differences in intercepts but

still strong differences in the slopes.

Evaluations of AGB predictions for individual trees from

our two best models (as described in the Sect. 3.2) as well

from the pantropical model (Chave et al., 2014) are presented

in the Supplement of this study (Fig. S1). The models M33

and M43 had lower biases (overestimation of 0.6 and 3.5 %,

respectively) than the tested pantropical model (underestima-

tion of 30 %).

3.2 Landscape-level biomass predictions across

scenarios

To search for the model that best predicts AGB at the land-

scape level, we tested our models (excluding those withH as
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Figure 3. Predicted vs. observed aboveground biomass (AGB) along six forest scenarios composed of 100 1 ha plots. The line of equality

(1 : 1 line) is shown as a red/straight line. Forest scenarios were designed to reflect landscape-level variations in floristic composition and

size distribution of trees, typical of central Amazonian terra firme forests. Floristic composition and size-distribution scenarios followed

the sampling scheme described in Sect. 2.4.2 (Fig. 2) of this study. Models’ predictors: diameter at breast height (DBH) (cm), species’

successional group (SG) (pioneers, mid- and late successional) and wood density (WD) (g cm−3). See Table 2 for the variance modeling

approach of different equations. Note that models containing tree total height (H) as predictor were excluded here.

a predictor; Table 2) across the 100 1 ha plots assembled for

each of our six forest scenarios (Figs. 3–5) as well as jointly

for all of them (Fig. 6).

The “true” AGB in our 1 ha plots (from the summed mass

of trees used to assemble the forest scenarios) varied from

198.1 to 314.3 (early- to late-successional scenarios) and

101.4 to 391.8 Mg ha−1 (small- to large-sized scenarios).

The ability of the various biomass estimation models to pre-

dict the “true” virtual biomass values generally reflected the

goodness of fit of the models for predicting individual tree

data (Table 3 and Figs. 3–6). The same pattern was observed

when evaluating the tested pantropical model, which under-

estimated both the AGB of individual trees (Fig. S1) and in

all of our scenarios (Table S4 and Fig. S2).

While some models produced accurate and satisfactory

predictions across all scenarios, others systematically under-

or overestimated the observed AGB (Fig. 3 and Fig. S2). The

agreement between models and observations was influenced

not only by the different combinations of predictors but also

by the different methods to model the variance. Interestingly,

despite producing the best fits to the individual tree data,

models fit with NLS produced the least reliable landscape-

level predictions, with model M11 (only DBH as predictor)

being the unique exception for the mid- and late-successional

scenarios (Fig. 3).

We observed systematic biases ranging from −14 %

(underestimation) to 38.8 % (overestimation) in estimated

landscape-level AGB (Fig. 4). The models fit with NLS

tended to overestimate landscape-level AGB, with biases

ranging from −3.6 up to 38.8 %, both extreme values from

model series 1 (only DBH as predictor). Overall, the mod-

els fit with NLS tended to capture changes in floristic com-

position better than in tree size distribution. The tested

pantropical model systematically underestimated landscape-

level biomass, with a mean bias of −29.7 % (Table S4 and

Fig. S2).

The models fit with the OLS and particularly with the

MOV approaches were clearly more efficient at capturing

the variation in floristic composition and size distribution of

trees. Consequently, these models produced the most reliable

landscape-level predictions within the scenarios (Fig. 3). As

also indicated by the individual tree model fits, the MOV ap-

proach produced more reliable AGB predictions, especially

with model series 2 and 4.

In general, the models fit with the OLS and MOV ap-

proaches did not show systematic trends in under- or over-

estimation. The models fit with the OLS approach had biases

ranging from −13.8 to 11.1 %, with extreme values from

model series 1 and 2, respectively. The models fit with the

MOV approach had biases ranging from −14 to 10.5 %, also
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Figure 4. Profiles relating the bias of 12 aboveground tree biomass

estimation models tested along six forest scenarios composed of

100 1 ha plots. Forest scenarios were designed to reflect landscape-

level variations in floristic composition and size distribution of

trees, typical of central Amazonian terra firme forests. Models’

predictors: diameter at breast height (DBH) (cm), species’ succes-

sional group (SG) (pioneers, mid- and late successional) and wood

density (WD) (g cm−3). Variance modeling approaches: nonlinear

least square (NLS), ordinary least square with log-linear regression

(OLS) and nonlinear with modeled variance (MOV). Note that mod-

els containing tree total height (H ) as predictor were excluded here.

with extreme values from model series 1 and 2, respectively

(Fig. 4).

The reported systematic biases led to strong differences

between the predicted and the observed AGB (Fig. 5). The

models fit with NLS resulted in RMSE values ranging from

16.8 up to 125.8 Mg ha−1. For the models fit with OLS,

the RMSE values ranged from 5.1 to 57.6 Mg ha−1. The

MOV models had RMSE ranging from 5.5 to 58.7 Mg ha−1.

The pantropical model’s predictions had a mean RMSE of

102.6 Mg ha−1 (Table S4).

By combining the bias and RMSE values, we could ob-

serve the overall models’ performance in predicting AGB

across scenarios (Fig. 6). When challenged to predict

biomass across all scenarios, the models fit with the MOV

approach produced more reliable predictions (smaller range

of biases and RMSE), except for model series 1 (only DBH

as a predictor), for which the OLS approach performed bet-

ter. Independently of applied predictors, the NLS approach

had the highest mean and range of values for bias and RMSE.
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Figure 5. Profiles relating the root-mean-square error of 12 above-

ground tree biomass estimation models tested along six forest sce-

narios composed of 100 1 ha plots. Forest scenarios were designed

to reflect landscape-level variations in floristic composition and

size distribution of trees, typical of central Amazonian terra firme

forests. Models’ predictors: diameter at breast height (DBH) (cm),

species’ successional group (SG) (pioneers, mid- and late succes-

sional) and wood density (WD) (g cm−3). Variance modeling ap-

proaches: nonlinear least square (NLS), ordinary least square with

log-linear regression (OLS) and nonlinear with modeled variance

(MOV). Note that models containing tree total height (H ) as pre-

dictor were excluded here.

As we expected, the addition of SG and WD improved the

quality of the joint prediction. This was evidenced by the sys-

tematic reduction of models’ bias and RMSE. Notably for the

NLS approach, the inclusion of SG led to strong reduction of

the bias and RMSE (Fig. 6). Interestingly, for this approach

the addition of WD alone did not improve the estimations

accuracy.

4 Discussion

4.1 Individual tree biomass estimation model fits

The best-performing allometry model structures for predict-

ing the biomass of individual trees included species-specific

predictors and either the OLS or MOV fitting approaches

(Fig. 3, Fig. 6 and Table S3). As we hypothesized, includ-

ing both the SG and WD as predictors greatly increased

the models’ performance. When taken alone, adding either
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Figure 6. Overall performance of 12 aboveground tree estimation models along six forest scenarios composed of 100 1 ha plots. Forest sce-

narios were designed to reflect landscape-level variations in floristic composition and size distribution of trees, typical of central Amazonian

terra firme forests. Models are rated by the absolute mean bias and root-mean-square error (RMSE), both in Mg. Solid points and bars rep-

resent absolute mean and range values, respectively. Models’ predictors: diameter at breast height (DBH) (cm), species’ successional group

(SG) (pioneers, mid- and late successional) and wood density (WD) (g cm−3). Variance modeling approaches: nonlinear least square (NLS),

ordinary least square with log-linear regression (OLS) and nonlinear with modeled variance (MOV). Note that models containing tree total

height (H ) as predictor were excluded here.

of these two predictors to the basic DBH model yielded a

more consistent model than adding H (Table S3). This pat-

tern was true for all the three variance modeling approaches

and supports having the species’ identification (i.e., further

assignment into SGs) and/or coherent wood density values,

which is crucial when aiming for precise tree AGB predic-

tions. Since old-growth forests comprise a mosaic of differ-

ent successional stages, with trees of various architectures

and sorted into different forest layers/strata, these variables

are especially important when aiming for reliable AGB pre-

dictions at the landscape level (see Sect. 4.2).

Although the NLS approach fits our data set better (higher

R2adj and lower Syx%), the assumption of a constant vari-

ance violates the natural heteroscedasticity of allometric data

sets. With the log transformation of the OLS approach, ho-

moscedasticity is reached but in a way that does not exactly

reflect how variance actually changes. As previously reported

for Amazon terra firme forests (Chambers et al., 2001; Lima

et al., 2012), models fit with the OLS approach tend to over-

estimate the biomass of large-sized trees.

Indeed, the best models are obtained using the MOV and

OLS approaches, in which we explicitly modeled variance

depending on the main predictor (DBH). This explains why

the models fit with these approaches produced more reliable

(i.e., smaller differences between predictions and observa-

tions) AGB estimates as compared to those fit with the NLS

approach. The NLS approach is still frequently found in the

literature (Sileshi, 2014), despite the fact that assuming con-

stant variance is not an appropriate choice for allometric data

sets. We included the latter approach mainly for illustrative

purposes.

Despite the highly heterogeneous nature of our data set

(Table 1 and Table S1), DBH alone still captures a large frac-

tion of the variation in AGB. This could be confirmed by

lower Syx% values within model series 1 in comparison to

the other model series (Table 2). This result illustrates that

ignoring selection criteria that capture a model’s capacity to

make predictions for new predictor combinations (e.g., dif-

ferent region or successional stage), such as the DIC or our

landscape-level evaluation (see Sect. 4.2), can lead to the

wrong choice. The basic models containing only DBH had

a higher DIC in comparison to other model series and con-

sequently did poorly in predicting the AGB of our different

landscape scenarios (Fig. 6).

Our data set contains a large number of species, which

allowed for the maximum expression of architectural at-

tributes. In comparison to species-specific biomass estima-

tion models (Nelson et al., 1999) or models fit from data

collected in undisturbed and homogenous forests (Higuchi

et al., 1998; Lima et al., 2012), we expected the addition of

predictors reflecting architectural and anatomical variation to

improve model parsimony. This pattern was observed when

adding both SG and WD (Fig. 6 and Table S3).

The differences related to the parameters b and c we found

among our successional groups highlighted the importance

of using SG as a predictor of the architectural attributes

that influence allometry, especially in disturbed or secondary

forests where WD is not available (Table S3). In the mod-

els containing SG, the significant variation of the parame-

ters b and c between pioneers, mid- and late-successional

species highlights the importance of architectural attributes

on defining allometries (Nelson et al., 1999). Often, these

differences were neglected in previous studies that dealt

with heterogeneous data sets and aimed at parameterizing

global/pantropical biomass estimation models.

Interestingly, when compared to our two best models, the

tested pantropical model from Chave et al. (2014) produced

the largest bias (overestimation) for individual tree biomass

prediction (Fig. S1 and Sect. 3.1). As previously mentioned,

underestimation was also reported when applying the Chave

et al. (2005) biomass estimation model in Atlantic Forest

stands in Brazil (Nogueira Jr. et al., 2014). For our study,
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we attribute part of this pattern to strong differences in forest

structure and tree allometry/architecture between our central

Amazon data set and that used to parameterize the pantropi-

cal model from Chave et al. (2014). Although the DBH and

H range of the trees used in our study is well represented by

the pantropical data set, the two data sets vary strongly with

respect to the DBH and H distribution of trees (Fig. S3).

Our data set clearly has a much higher density of small-

sized trees and a much lower density of large-sized trees. The

pantropical data set comprises ca. 8 % (n= 329) of trees with

DBH≥ 60 cm and mean H of 39.3 m (and even a tree with

212 cm DBH and another one with 70.7 m H). Interestingly,

none of these 329 large-sized trees were found in terra firme

forests in the region of Manaus. Note that the largest tree in

our data set has 85 cm DBH and 33 m H (Table 1 and Ta-

ble S1) and, as previously reported, trees with DBH≥ 60 cm

account for less than 17 % of the total AGB in central Ama-

zonian terra firme forests (Vieira et al., 2004). Thus the struc-

ture and biomass of these central Amazonian forests is not

well predicted from the “improved” pantropical biomass es-

timation model from Chave et al., 2014.

Observed differences on the relationship between predic-

tor variables (DBH and WD) and AGB of trees from our data

set and that used in the pantropical model highlight part of

the variation in tree allometry and architecture that was not

represented in the pantropical data set (Fig. S4). As for the

differences in forest structure, these differences in tree al-

lometry and architecture reflect typical differences in species

composition among successional stages (Clark and Clark,

1992; Denslow, 1980; Marra et al., 2014). By including our

two secondary forests, we added a greater proportion of al-

lometric variation in our models compared to the Chave et

al. (2014) data set (Fig. S5). Our results indicate that neglect-

ing variations in tree allometry and architecture related to

floristic composition can lead to strong bias when predicting

individual tree AGB, especially when complex old-growth

and secondary forests (Asner, 2013; Chambers et al., 2013;

Norden et al., 2015) are not accounted for in the model pa-

rameterization.

4.2 Landscape-level biomass predictions across

scenarios

The different combinations of floristic composition and

structure (i.e., tree density and basal area) used in our virtual

approach reflected forest changes along succession (Cham-

bers et al., 2009; Marra et al., 2014; Norden et al., 2015), in-

cluding realistic variations in AGB reported for central Ama-

zon stands differing in successional stage (from early succes-

sional to old growth) (Carvalho Jr. et al., 1995; Higuchi et

al., 2004; Lima et al., 2007). When taking into account the

accuracy of landscape-level predictions across scenarios, the

best models were those fit by using the MOV and the OLS

approaches. From the MOV approach, the models M33, M43

and M23 were the first, second and third best models, respec-

tively (Fig. 6).

Modeling the variance properly as in the MOV approach

is particularly important when both small and large trees –

at the respective endpoints of the size predictors DBH and

H – are to be estimated precisely. Assuming homoscedas-

tic variance in allometric data gives a stronger weight to the

information of large trees (which have large residuals) and

reduces the “strength” of the small trees (with small residu-

als) on the estimation of the parameters. This almost invari-

ably leads to models that overestimate the biomass of small

trees (i.e., large trees pulling the “line” upwards). This effect

can be clearly seen in Fig. 4 where the NLS models dramat-

ically overestimated the biomass, particularly in the small-

sized and the early-successional scenario. The OLS approach

tends to produce the opposite effect. The log transformation

shrinks the size of the residuals of the large-sized trees and

inflates it for the small-sized trees. The influence of positive

residuals or large-sized trees that often have a strong lever is

reduced, and the lever of very small trees is increased. This

may (although not as extremely as in the NLS case) lead to

an underestimation of the biomass of big trees. A slight ten-

dency of this effect is also visible in Fig. 4 when the OLS

and MOV models are compared in the model series 2 and

3. The model evaluation with our virtual forests thus clearly

illustrates that a balanced modeling of the variance, i.e., giv-

ing the small and large trees equal weight, is very important

when (1) the design matrices are very heterogeneous or un-

balanced with respect to size and when (2) predictions are

made at landscape level across stands that vary in the mean

size/shape of trees.

Models containing only size predictors (such as DBH) are

particularly sensitive to this problem. Including SG and WD

as predictors captured part of the interspecific variation in

architecture and anatomy and partly alleviated the above-

mentioned problems of the NLS and OLS models. Thus, al-

though a simple allometric model (e.g., AGB∼ b1DBHb2)

can accurately describe the DBH : AGB relationship at the

individual level (Table 3 and Table S3), our results demon-

strate that reliable estimates of biomass in heterogeneous

landscapes (i.e., mixtures of successional stages and tree

sizes) requires correct modeling of the size-related variance

(Sileshi, 2014; Todeschini et al., 2004) and including suitable

predictors of species-specific attributes reflecting ecological,

architectural and anatomical variation.

Our model evaluation using “virtual forests” was used

to test what level of model complexity and appropriateness

of variance modeling is needed to avoid “distortions” and

make satisfying predictions at the fringes of our predictor

space. This approach also allowed us to assess the magni-

tude of RMSE in model predictions in relation to the bias

of these predictions. Our best performance models produced

predictions with RMSE similar (i.e., M33, M43, and M23)

to the bias associated to these prediction, which indicates

that model deviations can be attributed to random variation
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and possibly be ignored (Gregoire et al., 2016; McRoberts

and Westfall, 2014). However, since we constructed the for-

est scenarios with trees from our data set, this is an “in-

ternal evaluation” and not a test of model behavior in the

face of new predictor combinations. Furthermore, we used

DIC as parsimony-based model selection criterion, which

was designed to exactly approximate this capacity and typ-

ically yields similar results as cross-validation (Wirth et al.,

2004). The DIC is therefore particularly important for judg-

ing the quality of the model, especially for application in

other regions or for other species. Unlike the virtual forest

approach, where the DBH + WD with modeled variance

(M33) appeared to be the best model (lowest bias and RMSE

at the same time) (Fig. 6), the DIC invariably requires the full

model complexity irrespective of whetherH is considered or

not (Table 3).

As reported in other studies (Alvarez et al., 2012; Lima et

al., 2012; Ngomanda et al., 2014; Nogueira Jr. et al., 2014),

using the pantropical biomass estimation model by Chave et

al. (2014) for landscape-level predictions led to strong bi-

ases in the case of our central Amazonian forest scenarios.

Thus, our recommendation is not to assume that their model

is equally applicable across all tropical forests, especially for

secondary or hyperdiverse tropical forests. In this context,

we alert researches and managers about the importance of

applying local or regional generic models when estimating

biomass and the importance of species composition informa-

tion in plot studies.

4.3 Suitability of the chosen predictors for practical

application

As we have seen, predicting biomass correctly at the land-

scape level and in particular improving performance at the

fringes or outside the predictor space requires the inclusion

of predictors related to species architecture (DBH in com-

bination with H (when available), WD and/or SG). Knowl-

edge of these last two variables depends on the identification

of species, further assignment into successional groups and

measurement or compilation of species-specific WD values.

For the purposes of our study, these variables were success-

fully addressed.

However, we understand that reliable biomass estimation

models also require variables that can be easily and confi-

dently acquired or measured. As we discuss below, this is not

the case for the species identification, H and, consequently,

in many cases for WD and SG.

The tree species diversity in the Amazon is high (de

Oliveira and Mori, 1999; ter Steege et al., 2013). Species

identification requires extensive field work (i.e., collection of

botanical samples) and joint effort of parabotanists, botanists

and taxonomists. In many cases, this task might pose a major

problem.

For WD, values can vary widely not only between species

(Chave et al., 2006) – which we exploit in our modeling ap-

proach – but also between different sites/regions (Muller-

Landau, 2004), within individuals of the same species or

even in an individual tree (density varying along the tree

bole) (Higuchi et al., 1998; Nogueira et al., 2005). Ide-

ally, WD measures should be carried out in situ follow-

ing a method that allows for sampling both heart- and sap-

wood. Measuring WD from nonrepresentative samples and

applying measures from studies in which samples were

oven dried at different temperatures can produce compli-

cation. At temperatures below 100 ◦C, the wood bound

water content cannot be removed (Williamson and Wie-

mann, 2010). This requires improvement of available meth-

ods and tools (e.g., resistography, X-ray, ultrasonic tomog-

raphy, near-infrared spectroscopy, acoustic/ultrasonic wave

propagation and high-frequency densitometry) (Isik and Li,

2003; Lin et al., 2008; Schinker et al., 2003) that in the future

may allow the measurement of WD in live trees from hyper-

diverse tropical forests (thousands of species). However, the

acquisition of WD data is still expensive and is not easily

conducted simultaneously with forest inventories.

In the Amazon, information on WD is not available at the

species level for most regions, and the available WD data

have been acquired using a wide range of methods. Thus,

the compilation of WD data from different sources without

filtering criteria may introduce an unpredictable source of er-

ror. As a result, researchers and managers need to establish

robust criteria and test whether including WD information

compiled from the available literature can really increase the

quality of biomass predictions (as shown in our study). These

limitations become critical when adjusting biomass estima-

tion models both from small or even large/combined data sets

collected without a plot-based harvest method that allows for

a landscape-level evaluation of models derived using indi-

vidual trees (Carvalho Jr. et al., 1995; Higuchi et al., 1998;

Lima et al., 2012; da Silva, 2007). One important result of our

study is that correct assignment of species into successional

groups can satisfactorily replace the use of WD despite the

fact that WD and SG were not trivially correlated (Table 2).

Most of the available biomass estimation models include

H as a predictor. Indeed, we expected the inclusion of H to

substantially improve our individual tree fits and landscape-

level predictions. Although H is a powerful predictor of

AGB, because together with DBH it defines the slender-

ness of trees and also indicates the lifetime light availabil-

ity (suppressed trees with typically short crowns have a high

H : DBH ratio), acquiring these data is still costly and diffi-

cult in tall and complex tropical forest canopies. As a con-

sequence, H is often measured imprecisely or not at all in

most existing forest inventories across the Amazon.H varies

with plant ontogeny and can be affected by environmen-

tal and neighbor effects (Henry and Aarssen, 1999; Sterck

and Bongers, 1998). Consequently, the error of AGB esti-

mates can increase when applying H values estimated from

regional or global models (Feldpausch et al., 2011, 2012;

Hunter et al., 2013; Santos Jr. et al., 2006). As observed in
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our (Table 2) and other data sets (Sileshi, 2014), the high

collinearity between DBH and H can distort coefficient val-

ues, inflate standard errors and lead to unreliable estimates.

The increased availability of new tools such as Lidar can im-

prove the resolution of data on tree height and thus biomass

(Marvin et al., 2014; Sawada et al., 2015), but currently the

areas where such data are available are limited. The cali-

bration of remote-sensing-based biomass models for diverse

tropical forest still relies on the degree of uncertainty associ-

ated to plot-level AGB estimates (Chen et al., 2015).

Despite uncertainties associated with global estimates of

carbon stocks, tropical forests store ca. 25 % of the terrestrial

carbon (Bonan, 2008; Saatchi et al., 2011) and provide re-

sources (e.g., food, fuel, timber and water) essential for hu-

mankind (Trumbore et al., 2015). Nonetheless, old-growth

tropical forests are rapidly changing and degrading due to the

intensification of human activities, gradual climate change

and extreme weather events (FAO, 2010; IPCC, 2014). The

Reducing Emissions from Deforestation and Forest Degra-

dation (REDD+) program from the United Nations Frame-

work Convention on Climate Change (UNFCCC) establishes

rewards for actions that mitigate carbon emission through

prevention of forest loss and degradation. For countries with

large forest cover (e.g., Brazil and other Amazonian coun-

tries), such programs emerge as an economical alternative to

historically more lucrative land uses resulting in forest degra-

dation or suppression. However, we showed that reliable es-

timates of forest biomass are complex to obtain and prone

to large uncertainty. Reliable predictions of biomass/carbon

stocks over large regions of structurally complex and hy-

perdiverse tropical forests such as the Amazon still depend

on the collection of plot-based allometric data and forest in-

ventories including information on species composition, tree

height and wood density, which are often unavailable or esti-

mated imprecisely in most regions.

Natural and anthropogenic tropical secondary forests are

widely distributed and account for ca. 50 % of the global

forest cover (FAO, 2010). Although highly productive and

resilient (Poorter et al., 2016), Neotropical forests can

take unpredictable successional trajectories (Norden et al.,

2015). During forest succession, once floristic composition

changes and structural gradients increase, allometry becomes

more complex and reliable landscape-level biomass esti-

mates may require models that include predictors approxi-

mating species-specific architecture and anatomy. Extra care

should be taken when using biomass estimation models to

assess biomass dynamics (e.g., biomass recovery after distur-

bances). Earlier stages of recovery can have a higher propor-

tion of small trees from pioneers species, which have lower

wood density (Chambers et al., 2009; Marra et al., 2014; Sal-

darriaga et al., 1998) and a particular type of architecture

(Hallé et al., 1978; Swaine and Whitmore, 1988).

We recommend the use of the best models fit in this study

when aiming for reliable landscape AGB estimations for cen-

tral Amazonian terra firme forests, especially those under

complex disturbance regimes and for which specific/local

models are not available. When data on species composition

and wood density are available or could be accurately com-

piled from the literature, we encourage the use of the model

M33 or M23 (MOV approach). In case the MOV approach

cannot be applied for model parameterization (i.e. technical

or computational restrictions), the OLS is presumably more

appropriate and efficient than the NLS.

The Supplement related to this article is available online

at doi:10.5194/bg-13-1553-2016-supplement.
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