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Abstract. The interannual variability (IAV) in atmospheric

CO2 growth rate (CGR) is closely connected with the El

Niño–Southern Oscillation. However, sensitivities of CGR to

temperature and precipitation remain largely uncertain. This

paper analyzed the relationship between Mauna Loa CGR

and tropical land climatic elements. We find that Mauna Loa

CGR lags precipitation by 4 months with a correlation coef-

ficient of −0.63, leads temperature by 1 month (0.77), and

correlates with soil moisture (−0.65) with zero lag. Addi-

tionally, precipitation and temperature are highly correlated

(−0.66), with precipitation leading by 4–5 months. Regres-

sion analysis shows that sensitivities of Mauna Loa CGR to

temperature and precipitation are 2.92± 0.20 PgC yr−1 K−1

and −0.46± 0.07 PgC yr−1 100 mm−1, respectively. Unlike

some recent suggestions, these empirical relationships favor

neither temperature nor precipitation as the dominant factor

of CGR IAV. We further analyzed seven terrestrial carbon

cycle models, from the TRENDY project, to study the pro-

cesses underlying CGR IAV. All models capture well the IAV

of tropical land–atmosphere carbon flux (CFTA). Sensitivities

of the ensemble mean CFTA to temperature and precipitation

are 3.18± 0.11 PgC yr−1 K−1 and −0.67± 0.04 PgC yr−1

100 mm−1, close to Mauna Loa CGR. Importantly, the mod-

els consistently show the variability in net primary produc-

tivity (NPP) dominates CGR, rather than heterotrophic res-

piration. Because previous studies have proved that NPP is

largely driven by precipitation in tropics, it suggests a key

role of precipitation in CGR IAV despite the higher CGR

correlation with temperature. Understanding the relative con-

tribution of CO2 sensitivity to precipitation and temperature

has important implications for future carbon-climate feed-

back using such “emergent constraint”.

1 Introduction

Increasing atmospheric carbon dioxide (CO2) concentration,

from anthropogenic emissions, is the major contributing fac-

tor to global warming. This trend can be seen from the long-

term CO2 records from the Mauna Loa Observatory, Hawaii,

with a significant seasonal cycle and interannual variability

(IAV) superimposed (Keeling et al., 1976, 1995). The IAV of

the atmospheric CO2 growth rate (CGR) is closely connected

to the El Niño–Southern Oscillation (ENSO), with notice-

able increases during El Niño, and decreases during La Niña

events (Bacastow, 1976; Keeling and Revelle, 1985).

The IAV of the atmospheric CGR is the consequence of

climate-induced variations in oceanic and terrestrial carbon

sources and sinks. Earlier studies have considered the CO2

flux changes over the oceans, especially the equatorial Pacific

Ocean, as the cause of the atmospheric CO2 IAV (Bacastow,

1976; Francey et al., 1995). However, later inversion model-

ing studies (Bousquet et al., 2000; Rodenbeck et al., 2003)

and many measurement campaigns (Nakazawa et al., 1997;

Lee et al., 1998; Feely et al., 2002) have suggested only a

small IAV in oceanic carbon uptake. These evidences eluci-

date the dominant contributions from the terrestrial ecosys-

tems, especially in the tropics, to the IAV of the atmospheric
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CGR (Braswell et al., 1997; Bousquet et al., 2000; Zeng et

al., 2005a; Qian et al., 2008). Recently, using the combi-

nation of land surface models and the satellite-based land

cover map, Ahlstrom et al. (2015) pointed out that semi-arid

ecosystems, largely occupying low latitudes, dominated the

terrestrial carbon interannual variability.

The influence of the ENSO on terrestrial carbon IAV can

be largely explained by a “conspiracy” between tropical cli-

matic variations (a tropical-wide drought and warming dur-

ing El Niño) and the responses of soil and plant physiology

(Kinderman et al., 1996; Tian et al., 1998; Knorr et al., 2005;

Patra et al., 2005a; Zeng et al., 2005a), as well as some abi-

otic processes such as fires (van der Werf et al., 2004). How-

ever, the processes and strengths of the responses in such

terrestrial biotic and abiotic functions remain controversial.

Temperature, an important physical variable affecting photo-

synthesis and respiration, is regarded as the dominant fac-

tor on the basis of the significant correlation with Mauna

Loa CGR anomalies and in situ observations on tropical tree

growth, as well as confirmation by terrestrial carbon cycle

models (Kindermann et al., 1996; Braswell et al., 1997; Clark

et al., 2003; Cox et al., 2013; Piao et al., 2013; W. Wang et

al., 2013; X. Wang et al., 2014). Warming anomalies above

a certain threshold can result in a decrease in the terres-

trial primary productivity, in part due to the curtailment of

the leaf gas exchange (Doughty and Goulden, 2008; Cor-

lett, 2011). Simultaneously, the heterotrophic respiration,Rh,

caused by microbial decomposition, increases exponentially

with warming temperature (Q10). These direct biological re-

sponses to warming temperature variations account for the

significant positive correlation between the tropical tempera-

ture and CGR (W. Wang et al., 2013; X. Wang et al., 2014).

Moreover, further analyses have suggested a two-fold in-

crease in the sensitivity of CGR to the tropical temperature

variations in the past 5 decades (X. Wang et al., 2014).

Variation in precipitation over land was proposed as an al-

ternative dominant factor affecting the IAV of the CGR by

process-based biogeochemical models of terrestrial ecosys-

tems (Tian et al., 1998; Zeng et al., 2005a; Qian et al., 2008).

In order to quantify the individual effects of the ENSO-

induced climatic variations, Qian et al. (2008) conducted a

series of the sensitivity experiments using a dynamic global

vegetation and terrestrial carbon model (VEGAS). They re-

vealed that the contributions from the tropical precipitation

and temperature accounted for 56 and 44 % of variations in

air–land carbon fluxes during the ENSO events, respectively.

In situ records from multiple long-term monitoring plots in

the Amazon rainforest have been used to assess the severe

drought in 2005, which caused a total biomass carbon loss

of 1.2–1.6 Pg (petagrams) (Phillips et al., 2009). Ahlstrom et

al. (2015) also found that precipitation and NBP IAV became

more correlated with increasing spatial and temporal disag-

gregation.

These differing viewpoints indicate the current limited

understanding of biological processes’ response to ENSO.

These interannual sensitivities may be important for under-

standing the strengths of the positive carbon–climate feed-

back and climate sensitivities of the terrestrial carbon cycle

in future climate change (Cox et al., 2000, 2013; Wang et al.,

2014; Wenzel et al., 2014). Therefore, in this paper, we again

investigate the relationships between Mauna Loa CGR and

the tropical climatic variations, based on the up-to-date ob-

servations. The tropical climatic parameters are the follow-

ing: temperature, precipitation, soil moisture, and photosyn-

thetically active radiation (PAR). The performance of IAVs in

the tropical terrestrial carbon cycle was simulated by seven

state-of-the-art terrestrial carbon cycle models with monthly

outputs, from the TRENDY project (Trends in Net Land At-

mosphere Carbon Exchanges) (Canadell et al., 2011; Sitch

et al., 2015). These mechanistic models are used to delineate

the processes underlying the IAVs in CGR, and determine

how strong their sensitivities to temperature and precipita-

tion are. In return, these results also give out the evaluations

on the 7 terrestrial carbon cycle models on the interannual

timescale, which are important for improving them in their

development communities.

The paper is organized as follows: Section 2 describes the

data sets, methodologies, and terrestrial carbon cycle models

that are used. Section 3 presents related results covering three

aspects: first, the observed relationships between Mauna Loa

CGR and climatic variations; second, the performance and

consistencies among the terrestrial carbon cycle models; and

third, the climatic sensitivities of CGR and tropical terrestrial

carbon cycle. Finally, discussions and concluding remarks

are presented in Sect. 4 and 5.

2 Data sets, methodologies, and models

2.1 The observed and reanalysis data sets

The long-term in situ records of atmospheric CO2 concen-

trations from the Mauna Loa Observatory were obtained

from the website of the National Oceanic and Atmospheric

Administration (NOAA) Earth System Research Laboratory

(ESRL) (Keeling et al., 1976). We used the monthly mean

concentrations to calculate the atmospheric CGR for 1960 to

2012. Meanwhile, we took the globally averaged marine sur-

face monthly mean data from the NOAA for 1980 to 2012

as a comparison with the Mauna Loa data sets (Masarie and

Tans, 1995).

The near-surface air temperature and precipitation over

land data, with a 0.5◦× 0.5◦ resolution, came from the Cli-

matic Research Unit (CRU) Time-Series (TS) version 3.21 of

high resolution gridded data of month-by-month variations in

climate (Harris et al., 2014). These data sets were compiled

from observations by weather stations around the world,

and have been widely used to validate the performance of

model simulations in phase 5 of the Coupled Model Inter-

comparison Project (CMIP5). We took the PAR data from
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the NASA Global Energy and Water Exchanges (GEWEX)

Surface Radiation Budget (SRB) Release-3.0 data sets, with

a 1◦× 1◦ resolution for the period 1984–2007 (Stackhouse

et al., 2011). Soil moisture data sets from the Global Land

Data Assimilation System Version 2 (GLDAS-2) monthly

NOAH model products were adopted, with a 1◦×1◦ resolu-

tion for 1960–2010 (Rodell et al., 2004). We used the sea sur-

face temperature (SST) from the Hadley Center (HadSST2)

(Rayner et al., 2005), generated from in situ observations

held in the International Comprehensive Ocean–Atmosphere

Data Set (ICOADS), to obtain the SST anomalies in the Niño

3.4 regions which refer to the ENSO activities.

2.2 Statistical methods

The CGR was estimated as the difference between the

monthly mean concentrations in adjacent years (Patra et al.,

2005c; Sarmiento et al., 2010):

GR(t)= CO2(t + 6)−CO2(t − 6), (1)

where t denotes the specific month. We then converted the

CGR from ppm yr−1 into PgC yr−1, based on the conversion

factor 1 PgC= 0.471 ppm. The time series of the climatic

variables in the tropics (23◦ S–23◦ N) over land were area-

weighted and averaged. The long-term seasonal cycle was

removed from these time series, and in order to precisely ex-

tract variations on the interannual timescale, we further ap-

plied the Lanczos band-pass filter (Duchon, 1979) with cut-

off periods at 12 and 120 months and 121 weights to these

time series, which filters out the seasonal cycle and decadal

variabilities with 1–10 years window for our analyses.

The relationships between the atmospheric CGR and the

climatic variables on an interannual timescale were deci-

phered via the cross-correlation (Chatfield, 1982):

c(k)=
1

n

n∑
t=1

(X(t)−X)(Y (t + k)−Y )

σ(X)σ(Y )
, (2)

where k denotes the lag months,X and Y are the means of the

time series, and σ (X) and σ (Y ) are the standard deviations.

These filtered time series are strongly persistent (or highly

auto-correlated), so the effective degrees of freedom (dof)

were simply estimated with the approach of Bretherton et

al. (1999):

dof

n
=

1− r(1t)2

1+ r(1t)2
, (3)

where n denotes the sample size, r(1t) is the coefficient of

the first order autocorrelation, and 1t is 1 month.

Figure 1 shows how the tropical land temperature and pre-

cipitation are closely correlated. Cross-correlation analysis

indicates that their relationship peaks at a correlation coef-

ficient of −0.66, with a time lag of about 4–5 months in

(Pr leads Tas by 4–5 mo)

Figure 1. The cross-correlation coefficients between the tropical

land precipitation (Pr) and temperature (Tas). The horizontal axis

denotes the lead-lag months between precipitation and temperature,

with negative values indicating that precipitation leads temperature.

Bold line indicates correlation above 95 % significance (p ≤ 0.05).

temperature. This high correlation coefficient is partly ow-

ing to the fact that less land precipitation (for instance dur-

ing El Niño) can inhibit the evapotranspiration over Tropics,

promoting the higher temperature (Zeng et al., 2005a), and

also is due to ENSO-related circulation adjustments (Gu and

Adler, 2010). Sensitivities of the atmospheric CGR – or trop-

ical land–atmosphere carbon flux (CFTA) – to temperature

and precipitation were estimated according to the ridge re-

gression method (Hoerl and Kennard, 2000), the biased esti-

mation for non-orthogonal problems. The linear relationship

can be expressed as

y(t)= γ intxTas(t)+ δ
intxPr (t − 4)+ ε, (4)

where y(t) denotes the IAVs in the Mauna Loa CGR, CFTA,

or NPP; xTas and xPr denote the IAVs in the tropical land tem-

perature and precipitation; γ int and δint are the estimated sen-

sitivities by ridge regression; and ε is the residual error. Pre-

cipitation leads by 4 months in the regression, according to

below analyses. However, these estimated sensitivities only

account for the “contributive” effects of temperature and pre-

cipitation variations, but not the “true” sensitivities of Mauna

Loa CGR, CFTA, or NPP to these variables (Piao et al., 2013).

The responses of terrestrial ecosystems to temperature and

precipitation are actually nonlinear, so it is difficult to disen-

tangle the individual effects of temperature and precipitation

based on the linear statistical method. Additionally, we did

not take into consideration the other climatic drivers such as

variation in PAR or humidity, which may also contribute to

the IAV in atmospheric CGR.

2.3 Terrestrial carbon cycle models and

post-processing

In order to understand the contributions of tropical terres-

trial ecosystems to the atmospheric CGR and its underlying

processes, we used the monthly outputs of seven state-of-the-
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art dynamic global vegetation models (DGVMs) that partici-

pated in the TRENDY project (TRENDY-v1; Canadell et al.,

2011; Sitch et al., 2015). All the DGVMs were forced by

observed change in atmospheric CO2 concentration and his-

torical climate change. The land use was kept time-invariant

during the entire S2 simulation. Information on model reso-

lution, nitrogen and fire modules is summarized in Table 1.

The models used were (1) CLM4C (Lawrence et al., 2011);

(2) CLM4CN (Bonan and Levis, 2010; Lawrence et al.,

2011); (3) LPJ (Sitch et al., 2003); (4) LPJ-GUESS (Smith

et al., 2001); (5) OCN (Zaehle and Friend, 2010; Zaehle et

al., 2010); (6) TRIFFID (Cox, 2001); and (7) VEGAS (Zeng

et al., 2005a). Due to the different horizontal resolution of

the DGVMs, we interpolated the simulated terrestrial carbon

fluxes into a consistent 1◦ ×1◦ resolution using the first order

conservative remapping scheme (Jones, 1999) following the

equation:

Fk =
1

Ak

∫
Ak

f dA, (5)

where F k is the area-averaged destination flux,Ak is the area

of cell k, and f is the flux on an old grid which has overlap-

ping area A with the destination grid. After that, the tropical

terrestrial carbon fluxes were obtained according to the equa-

tion:

F =
∑
k

FkAk, (6)

between 23◦ S–23◦ N.

3 Results

3.1 The relationships between the atmospheric CGR

and climatic variables

Significant IAV was first detected in the atmospheric CO2

record at the Mauna Loa Laboratory, Hawaii (Keeling et al.,

1995, 1976). Figure 2e presents the long-term IAVs of Mauna

Loa CGR during 1960–2012 and the globally averaged ma-

rine surface data during 1980–2012. The IAVs of the two data

sets are highly consistent, so we mainly focus on the long-

term Mauna Loa CGR. Shown in Fig. 2a and e, the standard

deviation of Mauna Loa CGR is about 1.03 PgC yr−1, with

noticeable increases in the positive anomalies in the Niño 3.4

index, and vice versa for the negative anomalies. The ENSO

activities, the dominant year-to-year mode of global climate

fluctuations, greatly impact tropical precipitation and tem-

perature on land, through adjustments in atmospheric circu-

lations (Gu and Adler, 2011). Importantly, temperature and

precipitation have opposite signs (Fig. 2b and c), with the

respective correlation coefficients, relative to the Niño 3.4

index, of 0.55 and −0.83 (p<0.05). These ENSO-induced

tropical land temperature and precipitation variations con-

tribute to the CFTA in the same direction due to a “con-

spiracy” between climate anomalies and vegetation–soil re-

sponse (Qian et al., 2008; Zeng et al., 2005a). For example,

warmer and drier conditions during El Niño events can result

in the suppression of NPP and enhancement ofRh, both lead-

ing to anomalous flux into the atmosphere. However, precip-

itation does not directly interact with vegetation physiology.

Rather, vegetation responds to soil moisture, which is deter-

mined not only by precipitation but also by temperature, as

higher temperatures lead to increased evaporative water loss

(Qian et al., 2008). We also calculated the tropical IAVs in

soil moisture from the surface to a 2m depth, and found that

the soil moisture decreased during El Niño events, and in-

creased during La Niña events (r of −0.63, with p = 0.017

in Fig. 2d). As decreases in soil moisture can suppress NPP

and Rh, and vice versa for increases in soil moisture, this

may further affect the atmospheric CGR. Besides temper-

ature, precipitation, and soil moisture, other climatic IAVs,

such as PAR (Fig. S1 in Supplement), may also influence the

variations in terrestrial ecosystems (Nemani et al., 2003).

The coupling between the tropical temperature and pre-

cipitation induced by ENSO can be perturbed or inter-

rupted by strong volcanic eruptions, such as those of El

Chichón in March 1982 and Mount Pinatubo in June 1991

(Fig. 2). Especially during the post-Pinatubo years, the tem-

perature and precipitation both decreased in the 1991–1992

El Niño events. This unusual relationship resulted from ra-

diative forcing of volcanic sulfate aerosols in the stratosphere

(Stenchikov et al., 1998). Meanwhile, there was a hiatus in

the coupling between the Niño 3.4 and Mauna Loa CGR in

this period. W. Wang et al. (2013) used this decoupling be-

tween the Niño 3.4–precipitation–Mauna Loa CGR relation-

ship to highlight the temperature–CO2 relationship. How-

ever, the anomalous growth in vegetation was largely at-

tributed to diffuse light fertilization (Mercado et al., 2009).

In general, the canonical ENSO–CGR relationship is robust,

although it can occasionally be externally perturbed.

To elucidate the relationship between Mauna Loa CGR

and the variations in climatic variables, we conducted cross-

correlations of anomalies in Mauna Loa CGR with anoma-

lies in the Niño 3.4 index, tropical surface air temperature,

precipitation, soil moisture, and PAR (Fig. 3). We find that

ENSO activities generally lead Mauna Loa CGR by about 3–

4 months, with a correlation coefficient of 0.70 (p = 0.007).

The precipitation over land immediately responds to ENSO,

and thus also leads Mauna Loa CGR by about 4 months, with

a correlation coefficient of −0.63 (p = 0.016), similar to the

results of W. Wang et al. (2013) (Table 2): this phenomenon

may explain the weak correlation of Mauna Loa CGR with

concurrent precipitation. However, the temperature over land

lags ENSO by about 4 months, suggesting a certain time

was needed for surface energy adjustment along with the

ENSO-induced circulation and precipitation anomalies (Gu

and Adler, 2011). Consequently, the correlation between land

Biogeosciences, 13, 2339–2352, 2016 www.biogeosciences.net/13/2339/2016/
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Table 1. Characteristics of the terrestrial carbon cycle models used in this study.

DGVMs Horizontal Nitrogen Fire References

resolution limitation modules

CLM4C 2.5◦× 1.875◦ No Yes Oleson et al. (2010), Lawrence et al. (2011)

CLM4CN 2.5◦× 1.875◦ Yes Yes Bonan and Levis (2010), Lawrence et al. (2011)

LPJ 0.5◦× 0.5◦ No Yes Sitch et al. (2003)

LPJ-GUESS 0.5◦× 0.5◦ No Yes Smith et al. (2001)

OCN 3.75◦× 2.5◦ Yes No Zaehle and Friend (2010), Zaehle et al. (2010)

TRIFFID 3.75◦× 2.5◦ No No Cox (2001)

VEGAS 0.5◦× 0.5◦ No Yes Zeng et al. (2005a)

temperature and Mauna Loa CGR peaks with the correlation

coefficient of 0.77 (p = 0.002), with a 1-month lag in tem-

perature, a little different from the previous results (W. Wang

et al., 2013; X. Wang et al., 2014) (Table 2). This discrep-

ancy in phase implicitly proves that temperature was not the

only dominant factor in controlling IAV in atmospheric CGR.

The relationship between land precipitation and Mauna Loa

CGR can be bridged by the soil moisture. The correlation

of Mauna Loa CGR with concurrent soil moisture has the

maximum correlation coefficient of −0.65 (p = 0.022), sug-

gesting the soil moisture plays an important role in IAV of

atmospheric CGR, as analyzed by Qian et al. (2008), though

soil moisture is not well constrained by observations. We also

show the cross-correlation of Mauna Loa CGR with PAR, but

the correlation is not statistically significant.

3.2 Simulations using dynamic global vegetation

models

Different from inversion models, process-based terrestrial

carbon cycle models can determine the biological dynam-

ics underlying the IAV in atmospheric CGR. Previous stud-

ies (Jones et al., 2001; Zeng et al., 2005a; Qian et al., 2008)

have analyzed individual models. The TRENDY model out-

put archives provide the opportunity to analyze the mecha-

nisms with an ensemble of state-of-the-art carbon cycle mod-

els.

The IAV in ensemble mean tropical CFTA, derived from

six state-of-the-art DGVMs, is presented in Fig. 4a with the

1 σ inter-model spread and IAV in Mauna Loa CGR. We

excluded the CLM4CN to calculate the ensemble mean be-

cause of its different response of CFTA and NPP to tem-

perature and precipitation, according to our analyses. The

co-variation coefficient, 0.79 with p = 0.003, indicates first,

that the tropical terrestrial ecosystems dominate the IAV in

atmospheric CGR, confirming previous findings (Braswell

et al., 1997; Bousquet et al., 2000; Zeng et al., 2005a);

and second, that these state-of-the-art DGVMs have the ca-

pacity for capturing the historical IAV in terrestrial ecosys-

tems. There is also a significant inconsistency during the

post-Pinatubo period 1991–1992, owing to diffuse light fer-

tilization (Mercado et al., 2009). To better understand the

contribution from other regions, we also show the IAVs in

carbon fluxes for the Northern Hemisphere (23–90◦ N) and

Southern Hemisphere (60–23◦ S) (Fig. S2). It is clear that

the magnitudes of IAVs in carbon fluxes from the North-

ern Hemisphere (σ = 0.38 PgC yr−1) and Southern Hemi-

sphere (0.21 PgC yr−1) are much weaker than the tropical

CFTA (1.03 PgC yr−1). Further, the correlations between the

variations in carbon fluxes from the extratropical regions

and Mauna Loa CGR are insignificant, suggesting that these

IAVs may not be caused by ENSO. Therefore, we will only

focus on the tropical CFTA below.

The net land–atmosphere carbon flux CFTA results from

carbon adjustments in many biotic and abiotic processes. It

can be decomposed as

CFTA = Rh−NPP+D, (7)

where D denotes the disturbances, mainly caused by fires

here. We decomposed the simulated ensemble CFTA into

three terms (−NPP, Rh, and D; Fig. 4b–d), to understand

which process was the major factor. (To be precise, we ob-

tained the term D as the residual according to Eq. (7), be-

cause it was not explicitly provided in the S2 simulation).

We find that the −NPP has the strongest magnitude in the

IAVs (0.99 PgC yr−1, Table 3) among these three processes.

The correlation coefficient of −NPP with CFTA reaches

0.97 (p<0.0001, Table 3), explaining about 94 % of vari-

ance. The standard deviations of Rh and D are 0.29 and

0.10 PgC yr−1 (Table 3), respectively, and their correlation

coefficients with CFTA are −0.02 (p = 0.94) and 0.76 (p =

0.001). The weaker IAVs and insignificant correlation of Rh

with CFTA may arise from the opposing effects of tempera-

ture and precipitation. For example, higher temperatures can

enhance Rh, whereas less precipitation – drier conditions –

can suppress it. This result agrees with the C4MIP results in

which NPP also dominates CFTA (Fig. S3). In contrast, the

weakest term (D) has the very significant correlation with

CFTA (Table 3) because both higher temperature and less pre-

cipitation promote fires. In summary, the IAV in tropical NPP

largely accounts for tropical CFTA variation, dominating the

IAV in atmospheric CGR. Because NPP is mainly driven by

precipitation (Zeng et al., 2005a; Qian et al., 2008), this sug-

gests precipitation plays an important role in CGR IAV.

www.biogeosciences.net/13/2339/2016/ Biogeosciences, 13, 2339–2352, 2016
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Table 2. Summary of previous studies of the relationships between Mauna Loa CGR and climatic variables.

Studies Correlations of Mauna Loa CGR with climatic variables

Temperature Lead-laga Precipitation Lead-lag

W. Wang et al. (2013) 0.70 0 −0.50 −6

X. Wang et al. (2014) 0.53 0 −0.19b –

in this paper 0.77 1 −0.63 −4

a Lead-lag months between Mauna Loa CGR and climatic variables. Positive values indicate the climatic

variables lag Mauna Loa CGR. b This insignificant correlation coefficient was obtained with concurrent

precipitation in X. Wang et al. (2014).

Figure 2. Interannual variabilities (IAVs) in the Niño 3.4 index,

tropical land surface air temperature, precipitation, and soil mois-

ture, and atmospheric CO2 growth rate (CGR). The soil moisture

was calculated from the surface layer to a 2 m depth. The atmo-

spheric CGR, for the Scripps Mauna Loa CO2 data from 1960 to

2012 (solid line) and the globally averaged marine surface CO2 data

from 1980 to 2012 (dashed line), are shown as the difference be-

tween the monthly averaged concentrations in the adjacent 2 years.

The gray bars represent the three strongest El Niño events during

1965–1966, 1982–1983, and 1997–1998 years and vertical dashed

lines show the eruptions of El Chichón and Mount Pinatubo volca-

noes in 1982 and 1991, respectively.

(Nino3.4 leads by 3–4 mo) (Tas lags by 1 mo)

(Pr leads by 4 mo)

Figure 3. The cross-correlations of anomalies in Mauna Loa CGR

with anomalies in the Niño 3.4 index, tropical terrestrial surface air

temperature (Tas), precipitation (Pr), soil moisture (SM), and pho-

tosynthetically active radiation (PAR). The horizontal axis shows

the lead-lag months between them. Negative month values indicate

the anomalies in Mauna Loa CGR lag behind. Bold lines indicate

correlation above 95 % significance (p ≤ 0.05), estimated by the ef-

fective degree of freedom.

Table 3. Standard deviations of the terrestrial carbon cycle pro-

cesses.

DGVMs Standard deviations (PgC yr−1)

CFTA −NPP (ra) Rh (r) D (r)

CLM4C 1.73 1.49(0.97) 0.56(0.00) 0.37(0.79)

CLM4CN 1.54 1.33(0.94) 0.60(0.06) 0.33(0.77)

LPJ 0.90 1.05(0.92) 0.40(−0.04) 0.08(−0.54)

LPJ-GUESS 0.84 0.58(0.93) 0.33(0.34) 0.27(0.69)

OCN 0.70 0.72(0.94) 0.25(0.11) 0.01(−0.10)

TRIFFID 1.62 1.34(0.97) 0.45(0.71) 0.00(−0.28)

VEGAS 0.79 1.05(0.95) 0.45(−0.61) 0.08(0.81)

ENSb 1.03 0.99(0.97) 0.29(−0.02) 0.10(0.76)

Mauna Loa CGR 1.03c – – –

a It shows the correlation coefficient with CFTA. b The ensemble means were calculated

excluding the CLM4CN data because of its large discrepancies responding to temperature and

precipitation. c This value denotes the standard deviation of Mauna Loa CGR, as a reference to

the simulated tropical CFTA.

Though the ensemble tropical CFTA (and −NPP) can well

explain the historical IAV in atmospheric CGR, it is nec-

essary to understand the performance of each individual

DGVM. Figure 5 shows the color-coded correlation matrices
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Figure 4. The simulated IAVs of tropical land–atmosphere car-

bon flux (CFTA), reversed net primary productivity (−NPP), het-

erotrophic respiration (Rh), and disturbances (D) by the seven ter-

restrial carbon cycle models, involved in the TRENDY project. The

solid black lines in the figures denote the ensemble means (ex-

cluding CLM4CN), bounded by the 1 σ inter-model spread (green

shaded areas). The observed IAVs of Mauna Loa CGR from 1960

to 2012 are also shown in (a) as a red dashed line. We reversed the

NPP in order to make the sign consistent, positive values indicate

carbon release from the terrestrial ecosystems.

for the interannual anomalies in the tropical CFTA and−NPP

estimated by the 7 DGVMs, as well as Mauna Loa CGR and

ensemble mean results (“ENS”). As expected, each correla-

tion in pairs among the tropical CFTA is statistically signifi-

cant (p<0.03, Fig. 5a), indicating that these seven DGVMs

have great consistency in simulating the IAV in tropical ter-

restrial ecosystems under the same climatic forcing, although

their considerations and parameterizations on the biotic and

abiotic processes differ. Moreover, this consistency also sug-

gests the ensemble result is not fortuitous, and well repre-

sents the individual DGVM. Therefore, all the correlations of

Mauna Loa CGR with the CFTA simulated by each DGVM

are significant (p<0.02), like the ensemble CFTA. But it is in-

teresting that the correlation coefficients of Mauna Loa CGR

with CLM4CN (0.64, p = 0.02) and OCN (0.61, p = 0.01)

are weaker compared to the other models. We notice that

the correlations of these two models with the other models

in pairs are the weakest. These two DGVMs share a com-

mon feature, as both take the nitrogen limitation for the plant

growth into consideration (Table 1). Though accounting for

these factors suggests these models are more complete in

structure, they do not produce better simulations, indicating

that the impact of nitrogen on the carbon cycle remains un-

certain.

The correlation coefficients in pairs for NPP also show

high consistency (Fig. 5b), further confirming the conclu-

sion that the IAV in NPP domination of the CFTA varia-

tion is common to all DGVMs. On the contrary, there are

discrepancies in the variations of the simulated Rh and D

(Fig. S4). Specifically, we find that four (CLM4C, CLM4CN,

LPJ, and LPJ-GUESS) have consistent variations in esti-

matedRh, whereas the others (OCN, TRIFFID, and VEGAS)

are different (Fig. S4a). All the simulated Rh, except TRIF-

FID and VEGAS have insignificant correlation with Mauna

Loa CGR, like the behavior of the ensemble mean. Even if

the correlations are significant in TRIFFID and VEGAS, they

have opposite behaviors (TRIFFID: 0.64, p = 0.01; VEGAS:

−0.52, p = 0.08). The various responses to temperature and

precipitation result in the occurrence of large uncertainties in

the simulated Rh. It is even more difficult to explain the dis-

turbance term D (Fig. S4b). However, although large uncer-

tainties exist in Rh and D, we still conclude with confidence

that the variations in tropical vegetation on the interannual

timescale largely account for the atmospheric CGR variabil-

ity, because the variation magnitudes of Rh and D are much

smaller.

Although the correlations of Mauna Loa CGR with the

concurrent individual simulated CFTA are all statistically

significant (Fig. 5a), the cross-correlations of Mauna Loa

CGR with CFTA show that small discrepancies in phase exist

among seven DGVMs (Fig. 6a), and of course, are associated

with NPP (Fig. 7a). Nevertheless, the correlations of Mauna

Loa CGR with the concurrent ensemble CFTA and −NPP

have maximum values, indicating the multi-model simulated

ensemble tropical CFTA and −NPP well represent the varia-

tions in Mauna Loa CGR. Of course, the small discrepancies

in phase of the individual models originate from their dif-

ferent responses to temperature and precipitation. The cor-

relation of ensemble CFTA with temperature peaks at 0.91,

without a time lag (Fig. 6b, Table 4), while the correlation

between −NPP and temperature peaks at 0.82, with around

a 1-month lag in temperature (Fig. 7b, Table 4). On the other

hand, the correlations of the ensemble CFTA and −NPP with

precipitation peak at −0.81 and −0.86 with time lags of 4
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Figure 5. Color-coded correlation matrices for the interannual

anomalies in the tropical CFTA and −NPP estimated by the seven

terrestrial carbon cycle models. Panel (a) shows correlation coeffi-

cients in pairs among the estimated CFTA, and (b) correlation co-

efficients in pairs among −NPP in the period 1960–2010. Mauna

Loa CGR and modeled ensemble mean (ENS) are included in these

correlations as well. The values in each cell demonstrate the signif-

icance levels (p ≤ 0.05 refers to above 95 % significance).

and 3 months (Figs. 6c and 7c, Table 4). These behaviors are

highly consistent with those in Mauna Loa CGR (Fig. 3).

The responses of each DGVM to temperature and precipita-

tion are listed in Table 4. Though there are small discrepan-

cies in phase, their behaviors are similar to each other, except

for the CLM4CN model. The responses of CFTA and NPP in

CLM4CN to precipitation are too immediate, possibly indi-

cating that the soil moisture adjusts too quickly along with

precipitation changes. Unlike NPP, the responses ofRh and D

to temperature and precipitation are not so consistent among

Figure 6. The cross-correlations of the simulated tropical CFTA

anomalies with Mauna Loa CGR, tropical near-surface temperature,

and precipitation over land. The negative months on the horizontal

axis indicate that the anomalies in CFTA lag behind. Bold lines in-

dicate correlation above 95 % significance (p ≤ 0.05).

the models (Figs. S5 and S6), resulting in the discrepancies

shown in Fig. S4.

3.3 Sensitivities to temperature and precipitation

As discussed above (Fig. 3), the variations in atmospheric

CGR are correlated with the variations in temperature and

precipitation induced by ENSO. Simulations by the process-

based terrestrial carbon cycle models have demonstrated that

the tropical CFTA variability, dominated by the plant primary

productivity process, largely accounts for the variations in

atmospheric CGR. It further confirms the key importance in

precipitation. But quantitatively how sensitive is the atmo-
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Figure 7. The cross-correlations of −NPP with Mauna Loa CGR,

tropical near-surface temperature, and precipitation over land. The

negative months on the horizontal axis indicate that the anomalies

in −NPP lag behind. Bold lines indicate correlation above 95 %

significance (p ≤ 0.05).

spheric CGR (CFTA /NPP) to temperature and precipitation,

respectively? Currently, there is no direct observational evi-

dence. Therefore, for simplicity, we took the ridge regression

(Hoerl and Kennard, 2000) to linearly decompose the varia-

tions in atmospheric CGR, CFTA, and NPP into two parts, as

per Eq. (4). Simultaneously, as the precipitation is not a direct

forcing to the terrestrial ecosystems in the models, it usually

leads the Mauna Loa CGR by about 4 months (Fig. 3). The

precipitation also leads the tropical CFTA and reversed NPP

simulated by the DGVMs for about 3–4 months (Table 4).

To be consistent, we chose a 4-month lead, to use precipita-

tion as an explanatory variable. The other explanatory vari-

able was the concurrent temperature, owing to its direct im-

Table 4. The maximum correlations of the simulated tropical ter-

restrial carbon cycle variability with temperature and precipitation.

Lead-lag months between the carbon cycle variability and climatic

variables are given in brackets. Positive values indicate that climatic

variables lag behind.

DGVMs Tropical CFTA Tropical −NPP

(Mauna Loa CGR)

temperature precipitation temperature precipitation

CLM4C 0.78(1) −0.77(−3) 0.76(2) −0.83(−2)

CLM4CN 0.64(2) −0.79(−2) 0.63(4) −0.86(−1)

LPJ 0.92(0) −0.80(−4) 0.76(1) −0.85(−4)

LPJ-GUESS 0.89(−1) −0.74(−5) 0.79(0) −0.75(−3)

OCN 0.79(1) −0.69(−3) 0.70(1) −0.79(−3)

TRIFFID 0.92(1) −0.83(−3) 0.83(1) −0.84(−3)

VEGAS 0.95(0) −0.74(−4) 0.86(0) −0.84(−3)

ENS 0.91(0) −0.81(−4) 0.82(1) −0.86(−3)

Mauna Loa CGR 0.77(1) −0.63(−4) – –

pact. We excluded the CLM4CN simulations, because of the

model’s differing responses to temperature and precipitation

(Figs. 6 and 7).

The sensitivity of Mauna Loa CGR to the tropical tem-

perature IAV is about 2.92± 0.20 PgC yr−1 K−1 (Fig. 8a).

This positive response is weaker than that found by Piao et

al. (2013) who obtained the contributive effect of tempera-

ture variations on residual land sink (RLS, Le Quèrè, 2009)

of about −3.9± 1.1 PgC yr−1 K−1 (the negative sign is be-

cause of the opposite variability between Mauna Loa CGR

and RLS) using multiple linear regression on the global scale.

The IAV in the RLS like Mauna Loa CGR is basically deter-

mined by the tropical terrestrial ecosystems. Considering the

inhomogeneity of temperature variations on the global scale,

it is more reasonable to use the tropical temperature variabil-

ity to estimate their temperature-dependence. The sensitiv-

ity of the ensemble tropical CFTA to the temperature vari-

ability is about 3.18± 0.11 PgC yr−1 K−1, very close to the

sensitivity of Mauna Loa CGR. The sensitivities of the trop-

ical CFTA in the individual DGVMs are all positive, rang-

ing from 1.95± 0.12 PgC yr−1 K−1 in the OCN model, to

4.78± 0.17 PgC yr−1 K−1 in TRIFFID. Three models well

simulate this sensitivity: LPJ is 2.88± 0.09; LPJ-GUESS

is 2.79± 0.12; and VEGAS is 2.98± 0.08 PgC yr−1 K−1.

These CFTA sensitivities are linearly correlated with those

of −NPP with a slope of 0.61, and a correlation coeffi-

cient of 0.83 (p < 0.05), in accord with the conclusion that

variabilities in vegetation primary production dominate the

CFTA variabilities. This is in accord with the result in Piao

et al. (2013), that the response of gross primary production

(GPP) to temperature accounts for the response of net bio-

sphere production (NBP).

On the other hand, the sensitivity of Mauna Loa

CGR to the tropical precipitation IAV has a value of

−0.46± 0.07 PgC yr−1 100 mm−1 (Fig. 8b). However, Piao

et al. (2013) showed that the correlation between RLS

and precipitation was not statistically significant with a
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Figure 8. Sensitivities of the tropical anomalies in CFTA, −NPP,

and Mauna Loa CGR to (a) interannual variability in tropical near-

surface temperature over land (PgC yr−1 K−1) and (b) interannual

variability in tropical precipitation over land (PgC yr−1 100 mm−1)

in 1960–2010. The grey areas show the values of the sensitivities

of Mauna Loa CGR with standard errors. Error bars indicate the

standard errors of the estimated sensitivities for each model.

value of 0.8± 1.1 PgC yr−1 100 mm−1. This difference is

mainly due to the usage of (a) annually averaged RLS

and precipitation, and (b) globally averaged precipitation

variability. The sensitivity of the ensemble tropical CFTA

simulated by the DGVMs to precipitation variability is

−0.67± 0.04 PgC yr−1 100 mm−1, a little stronger than the

estimation in Mauna Loa CGR. In the individual DGVMs,

three have values within the uncertainty of Mauna Loa

CGR: LPJ at −0.54± 0.04; LPJ-GUESS at −0.36± 0.04;

and OCN at −0.34± 0.05 PgC yr−1 100 mm−1. The es-

timation in VEGAS is a little weaker, with a value of

−0.29± 0.03 PgC yr−1 100 mm−1, whereas the estimations

in CLM4C (−1.34± 0.05 PgC yr−1 100 mm−1) and TRIF-

Figure 9. Spatial sensitivities of the ensemble mean in tropical

CFTA interannual anomalies to tropical near-surface air temperature

(kgC m−2 yr−1 K−1) and precipitation (kgC m−2 yr−1 100 mm−1)

over land. The dotted areas in both figures indicate correlation above

95 % significance (p ≤ 0.05).

FID (−1.14± 0.06 PgC yr−1 100 mm−1) are too strong.

Clearly, a significant linear relationship also exists between

these sensitivities in CFTA and −NPP, with a slope of 0.65,

and correlation coefficient 0.86, with p < 0.05.

Based on the combination of sensitivities to temperature

and precipitation, CLM4C and TRIFFID are more sensitive

to these climatic variabilities than the other DGVMs, re-

sulting in a stronger IAVs in these two models (CLM4C:

σ = 1.73 PgC yr−1, TRIFFID: σ = 1.62 PgC yr−1; Table 3),

whereas the other DGVMs have more reasonable magnitudes

except CLM4CN (Table 3). Overall, the models simulate

well the historical IAV, due to their reasonable sensitivity to

the tropical terrestrial ecosystems’ temperature and precipi-

tation.

Past studies on the interannual CO2 variability have mostly

focused on the sensitivities of the aggregated carbon flux to

temperature and precipitation (Zeng et al., 2005a; Qian et

al., 2008; W. Wang et al., 2013). Here we present the sen-

sitivities of the ensemble CFTA grid by grid to temperature

and precipitation, in order to roughly have an insight into

the regional responses (Fig. 9). The sensitivities to tempera-

ture in the tropics are all positive, with remarkably stronger

responses in the regions of dense vegetation, especially in

the Amazon (Fig. 9a). The African savannas and South

Asian forests are weaker with a response of about 0.05–

0.15 kgC m−2 yr−1 K−1. Correspondingly, the sensitivity to

precipitation in the tropics is negative for models, except for

some regions with insignificant values (Fig. 9b). But interest-

ingly the sensitivities over the African savannas are stronger

than those in the Amazon, suggesting that grasses (or shrubs)

are more sensitive to precipitation than forests, perhaps be-

cause they are more closely associated with the surface soil

moisture which is more sensitive to rainfall. However, it is

difficult to validate such fine details in the models due to lack

of observations.
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4 Discussion

In this study, after taking the lag effect of precipitation into

consideration (Qian et al., 2008), we find that Mauna Loa

CGR has a high correlation coefficient with precipitation

(r =−0.63), which is only slightly different from the cor-

relation coefficient with temperature (r = 0.77). It contrasts

with the result of X. Wang et al. (2014). Simultaneously,

given that tropical land precipitation and air temperature are

dynamically correlated (Fig. 1), we think these correlation

coefficients favor neither temperature nor precipitation as the

dominant factor of CGR IAV. It contrasts with the result of

W. Wang et al. (2013) that is based on the high correlation

coefficient between Mauna Loa CGR and temperature. Fur-

ther, they pointed out that the temperature-CO2 coupling is

mainly owing to the additive responses of NPP and Rh to

temperature, while the weaker precipitation-CO2 coupling is

because of the subtractive responses of NPP and Rh to pre-

cipitation. However, in this study, the biological dynamics

underlying CGR IAV, based on seven DGVMs, reveal that

NPP is the dominant process, and Rh variability is obvi-

ously weaker, caused by the opposing effects of precipita-

tion and temperature. In the tropics, NPP turned out to be

largely driven by precipitation through process-based terres-

trial ecosystem models (Zeng et al., 2005a; Qian et al., 2008),

indicating the key role of precipitation in CGR IAV. These

mechanistic analyses may give out more convincing expla-

nations than the correlation coefficients. Conversely, if NPP

dominates the atmospheric CGR, or in other words, precip-

itation dominates the atmospheric CGR, why does Mauna

Loa CGR have a high (or even higher) correlation coeffi-

cient with tropical land temperature (than tropical precipi-

tation) (Fig. 3)? This possibly can be explained in part by the

high correlation coefficient between the tropical land precip-

itation and temperature (Fig. 1). On the other hand, Rh and

D, though with smaller contributions, can still influence their

correlation coefficient (Table 4). Also, we should be cautious

of the method for separating the roles of temperature and

precipitation in CGR IAV used in this paper and previous

studies (Piao et al., 2013; W. Wang et al., 2013; X. Wang

et al., 2014). These statistical methods are based on linear

decompositions, which may miss important nonlinearities in

the physical and biological systems, and cannot accurately

deal with the correlations between precipitation and temper-

ature. Therefore, the separate sensitivities of temperature and

precipitation diagnosed by these statistical methods are only

as the contributive effects (Piao et al., 2013). A better esti-

mation of the contributions of temperature and precipitation

should use simulations of processed-based terrestrial carbon

cycle models via several sensitivity experiments, while rec-

ognizing major uncertainties in the current generation of car-

bon cycle models.

Although we find that the majority of seven DGVMs can

well simulate the IAV in tropical terrestrial ecosystems, the

discrepancies in the Rh simulations (Fig. S4) reveal that the

soil carbon decomposition processes and microbial activities

are not yet to be fully understood. Previous studies (Zeng et

al., 2005a; Qian et al., 2008; W. Wang et al., 2013) found

that Rh contributes in the same direction of NPP to the IAV

of the atmospheric CGR. However, in this study the model

ensemble Rh is weaker and not significantly correlated with

Mauna Loa CGR.

Besides the tropical NPP and Rh, which is the main fo-

cus of our analyses, the atmospheric CGR IAV may also

have contributions from other processes or regions, such as

variability of the terrestrial carbon flux at mid–high latitude,

air–sea carbon fluxes, and the fluxes caused by fire events

and land use. Though variabilities of carbon fluxes from

the Northern and Southern hemispheres are weak (Fig. S2),

some severe events may also modify the canonical tropically-

dominated ENSO response. For instance, the anomalous car-

bon release from 1998 to 2002 across the Northern Hemi-

sphere’s mid-latitude regions originated from decreased bio-

logical productivity (0.9 PgC yr−1) and forests wildfires, in-

duced by drought and warming (Balzter et al., 2005; Jones

and Cox, 2005; Zeng et al., 2005b). The Ocean, another im-

portant carbon sink, has a moderate sea-air carbon flux vari-

ability of about ±0.5 PgC yr−1, dominated over by equato-

rial Pacific Ocean (Bousquet et al., 2000; McKinley et al.,

2004; Patra et al., 2005b; Le Quèrè, 2009). However, during

El Niño events, the ocean acts as a sink of atmospheric CO2,

owing to the decrease in equatorial Pacific outgassing caused

by the weakened upwelling within the carbon-rich deep wa-

ter; the opposite occurs during La Niña (Jones et al., 2001;

McKinley et al., 2004). This variability opposes that of the

atmospheric CGR. Fires also play an important role in the at-

mospheric CO2 variability. During the 1997–1998 El Niño

event, a fire emissions anomaly, triggered by widespread

drought, was 2.1± 0.8 PgC, or 66± 24 % of CGR anomaly

with a 60 % contribution from the Southeast Asia (van der

Werf et al., 2004).

At last, there is a concern on the direct comparison be-

tween the non-transported modeled carbon fluxes and CO2

observations. Patra et al. (2005c) conducted a multiple re-

gression analysis between Mauna Loa CGR and a time-

dependent inverse (TDI) modeled flux anomalies over 22

TransCom-3 regions, showing the TDI flux anomalies do not

explain the detail features in Mauna Loa CGR without any

time lag.

5 Concluding remarks

The IAV in atmospheric CGR is closely connected with

ENSO activities, as a consequence of the tropical terrestrial

carbon sources and sinks, induced by a “conspiracy” between

climate anomalies and the responses of vegetation physiol-

ogy and soil (Zeng et al., 2005a). Understanding the rela-

tive contribution of CO2 sensitivity to tropical precipitation

and temperature variabilities has important implications for
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future carbon-climate feedback using such “emergent con-

straint” proposed by Cox et al. (2013). Therefore, in this pa-

per, we re-examined the relationship between atmospheric

CGR and climatic variables (temperature, precipitation, soil

moisture, and PAR). Moreover, we used seven DGVMs, all

participating in the TRENDY project, to delineate the pro-

cesses underlying the CGR. We applied ridge regression to

statistically disentangle the separate effects of temperature

and precipitation on the IAV in CGR. Simultaneously, we can

better understand the performance of the individual DGVM

from these results. The key results are summarized below.

We find that tropical precipitation and temperature are

highly correlated, r =−0.66, with precipitation leading tem-

perature by 4–5 months, and both are closely connected with

ENSO activities. Mauna Loa CGR lags behind the tropical

land precipitation variability by about 4 months (r =−0.63),

but leads temperature by about 1 month (0.77). However, in

contrast to some recent suggestions, we argue that these re-

lationships alone do not strongly favor temperature over pre-

cipitation as the leading driving factor of CO2 IAV, nor vice

versa. Further, we find that Mauna Loa CGR coincides with

soil moisture (−0.65), which is not only determined by pre-

cipitation but also by temperature as higher temperatures in-

crease the evapotranspiration effect.

All seven DGVMs capture well the IAV of tropical CFTA.

The ensemble CFTA (σ = 1.03 PgC yr−1) is highly correlated

with Mauna Loa CGR at r = 0.79 (p = 0.003). Importantly,

the models consistently show that the variability in NPP

dominates the CFTA variability, while the responses of soil

respiration and fire disturbance are much weaker. The stan-

dard deviation in ensemble NPP is 0.99 PgC yr−1, and in con-

trast, they are 0.29 and 0.10 PgC yr−1 for ensemble Rh and

D respectively. As NPP is largely driven by precipitation (via

soil moisture), these state-of-the-art DGVMs suggest a key

role of precipitation in the IAV of atmospheric CGR.

The sensitivities of Mauna Loa CGR to tempera-

ture and precipitation are 2.92± 0.20 PgC yr−1 K−1 and

−0.46± 0.07 PgC yr−1 100 mm−1, respectively. Meanwhile,

the sensitivities of the ensemble mean tropical CFTA

produced by the state-of-the-art DGVMs to tempera-

ture and precipitation are 3.18± 0.11 PgC yr−1 K−1 and

−0.67± 0.04 PgC yr−1 100 mm−1, close to those of Mauna

Loa CGR. Spatially, the sensitivities to temperature in the

tropics are all positive, with remarkably stronger responses

over the dense vegetation regions, especially in the Ama-

zon. The sensitivities to precipitation are all negative, with

the strongest responses over the African savannas, indicating

that grasses (or shrubs) are more sensitive to precipitation

than forests.

Data availability

Mauna Loa and globally averaged marine surface
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http://www.esrl.noaa.gov/gmd/ccgg/trends/index.html

and http:/www.esrl.noaa.gov/gmd/ccgg/trends/global.html.

CRU near-surface air temperature and precipitation

are accessible from http://browse.ceda.ac.uk/browse/
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from GLDAS-2 are accessible at the Goddard Earth

Sciences Data and Information Services Center,

http://disc.sci.gsfc.nasa.gov/hydrology/data-holdings.

Sea surface temperature data set is available at http://hadobs.

metoffice.com/hadsst2/data/download.html. Outputs of the

state-of-the-art DGVMs are available from the TRENDY
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