

Supplement of

The effect of a permafrost disturbance on growing-season carbon-dioxide fluxes in a high Arctic tundra ecosystem

Alison E. Cassidy et al.

Correspondence to: A. E. Cassidy (alison.cassidy@geog.ubc.ca)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

On the use of a tilted LI-7500 in moderately cold environments

Under very cold conditions instrument surface heat may critically affect the ability to measure CO₂ fluxes with the Li-7500 open-path sensor, in particular with an upright mounted sensor (Burba *et al.*, 2008). The EddyPro® manual summarizes “When CO₂ and H₂O molar densities are measured with the LI-7500 in cold environments (low temperatures below -10°C), a correction should be applied to account for the additional instrument-related sensible heat flux, due to instrument surface heating/cooling.”¹

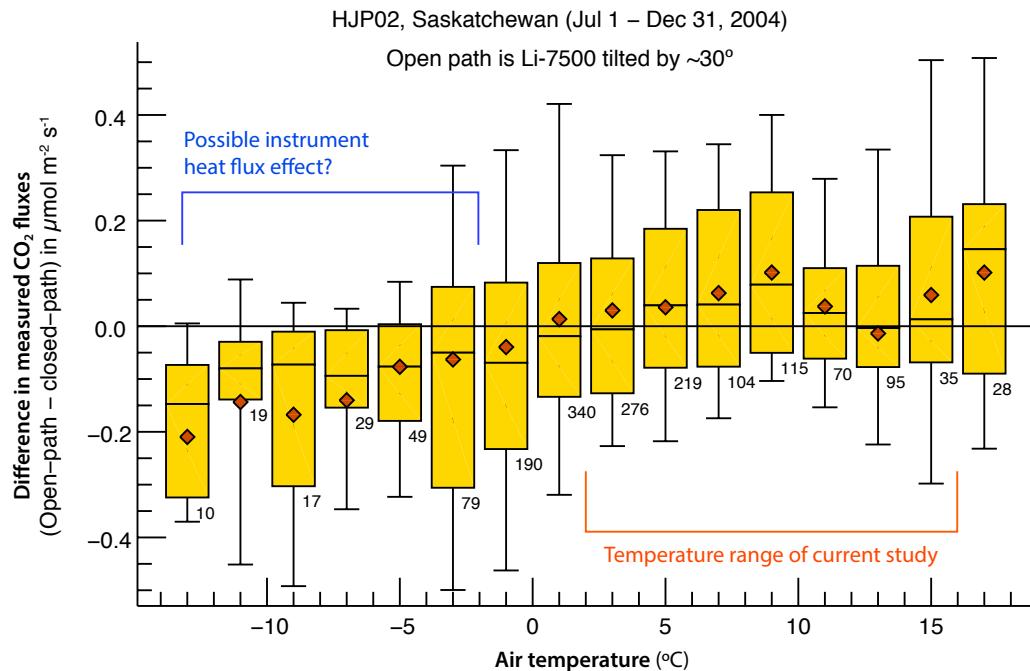
This correction was not applied because of the following three reasons:

- Our measurements were made during July, with 24 hour sunlight. Our average air temperature was +10°C. Temperatures never dropped below 2°C, and reached as high as 16°C. Hence, ambient temperatures did not fall within the critical range of < -10°C, where fluxes are affected, mentioned in Burba *et al.* (2010).
- In addition, our sensors (Li-7500) were mounted at an angle of 30° to minimize issues associated with heating and reduce pooling of moisture on the windows. The correction cannot be employed with a tilted sensor. Burba *et al.* (2008) note that the correction "... assumes that the instrument is mounted in a near-vertical orientation". Analysis of a to-date unpublished dataset has shown that a tilted sensor does not cause measurement differences between open-path and closed-path systems. A comparison between fluxes measured with a tilted Li-7500 sensor and a closed path system as function of temperature is attached below.
- In our current approach (i.e. without correction) closed chamber measurements and the EC approach match well (RMSE = 0.6 $\mu\text{mol m}^{-2} \text{s}^{-1}$). If one would correct fluxes using the equations in Burba *et al.* (2008) and assume the sensor was mounted upright, the correlation between chamber measurements and EC measurements would become significantly worse (RMSE = 1.4 $\mu\text{mol m}^{-2} \text{s}^{-1}$). This is regarded as a strong indication that the correction would incorrectly distort measured fluxes (because assuming a vertically mounted sensor and low temperatures).

Additional supporting dataset

Demonstration that a tilted sensor mounting of the Li-7500 sensor causes no sensor disagreement to a closed-path system between 2°C and 16°C.

To investigate whether there are any systematical differences between measuring CO₂ fluxes with a tilted open-path (OP, Li-7500) vs. a closed-path (CP) analyzer in the range of the currently observed temperatures, a dataset sampled by the Biometeorology group at the University of British Columbia, UBC was used (Prof. A. Black, pers. comm.). This dataset was recorded over a forest clear-cut in Saskatchewan, Canada (Fluxnet site HJP02, Zha *et al.* 2009, Figure 1) at a comparable height to our systems. Data from June – December 2004 were used, when both a Li-7500 open path analyzer tilted by about 30° (same tilt we used in our measurements) and a closed path analyzer (Li-7000, Fluxnet


¹ https://www.licor.com/env/help/eddypyro6/Content/Calculating_Off-season_Uptake_Correction.html

Canada standard) were operated simultaneously. Air temperatures during this time covered the range from -15 to +20°C.

Figure 1: Tilted open-path and inlet for closed-path system at the HJP02 Fluxnet Canada site (Photo by Zoran Nesic, UBC)

The half-hourly differences between F_{CO_2} measured by the tilted OP and F_{CO_2} measured by the CP were binned by air temperature (2 K bins). Figure 2 shows that for the range between 0 and 20°C, the systems are not systematically different, while below 0°C the OP instrument starts to systematically underestimate fluxes, which indeed becomes a major issue < -10°C - presumably due to the sensor heating effect. Temperatures during measurements for the current study (bdg-12-19781-2015) in the High Arctic were always between 2°C and 16°C, with an average of 10°C, so we do not expect that our fluxes were compromised with a tilted sensor mounting of the Li-7500.

Figure 2: Difference between CO₂ fluxes determined by open path and closed-path system from July 1, to December 31, 2004 at the Canada Fluxnet Site HJP02. Diamonds are mean values in each bin, the boxes cover the 25% and 75% percentiles, with the horizontal bar being the median. The whiskers show the 5 and 95% percentiles. Numbers are the number of half hourly values in each bin (when both systems provided high quality data).