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Abstract. In contrast to physical processes, biogeochemical

processes are inherently patchy in the ocean, which affects

both the observational sampling strategy and the representa-

tiveness of sparse measurements in data assimilating mod-

els. In situ observations from multiple glider deployments

are analysed to characterize spatial scales of variability in

both physical and biogeochemical properties, using an em-

pirical statistical model. We find that decorrelation ranges

are strongly dependent on the balance between local dynam-

ics and mesoscale forcing. The shortest horizontal (5–10 km)

and vertical (45 m) decorrelation ranges are for chlorophyll a

fluorescence, whereas those variables that are a function of

regional ocean and atmosphere dynamics (temperature and

dissolved oxygen) result in anisotropic patterns with longer

ranges along (28–37 km) than across the shelf (8–19 km).

Variables affected by coastal processes (salinity and coloured

dissolved organic matter) have an isotropic range similar to

the baroclinic Rossby radius (10–15 km).

1 Introduction

At the interface between oceanic and coastal processes, con-

tinental shelf regions are characterized by complex dynamics

resulting from the interaction between different water masses

at smaller spatial scales than the open ocean (Yoder et al.,

1987). While wind, topography, or density-driven processes

mostly influence the mixing and advection of the physical

characteristics (temperature and salinity) of the shelf water

masses, locally acting ecological processes are also determi-

nant for biogeochemistry (Ballantyne et al., 2011). In partic-

ular, the numerous mechanisms driving phytoplankton dis-

tributions have been studied for many years, and highlight

the complexity of these interactions (Martin, 2003). Bio-

geochemical (BGC) processes operate over a wide range of

scales and thus need to be considered separately when inves-

tigating the dominant length scales of variability for the shelf

water’s properties (Pan et al., 2014).

The continental shelf off southeastern Australia (between

29 and 34◦ S) is relatively narrow, between 16 and 70 km

(mean of 37 km) from the coastline to the 200 m isobath. The

dynamics on the shelf are influenced both by local coastal

processes and the episodic intrusion of the large-scale East

Australian Current (EAC) and its eddies (Fig. 1, Schaeffer

et al., 2013, 2014a). The EAC is the western branch of the

subtropical gyre in the South Pacific. It is a warm and dy-

namic poleward flowing current, encroaching on the conti-

nental shelf of southeastern Australia between around 18◦ S

(Ridgeway and Godfrey, 1994) and usually 30.7–32.4◦ S

(Cetina-Heredia et al., 2014) where it bifurcates eastward,

forming the Tasman Front. Further south, eddies are shed

(Everett et al., 2012), leading to high variability in the ve-

locity field and water masses on the shelf (Schaeffer et al.,

2014b; Schaeffer and Roughan, 2015).

Previous studies have highlighted the high spatial hetero-

geneity of physical (Oke et al., 2008; Schaeffer and Roughan,

2015) and biochemical (Hassler et al., 2011) variables on this

narrow shelf. Decorrelation timescales were quantified from

in situ mooring observations at 30 and 34◦ S (Roughan et al.,

2013), being of the order of hours for cross-shelf velocity
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Figure 1. Monthly mean sea surface temperature (AVHRR L3S

product) over southeastern Australia for October 2014. The coast-

line, 200, and 2000 m isobaths are shown. Glider tracks over the

shelf (depth < 200 m) are indicated by coloured lines. A schematic

of the typical circulation is shown with the poleward flowing East

Australian Current (EAC) bifurcating to the east around 32◦ S, its

weaker extension, anticyclonic, and cyclonic eddies.

to days and weeks for along-shelf flow and temperature, re-

spectively. However, spatial scales of variability, which are

essential for data assimilating models, have not been quanti-

fied.

Here we quantify for the first time the spatial scales of

variability of both the physical and the BGC characteristics

of the shelf water masses in the highly dynamic EAC sep-

aration zone. We use hydrographic measurements from 23

glider deployments along the coast (Sect. 2) to understand the

variability amongst physical and BGC properties, the spatial

anisotropy and the unresolved variance in the rich data set

(Sect. 3). Finally the results are discussed in the context of

their applicability to modelling and data assimilation, where

the perennial issue of relating point-based measurements to

model solutions is discussed (Sect. 4).

2 Methods

2.1 The data set

Ocean gliders are autonomous underwater vehicles which

change their buoyancy to dive through the water column.

Without propulsion, this vertical motion is transformed into

horizontal momentum using the vehicle’s wings, while its

pitch controls the forward motion. During the resulting ver-

tical sawtooth pattern through the water column, a wealth

of scientific observations are recorded and analysed here.

Physical and BGC measurements from 23 ocean glider de-

ployments along the southeastern coast of Australia are used

in this study. The glider missions span all seasons over

6 years, between 2008 and 2014, including results from both

shallow-diving Slocum (< 200 m) and deep-diving Seaglider

(< 1000 m) vehicles. The gliders were typically deployed

at 29.4◦ S although some were deployed as far south as

33◦ S (Fig. 1 and Schaeffer and Roughan, 2015). Missions

range 2–3 weeks to 3 months depending on the vehicle. The

horizontal displacement between two dives increases with

the depth of the dive, with median over ground distances

from 130 m (for dives in 25–50 m of water) to 1100 m (in

150–200 m of water). The vertical resolution of observa-

tions is < 2 m due to the fast sampling frequency. Scien-

tific measurements include depth, temperature, and salinity

(from a Seabird-CTD), dissolved oxygen (DO, from Aan-

deraa or Seabird oxygen sensors), and optical parameters,

chlorophyll a fluorescence (excited/emitted wavelengths:

470/695 nm), coloured dissolved organic matter (CDOM, ex-

cited/emitted wavelengths: 370/460 nm), and backscatter co-

efficient at 650–700 nm (from a WETLabs optical sensor).

Quality control for physical parameters (temperature and

salinity) and DO are conducted following ARGO float stan-

dards (Wong et al., 2014), including a salinity spike cor-

rection due to the use of unpumped CTDs in early deploy-

ments. For bio-optical parameters, quality control is more

challenging due to the instrument bio-fouling and the high

temporal and spatial variability of the measurements. Sen-

sors are calibrated approximately every 2 years. To check

for sensor drift, performance tests are undertaken using pur-

ple and black solid standards pre- and post-deployment, as

well as after cleaning the sensor from bio-fouling. These

tests enable the identification and flagging of suspect mea-

surements. A global range test is also conducted with a valid

fluorescence maximum set to 50 mg m−3, similar to ARGO

standards (Claustre, 2011). A valid regional maximum for

CDOM is defined, based on all the shelf glider deployments,

as the mean plus 10 times the standard deviation (= 8.0 ppb)

to remove high outliers (reaching 250 ppb).

2.2 Characterising spatial variability

The semivariogram approach was first introduced in geo-

statistics (Journel and Huijbregts, 1978) to characterize the

spatial variability of a sparsely distributed data set. It de-

scribes the average dissimilarity between measurements as

a function of the distance separating them. This difference

is generally small for measurements within close proximity,

increasing with distance, until it does not depend on a spatial

lag (decorrelated values) (Legaard and Thomas, 2007; Tortell

et al., 2011).
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For a variable anomaly Z(x), the semivariogram or struc-

ture function, γ (h), is defined as half the mean square differ-

ence between values at a given separation h:

γ (h)=
1

2

1

N

∑
([Z(x)−Z(x+h)]2), (1)

where the sum is over all N pairs of observations that are

separated by the distance h in the x direction. In order to

take into account outliers in the distribution of the empirical

anomalies Z, Cressie and Hawkins (1980) proposed a mod-

ified estimate of the structure function which is more robust

when the anomaly fields deviate from being Gaussian:

γ (h)=

1
2

(
1
N

∑
[Z(x)−Z(x+h)]1/2

)4
0.457+ 0.494

N

. (2)

In this equation, the power 1/2 comes from a fourth-root of

[Z(x)−Z(x+h)]2 that reduces the skewness in the distri-

bution, thereby approaching a Gaussian process. The fourth

square acts to correct the scale and returns the same units as

Eq. (1), while the denominator adjusts the bias resulting from

the whole transformation. This estimate is more robust statis-

tically in the sense that the mean can be applied to the new

distribution. Compared to Eq. (1), the semivariogram is only

slightly modified for the highest lags when using the robust

Eq. (2), but the parameters (sill, range, and nugget that are

investigated in Sect. 3) remain very similar.

The variables’ anomalies are obtained by removing large-

scale patterns, resulting from the average of all glider mea-

surements over predefined bins determined by latitude and

depth, as in Schaeffer and Roughan (2015). This three-

dimensional mean state is then smoothed using a spline

method before being removed from each observation. Both

cross- and along-shelf semivariograms are calculated to in-

vestigate anisotropy, where h=1x is the zonal distance, or

h=1y is the meridional distance, respectively. The cross-

shelf semivariance is calculated following Eq. (2) from mea-

surement pairs located within 0.1◦ (∼ 10 km) of latitude.

Similarly, the along-shelf semivariance γ (h) is computed us-

ing observations within 0.1◦ of longitude (∼ 10 km) from

each other. In both cases the distance vector is discretized

with intervals of 500 m and the time lag between pairs is lim-

ited to 1 day. The semivariograms are calculated in the hor-

izontal plane at three depths: surface (0–5 m), mixed layer

depth (MLD, 5–30 m, defined from the average profiles), or

below the MLD at 50 m. Finally, glider profiles are also used

to analyse vertical scales by computing γ (h) with h=1z

(intervals of 1 m).

The semivariance γ (h) is computed from the trimmed

mean (20 % outliers excluded) of measurements over all

glider deployments, provided there are at least 10 (5 for

CDOM across the shelf, see Sect. 3.4) different missions and

more than 30 pairs for each spatial lag, to avoid seasonal bias

or insignificant values. We then fit a mathematical spherical

model (Doney et al., 2003) to the empirical semivariogram in

order to extract the physical characteristics of the function,

following:σ 2
0 + (σ

2
− σ 2

0 )
(

3
2
h
r
−

1
2

(
h
r

)3)
0< h≤ r

σ 2 h > r
, (3)

where h is the distance between measurements, σ 2 is the sill,

σ 2
0 is the nugget, and r the range. (These variables are de-

scribed physically in the example below.) Exponential and

Gaussian models (Biswas and Si, 2013) were also tested but

were less adequate in terms of sum of squared error (SE) and

adjusted R-squared statistics for the fit of the empirical semi-

variogram.

3 Results

3.1 Satellite-derived SST semivariogram

By way of both example and validation, we calculate

the cross-shelf semivariogram obtained from daily satel-

lite remote-sensed sea surface temperature (SST) anomalies

(Fig. 2). The spherical model (Eq. 3) is fitted to the empirical

semivariance values calculated for cross-shelf lags over daily

maps of SST in 2014. Only days with spatial coverage greater

than 30 % of the domain are considered. The physical char-

acteristics extracted from the model are indicated in Fig. 2.

The sill σ 2 reflects the constant background variability of the

variable. It is reached at a specific distance, here r = 24 km,

which is referred to as the (decorrelation) range or the domi-

nant length scale. For lags greater than this range, the two ob-

servations are considered randomly correlated spatially. The

nugget, σ 2
0 , is the semivariance obtained from the model at

the origin. If different from 0, it implies variability at shorter

spatial scales than those resolved by the observations. This

variability is either (a) real but unresolved, or (b) result-

ing from measurement errors. The semivariogram for SST

(Fig. 2) shows very little nugget effect, showing the accu-

racy of the measurements and an adequate spatial resolution.

As expected, the semivariance of the SST anomaly (the an-

nual mean was subtracted) differs with seasonality, as shown

by the monthly empirical semivariograms (coloured dots in

Fig. 2). Austral summer and autumn months are character-

ized by a sharper increase in the SST variance with greater

variability in sills, due to more pronounced spatial tempera-

ture gradients. However, the semivariogram range is similar,

with dominant cross-shelf scales between 18 and 32 km (not

shown). The semivariogram reaches a plateau for all months,

with the exception of January, suggesting a trend of longer

scales (Yoder et al., 1987) and a limitation of the method.

3.2 Sill: in situ spatial variance

Semivariance values from glider measurements are analysed

based on the values of the sill in each of the semivariograms

shown in Fig. 3. Temperature, dissolved oxygen (DO), and,

www.biogeosciences.net/13/1967/2016/ Biogeosciences, 13, 1967–1975, 2016



1970 A. Schaeffer et al.: Physical and biogeochemical spatial scales

Distance across-shelf (km)
0 5 10 15 20 25 30 35 40 45 50

S
S
T
 s

e
m

iv
a
ri

a
n
ce

 (
o C

)2

0.5

1

1.5

2
R-squared: 0.97 Jan

Feb
Mar
Apr
May
Jan
Jul
Aug
Sep
Oct
Nov
Dec

Range: 24 km

Nugget:
0.01

Sill: 0.51

oC

C2

2

Figure 2. Cross-shelf empirical semivariogram estimated from daily SST over the southeastern Australian shelf (depth < 200 m, 29–34◦ S,

AVHRR L3S product) for 2014 (black bold dots) and for each month in 2014 (coloured dots). The spherical model (red line, R squared of

0.97 for the fit) and resulting parameters (range, sill, nugget) are shown for 2014 semivariance.

to a lesser extent, coloured dissolved organic matter (CDOM)

and salinity, are characterised by a greater variance in the

vertical than in the horizontal (see the different y axis). In

contrast, chlorophyll a fluorescence shows comparable vari-

ability in all directions. Focusing on horizontal sills (Fig. 3

middle and left), the highest variance for salinity and CDOM

occurs at the surface in agreement with the influence of river-

ine input. The cross-shelf sill for DO is greater at 50 m than

at the surface, suggesting more spatial variability due to bio-

physical processes (remineralization, respiration, or bottom

water uplift) than resulting from gas exchange with the at-

mosphere. Chlorophyll a fluorescence shows little variance

at 50 m depth due to light limitation preventing biological ac-

tivity. The highest horizontal sill for temperature appears be-

low the MLD along the shelf, in agreement with the large lat-

itudinal gradients in bottom temperature evidenced by Scha-

effer and Roughan (2015). The surface temperature sill is

smaller when measured by the gliders (Fig. 3) than by satel-

lite (Fig. 2), possibly due to different measurement depth in

situ 0–5 m vs. skin SST), or seasonality, as glider deploy-

ments are more numerous in winter. Nevertheless, the cross-

shelf dominant length scales are in good agreement in the

two data sets, with ranges of 25 and 19 km, respectively.

3.3 Range: in situ scales of variability

Cross-shelf, along-shelf, and vertical ranges from the semi-

variograms are presented in Fig. 3 and summarized in Ta-

ble 1. Spatial scales highlight different directional patterns

between the parameters. Horizontal scales for salinity and

CDOM are 9–15 km, 5–10 km for chlorophyll a fluores-

cence, similar across and along the shelf. Mean temperature

scales across the shelf are 18–19 km at the surface and in

the MLD, only 14 km at 50 m. Scales found along the shelf

are greater, being 28–29 and 37 km, respectively. This direc-

tional anisotropy for temperature is in agreement with the

geometry of the shelf and the influence of the EAC at the

shelf break (Fig. 1). Schaeffer and Roughan (2015) and Oke

et al. (2008) both evidenced greater temperature gradients

across than along the shelf, based on satellite, model and

glider data sets. This directional anisotropy is also evident

in density (not shown), which has been shown to be mostly

temperature driven (Schaeffer et al., 2014b), and even more

intensified for DO. While DO is characterized by dominant

cross-shelf scales similar to salinity and CDOM (8–15 km),

the along-shelf spatial variability seems to be linked to the

shallow EAC water mass, resulting in decorrelation scales

of 27 to 35 km (surface and MLD) similar to temperature.

Chlorophyll a fluorescence has the smallest characteristic

length scales both across and along the shelf, but also in the

vertical. Measurements of fluorescence are decorrelated for

depth lags greater than 46 m, in agreement with shallow (near

surface) chlorophyll blooms. Vertical length scales for DO

and CDOM (57–58 m), are less than those for temperature

and salinity (62 m and 66 m, respectively). The second peak

in semivariance (at 80–100 m for temperature, salinity and

DO, Fig. 3, right) indicates an anti-correlation for these lags

(Legaard and Thomas, 2007). Negative correlation coeffi-

cients reaching −0.6 were previously observed from moored

autumnal temperature observations in 100 m water depth at

30◦ S (Roughan et al., 2013) and attributed to simultaneous

heating source in the surface layers and cooling at depth due

to EAC encroachments and slope water uplift. Our results

suggest that these current-driven uplifts are associated with a

signature in salinity and DO.

3.4 Nugget: in situ unresolved variance

The fraction of resolved and unresolved variance is estimated

from the semivariogram parameters, the sill and nugget, re-

spectively. A nugget occurs when the difference between the

two closest measurements is greater than zero, and can be

seen at the origin of the semivariogram. Overall, the high

density glider observations capture most of the spatial ocean

Biogeosciences, 13, 1967–1975, 2016 www.biogeosciences.net/13/1967/2016/
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Figure 3. Cross-shelf (left), along-shelf (middle) and vertical (right) empirical semivariograms estimated from glider measurements of

(a) temperature, (b) salinity, (c) chlorophyll a fluorescence, (d) DO, and (e) CDOM. Spherical models are shown by the solid lines and the

resulting spatial ranges are indicated in the insert for successful fits. Blue, red, green symbols for horizontal semivariograms correspond to

surface (0–5 m), MLD (5–30 m), and 50 m measurements, respectively.

variability. The advantage of this sampling strategy is that

nearly all the vertical variance is resolved for most of the

parameters (ratio σ 2
0 /σ

2
∼ 0− 3 %, Table 1) due to the high

sampling frequency of the gliders compared to their verti-

cal displacement velocity. The only exception is for CDOM

with the nugget being 24 % of the total variance (Fig. 3 and

Table 1). Horizontal variability is well resolved for tempera-

ture and salinity with ratios σ 2
0 /σ

2
≤ 10 % across the shelf,

mostly ≤ 14 % along the shelf. Nuggets for BGC parame-

ters are higher, reaching 27 % of the sill. While high nuggets

for fluorescence and DO can be attributed to horizontal sub-

scale unresolved biological activity, CDOM data sets might

also suffer from measurement errors and quality control is-

sues, as suggested by the high nugget effect in the vertical,

the large outliers, and the larger amount of cross-shelf lags

necessary for the successful fit of a mathematical model (see

Sect. 2 and Fig. 3e).

4 Discussion

This study combines in situ measurements from multiple

glider deployments between 2008 and 2014 on the southeast-

ern Australian continental shelf, to provide insight into the

surface and subsurface structure of the water mass dynam-

ics, including the influence of the EAC, upwelling and fresh-

water inputs. Analysis of length-scale-dependent variability

demonstrates that much of the spatial variance in physical

and BGC parameters typically occurs at scales ranging 5 km

for chlorophyll a fluorescence to ∼ 35 km for along-shelf

temperature. In this study, the length scales were averaged

from data obtained over 2◦ of latitude; however, we expect

more regional variability resulting from the different latitu-

dinal regimes evidenced by Schaeffer and Roughan (2015),

driven by the mesoscale circulation. In addition, we expect

that spatial scales may vary seasonally, particularly in the bi-

ological parameters. This will be tested when we have suffi-

cient data in each season.

www.biogeosciences.net/13/1967/2016/ Biogeosciences, 13, 1967–1975, 2016
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Table 1. Spatial scales of variability for spherical fit to semivariograms for different parameters and depths across, along the shelf and along

the vertical. The range, percentage ratio of the nugget to the sill (σ 2
0
/σ 2), and R squared for the model fit to experimental values are indicated

(ranges with a correspond to R squared < 0.7). Blanks indicate unsuccessful fit to the spherical model.

Temperature Salinity Fluorescence DO CDOM

C
ro

ss
-s

h
el

f
range 19 km 13 km 5 km 10 km 10 kma

Surface ratio σ 2
0
/σ 2 6 % 6 % 17 % 27 % 19 %

R-squared fit 0.96 0.94 0.89 0.85 0.49

range 18 km 10 km 8 kma 8 km 14 km

MLD ratio σ 2
0
/σ 2 4 % 0 % 13 % 18 % 2 %

R-squared fit 0.92 0.83 0.58 0.89 0.96

range 14 km 5 km 15 km 11 km

50 m ratio σ 2
0
/σ 2 10% 15% 4% 17%

R-squared fit 0.97 0.73 0.98 0.88

A
lo

n
g

-s
h

el
f

range 29 km 15 kma 8 km 35 km 11 kma

Surface ratio σ 2
0
/σ 2 14% 14 % 20% 2% 21%

R-squared fit 0.93 0.52 0.83 0.90 0.56

range 28 km 10 km 10 kma 27 km 9 kma

MLD ratio σ 2
0
/σ 2 8% 23 % 21 % 18 % 10%

R-squared fit 0.99 0.93 0.53 0.96 0.27

range 37 km 5 km 4 kma

50 m ratioσ 2
0
/σ 2 1 % 8 % 5%

R-squared fit 0.97 0.87 0.33

V
er

ti
ca

l

range 62 m 66 m 46 m 58 m 57 m

ratio σ 2
0
/σ 2 0% 3 % 1% 0% 24%

R-squared fit 0.97 0.98 0.99 0.98 0.99

As for all statistics, limitations arise from the amount of

data used (especially along the shelf where the data density

is smaller) and contamination of the data set (for instance

CDOM). In geostatistics, uneven spatial distribution of the

observations over the analysed area can be a limitation as

well but remains difficult to quantify. The major advantage

of the semivariogram method used is that it can be applied to

sparse data set like glider observations, as opposed to spatial

autocorrelations, for instance. It allows objective compari-

son of interesting parameters (range, sill, nugget) for differ-

ent variables, directions, and depths. In this study, the results

compare well when using different statistical fits, and are

consistent with expected outcomes based on previous knowl-

edge of local dynamics and related studies in other regions.

4.1 Related studies

From a global analysis of satellite-derived surface data,

Doney et al. (2003) found comparable small-scale variability

for biology and physics. However, they were not able to char-

acterize scales < 15 km based on the satellite products used.

Here we find that BGC distribution occurs predominantly at

submesoscales (5–14 km for chlorophyll a, CDOM), while

scales for temperature are larger (14–37 km). These short

scales of variability for BGC are in agreement with the effect

of nutrient cycling, reproductive rate, and community inter-

action (e.g. grazing pressure from zooplankton) that can lead

to patches of 5–10 km (Ballantyne et al., 2011; Denman et al.,

1977; Goebel et al., 2014). According to Mahadevan and

Campbell (2002), the fine-scale patchy distribution of phyto-

plankton is linked to the short characteristic time in response

to disturbance in their concentration, as opposed to the longer

time for temperature to adjust to external forcing. We find

temperature horizontal scales (14–37 km) that are of the same

order of magnitude as over the Malvinas Current region, de-

rived from SST (20–47 km, Tandeo et al., 2014) or over the

Middle Atlantic Bight from in situ glider observations (10–

35 km, Todd et al., 2013). The anisotropic shape of the tem-

perature variance is consistent with a highly dynamic circu-

lation (Tandeo et al., 2014), here driven by the EAC, char-

acterized by a greater signature in temperature than in salin-

ity. Spatial variability in salinity is predominantly isotropic

and similar to CDOM with decorrelation length scales of 9–

15 km, corresponding to the first Rossby baroclinic radius of

deformation (12–15 km based on local moored observation,

Schaeffer et al., 2014b), and high surface variance, suggest-

ing a predominant influence of coastal processes and river

input.
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4.2 Drivers of variability in a modelling perspective

Assuming that there is no first order feedback from the bi-

ology to the physics, we can think of the physics variables

X= T ,S (temperature and salinity) being a function of in-

ternal dynamics (I , e.g. mixing), atmospheric forcing (A),

coastal buoyancy forcing arising from river discharge (R),

friction due to shallow bathymetry (F ) and open ocean forc-

ing (e.g. tidal, geostrophy), and water masses (O). Therefore,

the state of the model at some spatial location “s” at time t is

given by:

X(s, t)= f (I,A,R,F,O), (4)

where f (I,A,R,F,O) for the physical variables can be

solved numerically in various hydrodynamic models. For the

state variable of temperature, we assume that there is little

effect from river input in this region (e.g. water coming in is

about the same temperature as the surface layer), while the

effect from coastal processes is large for salinity. Therefore,

Eq. (4) simplifies to:

T (s, t)= f (I,A,F,O) (5)

S(s, t)= f (I,A,R,F,O). (6)

Given that both T and S are subjected to the same advection

and diffusion equations, but differ only in the source/sink and

boundary terms of f (A), f (R), and f (O), those are the ma-

jor drivers for the difference in the along shelf sills and differ-

ences in the nugget. Salinity varies over shorter length scales

due to river input and the markedly different freshwater in-

puts from various catchment sizes along the coast, whereas

temperature is largely controlled by the regional-scale EAC

forcing and the relatively smooth atmospheric forcing ap-

plied which varies over spatial scales of 50 km or more.

A similar approach can be applied to the BGC variables,

but f (I) is more complicated as it includes the turnover

of biomass/nutrients between different plankton functional

types or nutrient pools. However, ultimately, one would ex-

pect f (I) to introduce variability at scales equal to or less

than those seen in salinity. This hypothesis is supported by

the ranges reported in the chlorophyll a fluorescence and

CDOM variables, which are biologically derived. However,

as CDOM can also be introduced into the coastal ocean via

river plumes and has a similar sill structure to salinity, we

suggest that the CDOM measured by the glider is largely

due to river discharge. The DO distribution in the surface

layer is largely a function of air–sea exchange rather than

primary production and will have similar variability to tem-

perature due to the forcing mechanism. However, below the

mixed layer, DO is function of the remineralization rate and

also vertical mixing/exchange with surface water, explaining

the shorter decorrelation range in DO found below the mixed

layer.

4.3 Observing system design

The length scales calculated here can be used to guide the

design of ocean observing systems, in particular to answer

questions related to the observation density needed to re-

solve along and cross-shore variability in both the physical

and biological parameters. The temperature anisotropy in our

results, consistent with findings of Oke and Sakov (2012)

and Jones et al. (2015), shows that the required observa-

tion density will vary along and across the shelf. Thus, high-

resolution cross-shelf mooring or glider lines every Y km are

more useful than simply a glider endurance line or equally

spaced moorings. The distance Y can be initially derived

from satellite observations, or determined after a number of

glider missions. In contrast, the understanding of BGC vari-

ability, characterized by short isotropic length scales, will re-

quire high spatial resolution observations (e.g. gliders) to de-

termine the representativeness of the measurements.

4.4 Data assimilation

There are a variety of data assimilation systems based upon

two broad approaches, ensemble methods (e.g. Oke et al.,

2008, Jones et al., 2012) and variational methods, that min-

imize a cost function (e.g. Moore, 2011). Regardless of the

approach used, assumptions are made about the spatial foot-

print of an observation, for which a key parameter is the

decorrelation length scale. Within the ensemble (e.g. Oke

et al., 2008) and hybrid (Pan et al., 2011) data assimila-

tion approaches, covariance localization (Sakov and Bertino,

2011) is used to increase the rank of the background error

covariance matrix. The anisotropic (along-shelf and cross-

shelf) ranges presented in this study and method used to

derive them, allow for the direct calibration of the decor-

relation scales enforced within most data assimilation sys-

tems that are currently in use. Additionally, estimates of how

these decorrelation scales vary in time are also available (e.g.

Fig. 2), suggesting that an optimally tuned data assimilation

system should allow for temporal variation in the localiza-

tion or provide an assessment of the temporal variability of

the ensemble from an ensemble Kalman filter (EnKF) sys-

tem.

The results from this study also allow us to partly answer

the question of how to relate a point-based observation with

the output from a numerical model, which assumes the aver-

age concentration of a variable within a model cell Xmod. If

we take a Bayesian view stating that we observe some true

state variable with error (e.g. Parslow et al., 2013), this can

be written as:

Xobs =Xtrue+ εm+ εv, (7)

where Xobs is the observed variable, Xtrue is the true un-

known value of the variable, εm is the instrument error, and

εv is the sampling error due to unresolvable small-scale vari-

ability. The observation is then related to the modelled vari-
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able by:

Xmod =Xobs+ εr, (8)

where εr is typically referred to as the representation error

(Oke and Sakov, 2008) associated with difference in kind

(e.g. measuring fluorescence, but modelling biomass), or av-

eraging across a model grid cell that contains a point mea-

surement. Assuming εm is known from calibration studies,

results of studies like that presented here allow us to explore

the characteristics of εv and εr. For a particular variable, we

can assume that the nugget is approximately equal to εv and

given a priori information about a model grid, the spherical

model applied to the semivariogram can then also be used to

provide an empirical estimate for εr.

To this end, the results of this study allow us to charac-

terise the length scales of the physical and BGC properties

on the shelf and relate variability to the dynamical drivers,

but additionally, the methodology developed here can be di-

rectly used to improve observing system design, and to tune

key data assimilation parameters that are presently poorly un-

derstood.

Data availability

All data sets are freely available at https://imos.aodn.org.au/

imos123/home.
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