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Abstract. The eastern tropical North Atlantic (ETNA) fea-

tures a mesopelagic oxygen minimum zone (OMZ) at ap-

proximately 300–600 m depth. Here, oxygen concentrations

rarely fall below 40 µmol O2 kg−1, but are expected to de-

cline under future projections of global warming. The recent

discovery of mesoscale eddies that harbour a shallow suboxic

(< 5 µmol O2 kg−1) OMZ just below the mixed layer could

serve to identify zooplankton groups that may be negatively

or positively affected by ongoing ocean deoxygenation. In

spring 2014, a detailed survey of a suboxic anticyclonic mod-

ewater eddy (ACME) was carried out near the Cape Verde

Ocean Observatory (CVOO), combining acoustic and opti-

cal profiling methods with stratified multinet hauls and hy-

drography. The multinet data revealed that the eddy was

characterized by an approximately 1.5-fold increase in total

area-integrated zooplankton abundance. At nighttime, when

a large proportion of acoustic scatterers is ascending into the

upper 150 m, a drastic reduction in mean volume backscat-

tering (Sv) at 75 kHz (shipboard acoustic Doppler current

profiler, ADCP) within the shallow OMZ of the eddy was

evident compared to the nighttime distribution outside the

eddy. Acoustic scatterers avoided the depth range between

approximately 85 to 120 m, where oxygen concentrations

were lower than approximately 20 µmol O2 kg−1, indicating

habitat compression to the oxygenated surface layer. This

observation is confirmed by time series observations of a

moored ADCP (upward looking, 300 kHz) during an ACME

transit at the CVOO mooring in 2010. Nevertheless, part of

the diurnal vertical migration (DVM) from the surface layer

to the mesopelagic continued through the shallow OMZ.

Based upon vertically stratified multinet hauls, Underwater

Vision Profiler (UVP5) and ADCP data, four strategies fol-

lowed by zooplankton in response to in response to the eddy

OMZ have been identified: (i) shallow OMZ avoidance and

compression at the surface (e.g. most calanoid copepods, eu-

phausiids); (ii) migration to the shallow OMZ core during

daytime, but paying O2 debt at the surface at nighttime (e.g.

siphonophores, Oncaea spp., eucalanoid copepods); (iii) re-

siding in the shallow OMZ day and night (e.g. ostracods,

polychaetes); and (iv) DVM through the shallow OMZ from

deeper oxygenated depths to the surface and back. For strat-

egy (i), (ii) and (iv), compression of the habitable volume

in the surface may increase prey–predator encounter rates,

rendering zooplankton and micronekton more vulnerable to

predation and potentially making the eddy surface a foraging

hotspot for higher trophic levels. With respect to long-term

effects of ocean deoxygenation, we expect avoidance of the

mesopelagic OMZ to set in if oxygen levels decline below

approximately 20 µmol O2 kg−1. This may result in a posi-

tive feedback on the OMZ oxygen consumption rates, since

zooplankton and micronekton respiration within the OMZ as

well as active flux of dissolved and particulate organic matter

into the OMZ will decline.
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1 Introduction

The habitat of pelagic marine organisms is vertically struc-

tured by several biotic and abiotic factors, such as light, prey

density, temperature, oxygen concentration and others. In the

eastern tropical North Atlantic (ETNA), a permanent oxy-

gen minimum zone (OMZ) exists in the mesopelagial. The

core of this OMZ is centred at approximately 450 m, with

the upper and lower oxyclines at approximately 300 and

600 m depth (Karstensen et al., 2008). Oxygen concentra-

tions in this deep OMZ hardly fall below 40 µmol O2 kg−1

(Karstensen et al., 2008), but are sufficiently low to exclude

highly active top predators such as billfishes from the OMZ

(Prince et al., 2010; Stramma et al., 2012). In the eastern

tropical South Atlantic, with its more pronounced midwa-

ter OMZ, this layer may act as an effective barrier for some

species (e.g. Auel and Verheye, 2007; Teuber et al., 2013),

but seems to be diurnally crossed by others (Postel et al.,

2007). Many zooplankton and nekton taxa perform diurnal

vertical migrations (DVMs), usually spending the daylight

hours in the mesopelagic OMZ and migrating into the pro-

ductive surface layer at night. These taxa include for example

euphausiids (Tremblay et al., 2011), sergestid and penaeid

shrimp (Andersen et al., 1997), myctophid fishes (Kinzer

and Schulz, 1985) as well as several large calanoid copepods

(e.g. Pleuromamma species, Teuber et al., 2013). As DVM is

a survival mechanism to evade predation, hindrance thereof

could lead to substantial changes in ecosystem functioning.

The ETNA OMZ has been observed to intensify (i.e. de-

crease in core O2 concentrations) and vertically expand over

the past decades and is predicted to further deoxygenate and

expand laterally (Stramma et al., 2008, 2009) under future

expectations of anthropogenic global warming (Cocco et al.,

2013).

Submesoscale and mesoscale eddies (which in the trop-

ics/subtropics comprise diameters of the order of 101 and

102 km, respectively) often represent hotspots (or “oases”)

of biological productivity in the otherwise oligotrophic open

ocean (e.g. Menkes et al., 2002; McGillicuddy et al., 2007;

Godø et al., 2012), even translating up to top predators (Tew

Kai and Marsac, 2010). Their basin-wide relevance for bio-

geochemical cycles has been increasingly recognized (e.g.

Stramma et al., 2013). Numerous eddies spin off the produc-

tive Mauritanian and Senegalese coasts (between Cap Blanc

and Cap Vert) throughout the year, with most anticyclones

being generated in summer/autumn and most cyclones in

winter/spring (Schütte et al., 2015). Both eddy types prop-

agate westward at about 4 to 5 km day−1, passing the Cabo

Verde archipelago to the north or south. They can be tracked

by satellite altimetry for up to 9 months (Schütte et al.,

2016; Karstensen et al., 2015). While normal anticyclones

are usually relatively warm and unproductive (e.g. Palacios

et al., 2006), both cyclonic and anticyclonic modewater ed-

dies (ACMEs) are characterized by a negative sea surface

temperature (SST) and positive surface chlorophyll a (chl a)

anomaly (Goldthwait and Steinberg; 2008; McGillicuddy et

al., 2007). In particular, ACMEs were observed to exceed cy-

clones in terms of upwelled nutrients and productivity in the

subtropical Atlantic (McGillicuddy et al., 2007).

The recent discovery of mesoscale eddies (cyclones and

ACMEs) with extremely low oxygen concentrations just be-

low the mixed layer (Karstensen et al., 2015) has changed our

view of current oxygen conditions in the ETNA. In that study,

it had been observed that oxygen values < 2 µmol O2 kg−1

can be found in the shallow oxygen minimum. The authors

concluded that the low oxygen concentrations were the re-

sult of isolation of the eddy core from surrounding wa-

ter (a result of the rotation of the eddy) paired with en-

hanced respiration (a result of the high productivity and sub-

sequent export and degradation of particulate organic mat-

ter; Fischer at al., 2015), and introduced the term “dead-

zone eddy” (Karstensen et al., 2015). The lowest oxygen

concentrations so far in such an eddy (< 2 µmol O2 kg−1 at

about 40 m depth) were observed in February 2010 at the

Cape Verde Ocean Observatory (CVOO) mooring. During

the eddy passage across the mooring, an almost complete

lack of acoustic scatterers at depths below the oxygenated

mixed layer was observed. The acoustic backscattering sig-

nal received by the 300 kHz acoustic Doppler current profiler

(ADCP) is largely created by organisms > 5 mm (thus miss-

ing a substantial part of the mesozooplankton) and does not

allow for the discrimination of different zooplankton groups.

Here, we characterize the ecology of zooplankton in re-

sponse to the shallow OMZ within an ACME that was iden-

tified, tracked and sampled in spring 2014. We used acoustic

(shipboard ADCP) and optical (Underwater Vision Profiler,

UVP) profiling methods as well as vertically stratified plank-

ton net hauls to resolve the vertical and horizontal distribu-

tion of zooplankton. Moreover, we used acoustic and oxygen

time series data from the CVOO mooring of one extreme low

oxygen eddy observed in February 2010 (Karstensen et al.,

2015; Fischer et al., 2015) to derive a more general picture

about the zooplankton sensitivity to low oxygen concentra-

tions.

2 Materials and methods

In order to characterize the ecology, biogeochemistry and

physical processes associated with low-oxygen eddies in the

tropical North Atlantic, a dedicated field experiment (“eddy

hunt”) north of the Cabo Verde archipelago was designed.

In summer 2013, the identification and tracking of candidate

eddies began by combining remotely sensed data and Argo

float profile data. In spring 2014, a candidate low-oxygen

eddy was identified and on-site sampling with gliders and

research vessels began, covering genomics, physics and bio-

geochemistry (see also Löscher et al., 2015; Schütte et al.,

2016; Fiedler et al., 2016; Karstensen et al., 2016). Ship-

based sampling presented here was carried out on 18 and 19
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March 2014 during the RV Meteor cruise M105. Two ADCP

sections perpendicular to each other, a CTD/UVP5 cast sec-

tion and five multinet hauls were conducted. To better charac-

terize the average distribution of zooplankton during normal

conditions in the investigation area (as compared to condi-

tions within the eddy), we combined the single time point

observation at the CVOO time series station with previously

collected data at the same station. For the multinet data, we

used three additional day/night casts (RV Maria S. Merian

cruise MSM22: 25 October and 20 November 2012; RV Me-

teor cruise M97: 26 May 2013). For the UVP data, we used

seven nighttime profiles (because the four eddy core stations

were obtained during nighttime only) from cruises M105,

MSM22, M97 and M106 (19/20 April 2014).

In order to evaluate in greater detail the critical oxygen

concentrations that lead to avoidance behaviour, we used the

mean volume backscatter (Sv) and oxygen time series data

from the CVOO mooring. Here, we focus on the spring 2010

period that covered the transit of an extreme low oxygen

eddy, with oxygen content < 2 µmol kg−1 (Karstensen et al.,

2015).

2.1 ADCPs

Underway current measurements were performed during

cruise M105 using two vessel mounted ADCPs (vmADCPs),

a 75 kHz RDI Ocean Surveyor (OS75) and a 38 kHz RDI

Ocean Surveyor (OS38). Standard techniques (see Fischer et

al., 2003) were used for data post-processing. Depending on

the region and sea state, the ranges covered by the instru-

ments are around 550 m for the OS75 and around 1000 m for

the OS38. To locate the eddy centre from the observed ve-

locities, two sections were conducted (Fig. 1). The first was a

southeast-to-northwest section through the estimated (by re-

mote sensing) eddy centre. The second section was a perpen-

dicular, northeast-to-southwest section through the location

of the lowest cross sectional current velocity of the first sec-

tion. The lowest cross sectional velocity of the second section

defines the eddy centre.

The ADCP installed at the CVOO mooring site in 109 m

water depth was an upward looking 300 kHz Teledyne RDI

workhorse instrument, recording data every 1.5 h. It has a

four-beam design in Janus configuration with a 20◦ open-

ing. Based on accompanying hydrographic and pressure data,

each 4 m depth cell was allocated discrete pressure/depth in-

formation as well as a sound speed profile (harmonic mean).

Sv from the four ADCP beams was averaged and matched

to the oxygen data (i.e. backscatter values in the depth cell

where the oxygen sensor was located were used, which

varied around approximately 50 m, depending on the cur-

rent strength). Only data from 1 January to 14 March 2010

were used for the analysis to avoid the influence of seasonal

changes in scatterer abundance. Data collected from 11:00

to 18:00 and from 22:00 to 07:00 UTC were considered day-

time and nighttime data, respectively. Apparent sunrise and
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Figure 1. Cruise track (M105, only shown from 17 to

20 March 2014) with horizontal current velocities (arrows) and

CTD/UVP sampling positions (triangles) as well as multinet sta-

tions (grey circles are night, empty circles are day). Large dashed

circle indicates the estimated radius of the eddy based upon current

structure.

sunset in the period of January to March are around 08:00

and 19:30 UTC, respectively.

For vessel-mounted as well as moored ADCPs, Sv

(MacLennan et al., 2002) was estimated for each beam and

each depth cell by a recalculation of a simplified sonar equa-

tion (Deimes, 1999). From the vessel-mounted ADCPs, only

the OS75 was used to assess backscatter distribution. Since

we were not attempting to estimate biomass, no further cali-

bration was applied and Sv values are relative.

2.2 CTD and UVP5

Oxygen concentration was measured using a SBE (Sea–Bird

Electronics) CTD with two SBE 43 oxygen sensors. The

oxygen sensors were calibrated against 641 discrete oxy-

gen samples measured by Winkler titration during cruise

M105. Inside the CTD rosette, a UVP5 was mounted. This

imaging tool allows for in situ quantification of particles

> 60 µm and plankton > 500 µm with high vertical resolution

(Picheral et al., 2010). Thumbnails of all objects > 500 µm

were extracted using the ImageJ-based ZooProcess macro

set (Gorsky et al., 2010) and sorted automatically into 41

categories using Plankton Identifier (Gasparini, 2007). Ex-

perts validated the automated image sorting. The observed

volume of each image was 0.93 L and approximately 10 im-

ages were recorded per metre depth. The mean total sam-
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pling volume for the upper 600 m of the water column was

6.34 (±0.99) m3. Volume-specific abundance was calculated

in 5 m depth bins.

2.3 Multinet

Zooplankton samples were collected with a Hydrobios multi-

net Midi (0.25 m2 mouth opening, five nets, 200 µm mesh,

equipped with flowmeters) hauled vertically from the maxi-

mum depth to the surface at 1 m s−1.

A full day/night multinet station was conducted well out-

side of the eddy at 17.3474◦ N and 24.1498◦W at the CVOO

site, where a set of physical and biogeochemical variables are

measured on a monthly basis. For this reason, CVOO stan-

dard depths were used in this multinet haul (800–600–300–

200–100–0 m) as it also served as the time series observation.

As the northwestward eddy transect was conducted during

daytime, the “eddy core day” multinet haul was collected on

this transect (12:40 UTC) and the “eddy core night” haul was

collected at 02:10 UTC during the second transect (for clas-

sification of stations, see hydrography results section), at the

location of the CTD profile with the lowest O2 concentra-

tion. Thus, the eddy core day haul is approximately 14 km

away from the eddy centre (Fig. 1). Depth intervals (600–

300–200–120–85–0 m) were chosen according to the O2 pro-

file. When leaving the eddy, a second day haul was collected

at the margin of the eddy, approximately 26 km from the eddy

centre, using the depth intervals from the eddy core station.

Zooplankton samples were fixed in 100 mL Kautex® jars in

4 % borax-buffered formaldehyde in a seawater solution.

Zooplankton samples were analysed using a modification

of the ZooScan Method (Gorsky et al., 2010), employing an

off-the-shelf flatbed scanner (Epson Perfection V750 Pro)

and a scan chamber constructed of a 21 cm× 29.7 cm (DIN-

A4) size glass plate with a plastic frame. Scans were 8bit

greyscale, 2400 dpi images (tagged image file format; *.tif).

The scan area was partitioned into two halves (i.e. two im-

ages per scanned frame) to reduce the size of the individual

images and facilitate the processing by ZooProcess/ImageJ.

Samples were size fractionated by sieving into three frac-

tions (< 500, 500–1000 and > 1000 µm) and split using a Mo-

toda plankton splitter if necessary. The > 1000 µm fraction

was scanned completely, whereas fractions comprising no

more than approximately 1000 objects were scanned for the

two other fractions. “Vignettes” and image characteristics of

all objects were extracted with ZooProcess (Gorsky et al.,

2010) and sorted into 39 categories using a Plankton Iden-

tifier (Gasparini, 2007). Automated image sorting was then

manually validated by experts.

3 Results

3.1 Hydrography

The site survey with RV Meteor succeeded in sampling the

eddy core with CTD and UVP casts. The lowest measured

O2 concentration was 3.75 µmol O2 kg−1 at 106 m depth.

Based upon the current velocity, the eddy was approximately

110 km in diameter (Fig. 1), but oxygen concentrations be-

low 20 and 5 µmol O2 kg−1 were only found within approx-

imately 18 and 8 km from the centre, respectively. For the

purpose of this study, the four stations within 20 km of the

eddy core (with minimum O2 concentrations well below

20 µmol O2 kg−1) were considered “eddy core”, while the

four stations within 20 to 35 km from the eddy core were

considered “eddy margin” (with minimum O2 concentrations

between 21 and 53 µmol O2 kg−1) and the CVOO station

(M105 data complemented with data from previous cruises,

n= 7 profiles; see methods) was considered to represent am-

bient conditions outside of the eddy. Here, a shallow OMZ

was not present. The midwater OMZ (centred around ap-

proximately 450 m depth) featured mean minimum oxygen

concentrations of 70 µmol O2 kg−1).

3.2 Vertical distribution and DVM – acoustic

observations

During the M105 ADCP survey, several features were ap-

parent in the vertical distribution and migration of scatter-

ers outside of the eddy (Fig. 2). First, a deep scattering

layer was detected centred between below 350 and 400 m

depth. From this layer, part of the population started its as-

cent to the surface layer at about 18:00 UTC. The centre of

the nighttime distribution outside the eddy ranged from ap-

proximately 30 to 130 m depth. During the day, the lowest Sv

was recorded between 100 and 300 m depth, with a resid-

ual non-migrating population in the upper 100 m. The as-

cendant and descendent migration took place from approx-

imately 18:00 to 20:00 UTC (16:15 to 18:15 solar time) and

07:00 to 09:00 UTC (05:15 to 07:17 solar time), respectively.

A very different nighttime distribution was observed when

traversing the eddy. The scattering in the surface layer was

located further up in the water column than outside the eddy

and their lower distribution margin coincided with the upper

oxycline (approximately 85 m in the eddy centre). In the core

of the shallow OMZ, below approximately 20 µmol O2 kg−1,

an absolute minimum Sv was observed.

The intersection of the two transects (see red crosses in

Fig. 2) was visited shortly after 12:00 and 00:00 UTC, repre-

senting full day/night conditions, respectively. Here, the dif-

ference between Sv in the surface at daytime and nighttime

suggests substantial vertical migration into/out of the surface

layer, crossing the OMZ (Fig. 2b). Furthermore, the distri-

bution of the surface daytime resident population (with Sv

values of approximately 75 dB) is bimodal, peaking again at

Biogeosciences, 13, 1977–1989, 2016 www.biogeosciences.net/13/1977/2016/
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Figure 2. Cruise track with indicated day- and nighttime hours (panel a, red cross indicates intersection of day- and nighttime section) and

shipboard acoustic Doppler current profiler (ADCP) mean volume backscatter Sv at 75 kHz (panel b, red crosses indicate the two profiles

obtained at the intersection). White contour lines indicate oxygen concentrations interpolated from CTD profiles (triangles denote CTD

stations).

approximately 90 m. This is well within the shallow OMZ

(note that there are no O2 isolines shown in the daytime tran-

sect in Fig. 2b since there were no CTD casts performed on

the first transect).

Reanalysis of acoustic backscatter and oxygen time series

data from the CVOO mooring before and during the tran-

sit of an ACME in 2010 (Karstensen et al., 2015) shows

that the daytime Sv at the depth level of the oxygen sen-

sor (around 50 m, depending on wire angle) is reduced be-

low approximately 20 µmol O2 kg−1 (Fig. 3a, power func-

tion; r2
= 0.69). For nighttime data (Fig. 3b), the relation-

ship between Sv and oxygen concentration is best described

by a linear function (r2
= 0.94). Sv in the subsurface in-

creases around approximately 07:00 and 19:00 UTC (Sup-

plement Fig. S1). These dusk and dawn traces suggest that

DVM species migrate through the OMZ even when the daily

mean oxygen concentration is between 5 and 20 µmol kg−1.

3.3 Optical profiling

The UVP5 transect across the eddy revealed a pronounced

increase of aggregates in the eddy core (Fig. 4a). This pat-

tern was still evident at the maximum profile depth (600 m,

below the midwater OMZ). At the same time, surface abun-

dance of copepods (Fig. 4b) and, to a lesser degree, collodaria

(Fig. 4c) is higher than in surrounding waters. Copepods

were observed in substantial abundance within the OMZ,

while collodaria appeared to avoid it. On the other hand,

gelatinous zooplankton (comprising medusae, ctenophores

and siphonophores; Fig. 3d) were observed in the inner OMZ

Figure 3. Moored ADCP (300 kHz, matched to depth of moored

oxygen sensor, approximately 50 m) mean volume backscatter Sv

(dB) as a function of oxygen concentration (µmol O2 kg−1) dur-

ing daytime (a) and nighttime hours (b). Higher Sv indicates a

higher biomass of zooplankton and nekton. Transparent symbols

are 1.5-hourly data, filled symbols are mean values (±SD) for

10 µmol O2 kg−1 bins. Data are from 1 January to 14 March 2010.

core. Not a single observation of shrimp-like micronekton

(euphausiids and decapods; Fig. 4e) was made at oxygen

concentrations lower than 28 µmol O2 kg−1. Integrated abun-

dance (upper 600 m; Fig. 5) of large aggregates was signif-

icantly higher in the core stations compared to the outside

(one-way ANOVA, Tukey’s HSD test p < 0.001) and margin

(p < 0.05) stations. The integrated abundance of gelatinous

plankton was significantly higher in the core stations than in

www.biogeosciences.net/13/1977/2016/ Biogeosciences, 13, 1977–1989, 2016
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Figure 4. Left column shows oxygen contours (µmol O2 kg−1) across the eddy (from NE to SW) with superimposed bubble plots of UVP-

based abundance (individuals m−3, in 5 m depth bins) of aggregates (a), copepods (b), collodaria (c), gelatinous plankton (d) and shrimp-like

organisms (euphausiids and decapods) (e). Note break in distance axis on section panels. Triangles denote CTD/UVP stations. Middle column

are profiles of mean (±SD) abundance within the eddy core (n= 4) and at the CVOO station (n= 7) along with mean oxygen profiles with

the exception of euphausiids and decapods (e), where “+” denotes positive observations. For better visibility at low values, data with mean

abundance= 0 are omitted. Right column shows representative images of the respective category.
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Figure 5. UVP5-derived integrated abundance (m−2, upper

600 m) of large aggregates (> 500 µm) (a), copepods (b), collo-

daria (c), gelatinous plankton (d), shrimp-like micronekton (eu-

phausiids/decapods) (e) and phaeodaria (f) in the eddy core (n= 4

profiles), eddy margin (n= 4) and outside of the eddy (n= 7). Dif-

ferent letters denote significant differences.

the outside stations (p < 0.05). For the other groups, differ-

ences in integrated abundance were not significant.

3.4 Multinet

The multinet data provide a higher taxonomic resolution, but

lower spatial (horizontal and vertical) resolution than the op-

tical profiles (UVP). In Fig. 6, the abundance and vertical

distribution of eight conspicuous taxa are depicted, ordered

by their apparent sensitivity to hypoxia. While euphausi-

ids (Fig. 6a), calanoid copepods (Fig. 6b) and foraminifera

(Fig. 6c) are abundant in the surface layer (exceeding the

mean abundance at CVOO), they appear to avoid the shal-

low OMZ. Siphonophores (Fig. 6d), the poecilostomatoid

Oncaea spp. (Fig. 6e) and eucalanoid copepods (Fig. 6f) are

all very abundant in the eddy’s surface layer during night-

time (with the latter also being observed in the shallow OMZ

during nighttime) and appear to take refuge within the shal-

low OMZ during daylight hours. Two groups that appeared

to favour the shallow OMZ even during nighttime hours were

polychaetes (Fig. 6g) and ostracods (Fig. 6h), but also the

harpacticoid copepod Macrosetella gracilis (Table S1 in the

Supplement). Taxa that were more abundant in the surface

layer of the eddy core compared to the mean outside eddy

situation included eucalanoid and other calanid copepods,

Oithona spp., Macrosetella gracilis, Oncaea spp., ostracods,

decapods, siphonophores, chaetognaths, molluscs (mainly

pteropods), polychaetes and foraminifera (Table S1). In con-

trast, taxa that were less abundant in the surface layer in the

eddy were amphipods, salps and appendicularia. Although

not sampled quantitatively by this type of net, this also

seemed to be the case for fishes. In particular, no single indi-

vidual was caught in the upper 200 m of the eddy core night

station. Total area-integrated abundance of all zooplankton

organisms in the upper 600 m was 151 000 (±34 000) m−2 in

the eddy core and 101 000 (±15 000) at the outside station

(Table S2).

4 Discussion

Already during the remote survey, it became apparent that

the tracked mesoscale eddy was a hotspot of primary produc-

tivity. Lowered sea surface temperature and elevated surface

chl a values (satellite imagery; Schütte et al., 2016) as well

as increased nitrate levels in the eddy interior (autonomous

gliders; Karstensen et al., 2016; Fiedler et al., 2016) indicate

active upwelling and translate into substantially increased

productivity (Löscher et al., 2015). During westward prop-

agation, the hydrographic character was found to be remark-

ably constant (Karstensen et al., 2016; Schütte et al., 2016),

while the genomic characterization (Löscher et al., 2015) in-

dicated that the eddy had created a unique ecosystem that has

not much in common with the coastal one it originated from.

The present study is the first to observe the impact of such

eddies on pelagic metazoans. Since process understanding

and zooplankton production estimates are still lacking, we

cannot conclude whether the system is ultimately bottom-up

or top-down controlled and whether the seemingly high zoo-

plankton productivity may be due to lacking higher trophic

levels.

We deliberately chose not to attempt a direct comparison

of methods (e.g. by trying to derive biomass from ADCP

backscatter), but rather use the three methods complemen-

tary to each other: the acoustic survey reveals the horizon-

tal and vertical fine-scale spatial distribution of scatterers

(macrozooplankton and micronekton). It suggests a complete

avoidance of the OMZ by these groups, whose identity re-

mains somewhat unclear (see also Karstensen et al., 2015).

The UVP has an excellent vertical and an intermediate hor-

izontal (several profiles along transect) resolution, with re-

stricted information regarding the identity of the organisms

(limited by image resolution and sampling volume to more

abundant mesozooplankton). The multinet has low vertical
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Figure 6. Oxygen contours (µmol O2 kg−1) across the eddy (from NE to SW) with superimposed bar plots of multinet-based abundance

(individuals m−3) of euphausiids (a), calanoid copepods (b), foraminifera (c), siphonophores (d), Oncaea sp. (e), eucalanid copepods (f),

polychaetes (g) and ostracods (h). White and grey bars indicate daylight and nighttime hauls, respectively. Triangles denote CTD stations

used for the O2 section. For the CVOO station (outside eddy situation), the mean (+SD) of four D /N samplings is shown and the distance

to core is not calculated because data were combined from different cruises. Representative images are shown next to the respective category

panel.
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and horizontal resolution, and low catch efficiency for fast-

swimming organisms. Its main asset is that it allows for a

detailed investigation of zooplankton and some micronekton

organisms. Since the samples are still intact after scanning,

taxonomists interested in one of the groups presented here

would even be able to proceed with more detailed work.

Using the shipboard and moored ADCP to investigate

acoustic backscatter (rather than a calibrated scientific

echosounder) resulted from the necessity to gather ADCP-

derived current velocity data for eddy identification and lo-

calization of the core (see Fig. 1). It has to be noted that the

backscatter signals from the 75 kHz shipboard ADCP and

the 300 KHz moored ADCP are strictly not comparable, as

for organisms that are small compared to the acoustic wave-

lengths, the backscatter strength increases rapidly with in-

creasing frequency (Stanton et al., 1994). Also, smaller or-

ganisms contribute more to the 300 kHz signal than to the

75 kHz. Nevertheless, both instruments suggest that OMZ

avoidance sets in at O2 concentrations lower than approxi-

mately 20 µmol O2 kg−1.

The marked decrease in ADCP Sv in the shallow OMZ

is only partly confirmed by the other two techniques. The

animals that contribute most to the ADCP backscatter at

a frequency of 75 kHz are targets in the centimetre-size

range (75 kHz correspond to a wavelength of 20 mm), i.e.

larger zooplankton and micronekton such as euphausiids,

amphipods, small fish, pteropods, siphonophores and large

copepods (Ressler, 2002). Thus, the community of organ-

isms contributing most to the backscatter is not quantita-

tively (i.e. providing accurate abundance estimates) sampled

by the multinet and the UVP5. Both mostly target organisms

< 10 mm in size and the sampling volume is small, in par-

ticular with the UVP5. Still, spatial observation patterns of

these organisms derived from the multinet and UVP5 may

help to provide explanations for the patterns observed in the

ADCP, even though abundance estimates are to be taken with

caution. For example, euphausiids contribute substantially to

the backscatter at 75 kHz in this region (as observed through

horizontal MOCNESS tows during dusk and dawn, resolving

ADCP migration traces; Buchholz et al., unpublished data).

Thus, the relative decrease of observed euphausiids in the

OMZ (and in the eddy in general) in both multinet samples

and UVP profiles suggests that they may be partly responsi-

ble for the lack of backscatter in the OMZ.

High-resolution profiles obtained by the UVP5 indicated

OMZ avoidance by euphausiids and collodaria, while cope-

pods (albeit at lower concentrations than in the surface layer)

were observed in the OMZ core. Gelatinous zooplankton was

even more abundant in the shallow OMZ than in surface wa-

ters. The multinet data (providing higher taxonomic resolu-

tion and larger sampling volume, but lower vertical resolu-

tion) suggest that there are four strategies followed by zoo-

plankton in the eddy, which will be discussed below.

4.1 Shallow OMZ avoidance and compression at the

surface

We ascribe this behaviour to euphausiids and most calanoid

copepods as well as collodaria and foraminifera (from the su-

pergroup rhizaria). While the total abundance of krill is prob-

ably underestimated by the comparatively slow and small

plankton net, their vertical distribution in relation to the

OMZ and the marked total decrease within the eddy com-

pared to outside stations suggests that they are susceptible

to OMZ conditions and may suffer from increased predation

in the surface layer. This is in line with physiological obser-

vations, where a critical partial pressure of 2.4 and 6.2 kPa

(29.6 and 64.2 µmol O2 kg−1) was determined at subsurface

(13 ◦C) and near-surface temperatures (23 ◦C), respectively,

in Euphausia gibboides in the ETNA (Kiko et al., 2015).

Calanoid copepods represent the largest group in terms of

abundance and biomass and comprise approximately 100

species in Cabo Verdean waters (Séguin, 2010) with a wide

range of physiological and behavioural adaptations. Species

most tolerant to low-oxygen conditions are vertically migrat-

ing species, such as Pleuromamma spp., while epipelagic

species, such as Undinula vulgaris, are less tolerant (Teu-

ber et al., 2013; Kiko et al., 2015). From the rhizaria super-

group, the fine-scale distribution pattern of solitary collodaria

(a group that is abundant in surface waters of the oligotrophic

open ocean; see Biard et al. 2015 and references therein) sug-

gests OMZ sensitivity, but direct evidence from the literature

is lacking. The foraminifera, which are mostly too small to

be quantified well with the UVP5, but in contrast to other

rhizaria are well preserved in buffered formaldehyde in sea-

water solution, were highly abundant in the surface of the

eddy core. Here, the distribution shift likely also includes

a community shift, since a marked dominance change from

surface-dwelling to subsurface-dwelling species was found

in sediment trap data during the transit of the 2010 ACME

(Fischer et al., 2015). In that ACME, also an export flux peak

by foraminifera was observed.

4.2 Migration to the shallow OMZ core during daytime

This strategy seems to be followed by siphonophores, On-

caea spp. and eucalanoid copepods.

Although it seems unlikely that siphonophores in this sur-

vey were contributing substantially to the ADCP backscat-

ter, as those retrieved by the multinet were almost exclu-

sively calycophorans (see Fig. 6d for a type specimen), which

do not have a pneumatophore and, therefore, lack gas bub-

bles that are highly resonant in other siphonophore groups

(e.g. Ressler, 2002). They may, however, contribute to the

weak backscatter signal in the shallow OMZ during daytime

(Figs. 2b and 6d). Oncaea spp. are particle-feeding cope-

pods that are directly associated with marine snow (Dagg

et al., 1980). They were observed in quite extreme OMZs

in other oceanic regions (e.g. Böttger-Schnack, 1996; Saltz-
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man and Wishner, 1997); however, our results suggest that at

least in the tropical Atlantic biome they cannot permanently

endure hypoxia but have to pay their oxygen debt during

nighttime. The majority of adult eucalanoid copepods were

Rhincalanus nasutus, a species that is frequently found in

the midwater OMZ of the ETNA. In the eastern tropical Pa-

cific, however, R. nasutus was reported to be excluded from

the extreme midwater OMZ (500–1000 m depth, below ap-

proximately 22 µmol O2 kg−1), unlike the key OMZ-adapted

eucalanoid species of that region (e.g. Eucalanus inermis),

which are able to permanently inhabit the OMZ (Saltzman

and Wishner, 1997). In our study, R. nasutus were also found

in the shallow (extreme) OMZ of the eddy (well below

20 µmol O2 kg−1), indicating that this copepod species also

may be able to cope with further deoxygenation of the mid-

water OMZ in the Atlantic. Both Oncaea and Rhincalanus

are unlikely to be seen in the Sv signal at 75 kHz.

4.3 Residing in the shallow OMZ day and night

Contrary to most crustaceans, collodaria and euphausiids,

a remarkable ability to endure OMZ conditions for pro-

longed periods of time seems to be present in ostracods, poly-

chaetes, Macrosetella gracilis and gelatinous plankton. “Jel-

lies” are a group of organisms of which several taxa, such as

siphonophores, salps, hydromedusae and ctenophores, have

been reported to tolerate hypoxic conditions much better than

most crustacean zooplankton (Mills, 2001; Thuesen et al.,

2005). In addition to reduced metabolic activity (e.g. Ruther-

ford Jr. and Thuesen, 2005), using the mesoglea gel ma-

trix as an oxygen reservoir was shown to be a strategy in

scyphomedusae to temporarily survive anoxia (Thuesen et

al., 2005). It has also been suggested that “jellyfish” (i.e.

pelagic cnidarians and ctenophores) outcompete other plank-

tonic groups in coastal systems under eutrophication-induced

hypoxia (Mills, 2001). The UVP5 nighttime section suggests

that many gelatineous organisms reside within the shallow

OMZ even during nighttime. This is only partly confirmed

by the multinet data; however, ctenophores and medusae are

often destroyed during sampling and not well preserved in

formaldehyde. For ostracods, it is known that several limnic

(Teixeira et al., 2014) and marine (Corbari et al., 2004) ben-

thic species tolerate hypoxia for prolonged periods of time

(and preferentially select hypoxic habitats over oxygenated

ones), which lead to the use of their abundance in sediment

cores as a proxy for past ocean oxygenation (Lethiers and

Whatley, 1994). In pelagic marine ostracods, however, there

is little evidence for particular pre-adaptation to OMZ condi-

tions. To the best of our knowledge, no physiological studies

exist that describe the metabolic response of pelagic ostra-

cods to hypoxia. Recently, it was found that the oxygen trans-

port protein hemocyanin occurs in several groups within the

class ostracoda, including planktonic species (Marxen et al.,

2014). In the Arabian Sea, the highest ostracod abundances

were found in the oxygenated surface layer, but consistent

occurrence in the extreme OMZ (< 5 µmol O2 kg−1) was re-

ported (Böttger-Schnack, 1996). In the eastern tropical Pa-

cific, most species were reported to avoid the OMZ, with the

notable exception of Conchoecetta giesbrechti, which is clas-

sified as an OMZ-adapted species (Castillo et al., 2007). For

pelagic polychaetes, Thuesen and Childress (1993) even state

that they may have the highest metabolic rates (and, thus,

oxygen demand) in the meso- and bathypelagic zones of the

oceans, with the exception of the aberrant species Poeobius

meseres.

4.4 Migration through the shallow OMZ core to

better-oxygenated depths

To rigorously assess DVM reduction by the underlying

OMZ, acoustic 24 h observations would be necessary to di-

rectly observe the migration pattern. Unfortunately, the dawn

and dusk migration observations took place at the northeast-

and southwest-margin of the eddy, respectively, just outside

the 30 µmol O2 kg−1 boundary (Fig. 2). Nevertheless, it ap-

pears from the day/night difference in the shipboard ADCP

Sv (at the intersection of the two transects) as well as from

the moored ADCP data (Fig. S1) that at least part of the mi-

grating population “holds its breath” and crosses the OMZ

during ascent/descent. In this respect, the thin shallow OMZ

seems to be different from the several hundred metres thick

mesopelagic OMZ, which at low core oxygen concentrations

can serve as a quite effective migration barrier (Auel and Ver-

heye, 2007; Teuber et al., 2013).

The enhanced surface primary productivity of the eddy

also resulted in an approximately 5-fold increase of large

particles, well visible down to 600 m depth. This indicates

a massive export flux by sinking marine snow (see also Fis-

cher et al. (2015) for sediment trap data of the 2010 ACME),

which is thus made available to higher trophic levels at

greater depths. As an example, phaeodaria (in supergroup

rhizaria) are one of the few exclusively mesopelagic groups

(only found deeper than approximately 200 m in UVP pro-

files). Their integrated abundance seemed to be positively af-

fected by the eddy conditions, which may indicate favourable

feeding/growth conditions at depth.

In summary, mesozooplankton biomass was generally en-

hanced in the euphotic zone of the ACME, suggesting that

it may represent an “oasis in the desert” sensu Godø et

al. (2012), although the differences to outside conditions

were not quite as large as those reported by Goldthwait and

Steinberg (2008). On the other hand, subsurface hypoxia ap-

pears to be detrimental to some surface-dwelling as well as

vertically migrating zooplankton taxa. We lack quantitative

estimates of higher trophic levels (the multinet is too small

and slow to efficiently sample fast-swimming nekton organ-

isms), but it seems that the small migratory mesopelagic

fishes, which were usually caught (albeit in low numbers)

outside the eddy, were less abundant in the eddy core’s sur-

face. To draw robust conclusions on the identity and where-
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abouts of acoustic scatterers, the additional use of several

types of stratified nets is necessary (e.g. 10 m2 MOCNESS

in addition to a multinet or 1 m2 MOCNESS) but was lo-

gistically impossible during the opportunistic sampling on

M105. Since gelatinous plankton organisms appear to play

a key role in these oceanic OMZs and are notoriously un-

dersampled by nets and/or destroyed by fixatives, it even

seems worthwhile to employ a dedicated camera system

(with larger sampling volume than the UVP5) for such a sur-

vey. It also remains an open question whether the rich zoo-

plankton prey field is exploited by epipelagic fishes and their

predators (see, e.g., Tew Kai and Marsac (2010) for exam-

ples of tuna and seabird interaction with cyclonic eddies). By

providing isolated bodies of water with distinct (and some-

times, like in our case, extreme) environmental conditions

for many months, mesoscale eddies are important vectors of

species dispersal and invasion (Wiebe and Flierl, 1983) and

subject the population fragments they contain to their own

mutations, selection forces and genetic drift effects. Thus,

they not only are hypothesized to play a central role in spe-

ciation of planktonic species (Bracco et al., 2000; Clayton et

al., 2013), but also may resemble a key mechanism to equip

oceanic metapopulations with the range of physiological and

behavioural adaptations deemed necessary to survive under

global change.

5 Conclusions

Acoustic observations (shipboard ADCP) confirm previ-

ous observations (moored ADCP) of a sharp decrease

in backscatter at O2 concentrations below approximately

20 µmol O2 kg−1. Euphausiids (which are known to con-

tribute substantially to the ADCP backscatter) were not ob-

served within the OMZ stratum of the eddy, and their inte-

grated abundance was markedly reduced. Still, multinet and

UVP5 data indicate that several zooplankton groups are sur-

prisingly insensitive to these extreme OMZ conditions, and

many taxa that avoid the OMZ even reach higher abundance

in the productive surface environment of the eddy. However,

it remains an open question if and how higher trophic levels

(such as small pelagic forage fish and their predators) may

benefit from the dense prey field. While the term “open ocean

dead zone” may be an exaggeration, low-oxygen eddies in

the ETNA in light of future deoxygenation might serve as

a crystal ball (or, more appropriately, a “scrying pool”) to

estimate the differential response of different plankton func-

tional groups of the open ocean to global change.
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