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Abstract. The coastal upwelling system off the coast of Peru

is characterized by high biological activity and a pronounced

subsurface oxygen minimum zone, as well as associated

emissions of atmospheric trace gases such as N2O, CH4 and

CO2. From 3 to 23 December 2012, R/V Meteor (M91)

cruise took place in the Peruvian upwelling system between

4.59 and 15.4◦ S, and 82.0 to 77.5◦W. During M91 we inves-

tigated the composition of the sea-surface microlayer (SML),

the oceanic uppermost boundary directly subject to high so-

lar radiation, often enriched in specific organic compounds of

biological origin like chromophoric dissolved organic matter

(CDOM) and marine gels. In the SML, the continuous pho-

tochemical and microbial recycling of organic matter may

strongly influence gas exchange between marine systems and

the atmosphere. We analyzed SML and underlying water

(ULW) samples at 38 stations focusing on CDOM spectral

characteristics as indicator of photochemical and microbial

alteration processes. CDOM composition was characterized

by spectral slope (S) values and excitation–emission matrix

fluorescence (EEMs), which allow us to track changes in

molecular weight (MW) of DOM, and to determine poten-

tial DOM sources and sinks. Spectral slope S varied between

0.012 to 0.043 nm−1 and was quite similar between SML and

ULW, with no significant differences between the two com-

partments. Higher S values were observed in the ULW of

the southern stations below 15◦ S. By EEMs, we identified

five fluorescent components (F1–5) of the CDOM pool, of

which two had excitation/emission characteristics of amino-

acid-like fluorophores (F1, F4) and were highly enriched in

the SML, with a median ratio SML : ULW of 1.5 for both flu-

orophores. In the study region, values for CDOM absorption

ranged from 0.07 to 1.47 m−1. CDOM was generally highly

concentrated in the SML, with a median enrichment with re-

spect to the ULW of 1.2. CDOM composition and changes

in spectral slope properties suggested a local microbial re-

lease of DOM directly in the SML as a response to light ex-

posure in this extreme environment. In a conceptual model

of the sources and modifications of optically active DOM in

the SML and underlying seawater (ULW), we describe pro-

cesses we think may take place (Fig. 1); the production of

CDOM of higher MW by microbial release through growth,

exudation and lysis in the euphotic zone, includes the identi-

fied fluorophores (F1, F2, F3, F4, F5). Specific amino-acid-

like fluorophores (F1, F4) accumulate in the SML with re-

spect to the ULW, as photochemistry may enhance micro-

bial CDOM release by (a) photoprotection mechanisms and

(b) cell-lysis processes. Microbial and photochemical degra-

dation are potential sinks of the amino-acid-like fluorophores

(F1, F4), and potential sources of reworked and more refrac-

tory humic-like components (F2, F3, F5). In the highly pro-

ductive upwelling region along the Peruvian coast, the inter-

play of microbial and photochemical processes controls the

enrichment of amino-acid-like CDOM in the SML. We dis-

cuss potential implications for air–sea gas exchange in this

area.
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1 Introduction

The Peruvian eastern boundary upwelling system (EBUS),

extending along the coast off Peru between 4◦ and about

40◦ south, is among the most productive marine ecosystems

worldwide (Capone and Hutchins, 2013; Chavez and Mes-

sié, 2009; Rosenberg et al., 1983) and it is characterized by

high biological activity, involving high export rates of or-

ganic carbon both vertically and laterally (Arístegui et al.,

2004; Muller-Karger et al., 2005). The high productivity is

sustained by winds year-round that promote the upwelling

of nutrient-rich deep waters into the euphotic zone, thus fa-

voring phytoplankton photosynthesis and organic matter pro-

duction (Chavez and Messié, 2009). High rates of organic

matter production are counterbalanced by heterotrophic res-

piration, which provides sinks for the oxygen produced by

autotrophs and leads to subsurface oxygen minimum zones

(OMZs) (Lachkar and Gruber, 2011). OMZs are expanding

worldwide due to reduced solubility at increasing tempera-

tures, as well as a consequence of reduced oceanic ventilation

and enhanced stratification (Keeling et al., 2010; Stramma

et al., 2008). OMZs become increasingly important as key

marine regions for the emission of climate-relevant gases

like carbon dioxide (CO2), methane (CH4), nitrous oxide

(N2O) and hydrogen sulfide (H2S) (Paulmier et al., 2008,

2011). N2O is a strong greenhouse gas and ozone-reactive:

30 % of its atmospheric concentration has an oceanic source

(Solomon et al., 2007), of which, up to 75 % is supported

by OMZs (Bange et al., 2001). Therefore, OMZs are key

environments to assess the oceanic contribution to the con-

centration of atmospheric gases. Defining the processes that

regulate gas fluxes across the water–air interface is a central

objective to better understand the reciprocal relationship be-

tween changes in our climate and marine environments.

The uppermost oceanic layer in contact with the atmo-

sphere is the sea-surface microlayer (SML), which medi-

ates major climate-relevant processes including air–sea gas

exchange and sea-spray aerosol emission (Liss and Duce,

2005). This interface between a liquid (hydrosphere) and a

gas phase (atmosphere) accumulates organic matter of bi-

ological origin, creating a sort of “skin” of surface-active

compounds able to dampen capillary waves and “capping

the flux” of gases across the water–air interface (GESAMP,

1995). Natural organic compounds in the SML include a vast

array of photosynthesis products including carbohydrates,

amino acids and lipids, as well as other carbon-rich com-

pounds like dissolved organic matter (DOM) and marine gels

(e.g., Cunliffe et al., 2013). The DOM pool represents a con-

tinuum of molecular weights and biological lability ranging

from refractory to labile DOM that is either utilized rapidly

by microorganisms (Benner, 2002; Carlson, 2002) or photo-

chemically degraded (Kieber, 2000). These compounds, pro-

duced in the oceanic photic zone and brought to the SML

through rising bubbles (Hardy, 1982), contribute to the en-

richment of a natural surface biofilm and favor specific SML

heterotrophic communities that are very active in recycling

this organic material (Hardy, 1982; Cunliffe et al., 2011).

While bulk dissolved organic carbon is not generally en-

riched in the SML, specific DOM fractions are present occa-

sionally at much higher concentrations than in the underlying

water (Cunliffe et al., 2013). These enriched pools of organic

matter include marine gel particles (Wurl and Holmes, 2008),

chromophoric dissolved organic matter (CDOM) (Zhang and

Yang, 2013; Tilstone et al., 2010) and phenolic material

(Carlson, 1982; Carlson and Mayer, 1980).

CDOM is the principal light-absorbing constituent of

DOM, strongly absorbing UV (100–400 nm) and visible ra-

diation (400–700 nm), and it can comprise 20–70 % of the

DOM in oceanic waters (Coble, 2007). CDOM plays a major

role in the attenuation of UV wavelengths and can reduce the

availability of underwater photosynthetically active radiation

for primary production (Bracchini et al., 2011). Photolysis

of CDOM promotes the formation of low molecular weight

(LMW) compounds from the breakdown of high molecular

weight DOM (HMW-DOM), facilitating the bioavailability

of carbon uptake for microbial growth from biologically re-

fractory material, and representing an important loss path-

way for CDOM in the oceans (Kieber et al., 1989). Other

major byproducts of CDOM photolysis are carbon monox-

ide (CO), which often exists at supersaturated concentrations

in the oceans’ surface (Blough, 2005, and references therein),

CO2 (Miller and Zepp, 1995) and reactive chemical species

(Loiselle et al., 2012). To initiate a photochemical reaction,

light must first be absorbed and in this respect the SML is

very well exposed to elevated solar radiation (Liss and Duce,

2005). CDOM photolysis may affect biological processes

within the SML as well as the structure of accumulated or-

ganic matter. Optical properties and photochemical cycling

of DOM have been widely investigated in the ocean: CDOM

alters light spectra in the surface ocean and its spatial and

temporal distribution have been used in characterizing wa-

ter masses exchange (Nelson and Siegel, 2013). However,

processes within the SML remain poorly understood. Pos-

sible effects of photochemistry on SML chemical composi-

tion have been discussed in the past (Blough, 2005), but still

little is known on CDOM fluorophores, sources and sinks

(Tilstone et al., 2010; Zhang and Yang, 2013). To discern

sources, sinks and modification of DOM in surface waters,

whether microbially or photochemically induced, we inves-

tigated optical properties of organic sea-surface microlayers

and underlying water samples in the highly productive EBUS

off the coast of Peru. We applied optical spectroscopy mea-

surements combined with chemical and biological analysis

to identify different compounds within the CDOM pool and

their partitioning between the SML and the underlying wa-

ter. The use of excitation–emission matrix fluorescence spec-

troscopy (EEMs) allowed us to discriminate different com-

pound classes in the SML and underlying water based on

their excitation and emission maxima (Coble, 1996).
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At present, the oceans are subject to many changes in

physical and chemical properties like pH, temperature, and

dissolved oxygen concentration, which potentially will affect

the biological cycling of carbon (Riebesell et al., 2009; Keel-

ing et al., 2010; Bopp et al., 2002). Whether the oceans are

sources or sinks of carbon depends on the production rate

of organic matter with respect to its biological degradation

(Del Giorgio and Duarte, 2002), and high DOM degradation

in the SML might represent a net source of CO2 to the atmo-

sphere (Garabétian, 1990). It is well known that the composi-

tion of the SML reflects biological processes of the euphotic

zone (Galgani et al., 2014; Gao et al., 2012; Matrai et al.,

2008; Bigg et al., 2004), and that elevated concentrations of

organic matter may accumulate in the SML in highly pro-

ductive regions like the Peruvian EBUS (Engel and Galgani,

2016). The enrichment of light-absorbing DOM in the SML

may increase the photochemical formation and fluxes of re-

active chemical species at the surface, with potentially im-

portant consequences for the composition of the SML itself

and for the fate of compounds passing through this interface

(Blough, 2005). Last but not least, the photochemical DOM

breakdown may increase the biological availability of car-

bon, thus increasing heterotrophic respiration and CO2 flux

to the atmosphere.

CDOM contributes to the dissolved organic carbon (DOC)

pool, but while DOC is a bulk measure, CDOM is a charac-

teristic of DOM rather than a discrete class of compounds

(Nelson and Siegel, 2013). Positive correlations have been

observed between CDOM and DOC in coastal systems and

plankton enclosures (Loginova et al., 2015), but the strength

of these correlations varies much across regional and sea-

sonal differences (Blough and Del Vecchio, 2002). CDOM

is a precursor for photochemical reactions that may drive the

emission of trace gases from photochemically altered DOM

(e.g., Ciuraru et al., 2015). Therefore, in upwelling areas as-

sociated with OMZs, CDOM characteristics in the SML are

worth being investigated as they may impact the exchange of

gases between the ocean and the atmosphere.

2 Material and methods

2.1 Study area

The R/V Meteor cruise M91 was an integrated biogeochem-

ical study in the upwelling region off the coast of Peru, with

the aim to assess the importance of oxygen minimum zones

(OMZs) for the air–sea exchange of gases relevant for cli-

mate and tropospheric chemistry (Bange, 2013). A total of

39 samples for SML and underlying water were collected in

December 2012 between 5 and 16◦ S off the Peruvian coast.

Data that we report here additionally from what previously

described by Engel and Galgani (2016) refer to 38 stations.

For easiness of comparison, Table 1 recalls salinity, water

Table 1. Data on average, maximum and minimum salinity, wa-

ter temperature, global radiation and wind speed during M91. Data

were retrieved from Dship data server of R/V Meteor.

Salinity Temperature Global radiation Wind speed

(PSU) (◦C) (W m−2) (m s−1)

Average 34.9 19.2 539 5.5

SD 0.2 1.7 352 2.1

Min 34.4 15.9 10 0.6

Max 35.3 21.9 1088 9.0

Figure 1. Conceptual model of the sources and modifications of

optically active DOM in the SML and underlying seawater in the

upwelling region off the coast of Peru during the SOPRAN M91

cruise.

temperature, radiation and wind speed, as already described

in the companion manuscript (Engel and Galgani, 2016).

Some stations were revisited for multiple sampling (Ta-

ble 2): S7 and S7_2; S12_1, S12_2, and S12_3; S16_1,

S16_2, S16_3; S20 and S20_2. These stations were sampled

within a time frame of 24 h for SML and ULW (underlying

water), as we were interested in monitoring the evolution of

CDOM optical properties in the SML and ULW at different

times of the day depending on the solar irradiation. When-

ever possible, we sampled at sunrise, midday and sunset. For

security reasons, it was not possible to sample later than sun-

set, as the zodiac operations were not allowed out at dark.

Exact latitude and longitude measurements were not always

possible to retrieve after a certain time, but were similar for

the stations sampled in a few hours time lag.

The sampling approach for the SML was chosen

as a silicate glass plate of 500 mm (length)× 250 mm

(width)× 5 mm (thickness) with an effective sampling area

of 2000 cm2 as indicated in Engel and Galgani (2016).

Briefly, the glass plate was inserted into the water perpen-

dicular to the surface and withdrawn at a controlled rate of

∼ 20 cm s−1 as first suggested by Harvey and Burzell (1972).

Different devices can be applied to sample the SML. The

glass plate approach we choose collects a thinner SML

(∼ 60–150 µm) when compared to, e.g., the Garrett screen

www.biogeosciences.net/13/2453/2016/ Biogeosciences, 13, 2453–2473, 2016
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Figure 2. Maps showing all sampled stations. Stations with multiple measurements are: (1) S7/7_2, (2) S12_1/3 and S12_2, (3) S16_1,

S16_2/3, (4) S20 and S20_2. The locations of S7 and S7_2; S12_1 and S12_3; S16_2 and S16_3 coincide, as sampling was performed at

different times.

(150–300 µm), one of the mainly recognized practices in-

troduced by Garrett in 1965 (Cunliffe et al., 2011; Gar-

rett, 1965). The glass plate was chosen because it allows

the sampling of enough volume required for analysis while

keeping a minimal dilution with underlying water. Sampling

was performed on a rubber boat; in order to obtain a well-

standardized procedure and to minimize biases by sampling,

the same person always took the samples with a repeatable

withdrawal speed of the SML. The rubber boat was posi-

tioned as far upwind of the ship as possible and away from

the path taken by the ship in order to avoid any potential sur-

face contamination. The outboard motor of the rubber boat

was switched off and samples were collected in upwind clean

waters.

Before collecting the sample into the bottle, we let the

plate drain for 20 s approximately. Then, the sample retained

on both sides of the plate was removed with a Teflon wiper,

and the procedure repeated about 20 times to obtain the nec-

essary volume for analysis. The exact amount of dips per

sample has been tracked. The first sample was discarded

and used to rinse the collecting bottle (HCl 10 % cleaned

and Milli-Q rinsed). Glass plate and wiper were acid cleaned

Biogeosciences, 13, 2453–2473, 2016 www.biogeosciences.net/13/2453/2016/
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Table 2. Stations with multiple measurements. Metadata with date, local and UTC time of sampling, coordinates, and average global radiation

retrieved from Dship data server of R/V Meteor.

Station Ship Nr. Station nr. Samples Date Time Time Lat, S Long, W Average Global

ID (UTC) (Local) (◦) (◦) Radiation

[W m−2]

1733-5 1 S7 SML/ULW 08-12-12 11:30 6:30 9◦31′15.52′′ 79◦17′53.16′′ 10

1733-9 S7_2 SML/ULW 08-12-12 19:45 14:45 9◦31′15.52′′ 79◦17′53.16′′ 837

1752-2 2 S12_1 SML/ULW 13-12-12 12:00 7:00 12◦55′12.17′′ 78◦42′0.07′′ 380.5

1752-7 S12_2 SML/ULW 13-12-12 20:30 15:30 13◦0′19′′ 78◦40′59.99′′ 704.5

1752-9 S12_3 SML/ULW 13-12-12 23:10 18:10 12◦55′19.99′′ 78◦42′2.99′′ 47

3 S16_1 SML/ULW 17-12-12 12:40 7:40 14◦7′14.08′′ 76◦52′13.08′′ 381

1764-6 S16_2 SML/ULW 17-12-12 17:40 12:40 14◦11′5.92′′ 76◦55′59.44′′ 1043

1764-9 S16_3 SML/ULW 17-12-12 22:00 17:00 14◦11′5.92′′ 76◦55′59.44′′ 161.5

1777-2 4 S20 SML/ULW 22-12-12 18:00 13:00 15◦31′10.41′′ 75◦36′0.93′′ 1088

1777-10 S20_2 SML/ULW 23-12-12 15:00 10:00 15◦36′42′′ 75◦39′0′′ 1046

(HCl 10 %) and Milli-Q rinsed prior use, and at sampling site

they were copiously rinsed with in situ seawater to minimize

any contamination with alien material during transport and

handling. Underlying seawater (ULW) was collected right af-

ter SML at about ∼ 20 cm depth by opening an acid cleaned

(HCl 10 %) and Milli-Q rinsed glass bottle and closing it un-

derwater. The thickness (d,µm) of our reference SML that

we were able to collect was estimated as follows:

d = V/(A× n), (1)

where V is the SML volume collected; i.e., 60–140 mL, A

is the sampling area of the glass plate (A= 2000 cm2) and n

is the number of dips. During this cruise, the apparent sam-

pling thickness of the SML ranged between 45 and 60 µm,

with an overall mean of 49± 8.9 µm (Engel and Galgani,

2016). Many factors may influence the thickness of the SML

such as withdrawal rate, dipping time, and plate dimensions.

With a withdrawal speed of ∼ 20 cm s−1, the apparent SML

thickness was in accordance with previous findings at similar

withdrawal rate reporting 60–100 µm (Harvey and Burzell,

1972) and 50–60 µm (Zhang et al., 1998). The sampling

thickness was very well comparable among all stations, in-

dicating that no major biases due to sampling procedure may

have occurred.

After sampling, bottles were stored in the dark and the

samples immediately processes in the laboratory onboard,

within maximum 30 min from sampling.

2.2 Chemical and biological analyses

2.2.1 Dissolved organic matter (DOM)

Sampling, calibration and analysis procedure for dissolved

organic carbon (DOC) and for dissolved hydrolyzable amino

acids (DHAA), have been described in details in Engel and

Galgani (2016). Additionally, to track DOM diagenetic state

and bioavailability, we used the carbon-normalized yields

of dissolved amino acids to DOC, expressed as DHAA%-

DOC (Amon and Fitznar, 2001; Benner, 2002; Kaiser and

Benner, 2009; Davis and Benner, 2007). Amino acids gener-

ally comprise a large fraction of bioavailable organic matter

and are preferentially consumed by microbial activity quite

rapidly. In surface waters they may be easily photodegraded

too. Therefore, the amount of carbon included in amino acids

is considered as a good indicator of DOM diagenesis and a

value of ∼ 2 % of DHAA%-DOC may indicate the threshold

between labile and semi-labile and refractory DOM (Davis

and Benner, 2007).

Samples for chromophoric and fluorescent DOM (CDOM

and FDOM) were filtered through 0.45 µm PES syringe fil-

ters and collected into 40 mL pre-combusted (8 h, 500 ◦C)

amber glass vials. Samples were stored in the dark at 4 ◦C

with no other treatment than pre-filtering. Since storage pro-

cedures may affect the absorbance and fluorescence prop-

erties of DOM, absorbance and fluorescence readings were

performed directly on-board within a few hours from sam-

pling or the next day according to Schneider-Zapp and

colleagues (2013). Prior to measurements, samples were

stored in the dark and acclimatized at room temperature. For

CDOM, triplicate absorbance measurements were made on

a Shimadzu 1800 UV-visible spectrophotometer in the range

220 to 700 nm with 0.5 nm increments, in a 10 cm path-

length quartz cuvette against Milli-Q water as a reference.

For FDOM, 3-D fluorescence spectroscopy was performed

with a Varian Cary Eclipse Fluorescence Spectrophotome-

ter equipped with a xenon flash lamp and data assembled

into excitation–emission matrices (EEMs) which enable to

individuate single DOM fluorophores (Coble, 1996) and to

perform parallel factor analysis PARAFAC (Stedmon and

Bro, 2008). Samples have been acclimatized and scanned at

a fixed 20 ◦C temperature (Cary Single Cell Peltier Acces-

sory, Varian) in 1 cm path length quartz cuvette. Scans were

performed at 600 nm min−1 using an excitation range (Ex)

of 240–450 nm with 5 nm increments and recorded emission

(Em) in the range 242–600 nm with 2 nm increments. Sam-

ples were run in a mode of 5 nm slit for both excitation and

emission and 0.1 s integration time.

www.biogeosciences.net/13/2453/2016/ Biogeosciences, 13, 2453–2473, 2016
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2.2.2 Particulate organic carbon (POC) and gel

particles

Total numbers of gel particles were determined by mi-

croscopy after Engel (2009). A detailed description of the

method used during M91 cruise can be found in Engel and

Galgani (2016). POC data were retrieved after Engel and

Galgani (2016). We refer to this companion publication for

further analytical details.

2.2.3 Phytoplankton and heterotrophic bacteria

Samples, calibration and analysis for phytoplankton and het-

erotrophic bacteria counts for M91 are described in details in

Engel and Galgani (2016).

2.3 Data analysis

2.3.1 CDOM

The measured absorbance at every wavelength λ was con-

verted to absorption coefficient a(λ), (m−1), according to the

following equation (Bricaud et al., 1981):

a(λ)= 2.303Aλ/L (2)

where Aλ is the absorbance and L is the path-length of the

cuvette (here 0.10 m). Absorbance is an optical characteristic

of CDOM, which allows quantifying the amount of CDOM

in the samples. Therefore, the absorption coefficient a(λ) is

considered as a proxy for CDOM concentration. To estimate

CDOM concentration, we calculated the absorption coeffi-

cient at 325 nm as often used for the open ocean (Swan et

al., 2009; Nelson and Siegel, 2013). The dependence of a

on the wavelength was determined by analyzing the spectral

slope parameter S (nm−1) in the discrete wavelength ranges

of 275–295 and 350–400 nm, determined by linear regression

of log-transformed absorption spectra against the wavelength

(Bricaud et al., 1981; Helms et al., 2008):

a(λ)= a(λ0)e
−S(λ−λ0) (3)

where a(λ0) is the absorption coefficient at a reference wave-

length λ0. S measured in the wavelength range 275–295 nm

(S(275–295), nm−1) and 350–400 nm (S(350–400), nm−1)

as well as slope ratio (SR) defined as S(275–295) : S(350–

400) are good indicators to characterize CDOM (Helms et

al., 2008). SR is characterized by lower values for terrestrial

CDOM compared to CDOM produced by autochthonous ma-

rine sources and instead of S alone, could be a more sensitive

indicator of photochemically induced changes in the molec-

ular weight of the CDOM pool as an increase in SR sug-

gests photodegradation processes, while a decrease is often

related to microbially altered CDOM (Helms et al., 2008).

Both S(275–295) and SR increase with (a) irradiation (photo-

bleaching), (b) with decreasing DOM molecular weight, and

(c) at higher salinity reflecting mixing of water masses along

a salinity gradient. As such they are useful as tracers to de-

termine mixing and coastal inputs. We also determined the

SUVA254 index, that is, the specific ultraviolet absorbance

(A) at 254 nm normalized to DOC concentration. This in-

dex was shown to correlate significantly with increasing aro-

maticity of DOM (Weishaar et al., 2003):

SUVA254(mg C L−1 m−1)= A(254)(m−1)/DOC(mgL−1) (4)

2.3.2 FDOM

The 3-D recorded spectra were corrected for the instrumen-

tal biases both for excitation and emission using correc-

tion curves provided by the manufacturer (Stedmon and Bro,

2008). Additionally, spectra were corrected against a Milli-

Q water blank run every day before the samples to remove

water Raman peaks. No correction for inner filter effects

was applied to our data as for each sample the relative a(λ)

value was below 10 m−1 (Lawaetz and Stedmon, 2009; Sted-

mon and Bro, 2008). As an example, a(254) was on average

2± 2 m−1 for SML and 1.6± 1.3 m−1 for underlying wa-

ter (ULW) samples. Fluorescence spectra were normalized to

Raman units (R.U.) by integrating the Raman peak of 350 nm

Ex and 382 to 407 nm Ex extracted by the daily Milli-Q wa-

ter blank. Calibration to R.U. was done with the FDOMcor-

rect toolbox for Matlab (The MathWorks Inc.) incorporated

in DrEEM toolbox (Murphy et al., 2013). We choose to nor-

malize to R.U. as these units are widely used in open ocean

measurements and we could compare our results.

PARAFAC analysis was applied to EEMs in order to iden-

tify and quantify independent underlying components of the

CDOM pool, and was performed by the N-way toolbox for

Matlab in DrEEM (Murphy et al., 2013). After normaliza-

tion to Raman units, data were smoothed to remove remain-

ing scatter peaks, Raman and Rayleigh signals by creating a

sub-data set. We then performed a preliminary outlier analy-

sis generating models with 3 to 7 factors with non-negativity

constraints, comparing the spectra to unconstrained mod-

els. When dilution dominates the data set, components are

strongly correlated. To investigate biases due to dilution, we

performed a test for correlations between the components, as

suggested by the DrEEM tutorial by Murphy et al. (2013).

We then normalized the data set by the DrEEm function

normeem to reduce the co-linearity related to the concen-

tration, thus giving low-concentrated samples a possibility

to enter the model, followed by the outlier test again on the

normalized data. After visually comparing the spectra and

looking at the error residuals for models with 4 to 7 compo-

nents, we then compared the models by the sum of squared

errors (SSE) expressed as a function of wavelength, choosing

the models with lower SSE. At this stage, we choose models

with 5, 6 and 7 components and reversed the normalization

to obtain the unscaled scores before validation. Models with

5, 6 and 7 components were validated by split half analy-

sis “S4C6T3” (see Murphy et al., 2013), where it was en-

sured that in each test the data set halves being compared

Biogeosciences, 13, 2453–2473, 2016 www.biogeosciences.net/13/2453/2016/
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had no samples in common. The validation was successful

for 5-components model, for all comparison. The maximum

fluorescence intensities of the five fluorophores at specific

Ex–Em wavelengths ranges are described in Table 3. Figures

with the model comparison for both excitation and emission

for the 5-components model are included in the Supplement

(Figs. S1 and S2 in the Supplement).

In fluorescence spectroscopy, the humification index

(HIX), first introduced by Zsolnay et al. (1999), is a pow-

erful tool to study CDOM dynamics in soils, as humifica-

tion is associated with a shift to longer emission wavelengths

(Senesi, 1990). It has been first applied to aquatic CDOM in

estuarine waters by Huguet et al. (2009), and is calculated as

the ratio H /L of two spectral region areas of the emission

spectrum scanned at 254 nm excitation. Area L is calculated

between the emission wavelengths 300 and 345 nm, and area

H between 435 and 480 nm. When the degree of aromatic-

ity of CDOM increases, the emission spectrum at excitation

254 nm is shifted towards the red (longer wavelengths), im-

plying an increase in H /L ratio and in HIX. High HIX im-

plies maximum fluorescence intensity at long wavelengths

and therefore the presence of complex molecules like HMW

aromatic CDOM (Senesi et al., 1991). We applied a slight

modification to the HIX index for our samples, introducing

the “SMHIX” index, where SM stands for surface micro-

layer. As we did neither have the scanned excitation wave-

length of 254 nm, nor the scanned spectrum at excitation 345

and 435 nm, we calculated SMHIX index as follows:

SMHIX=
(∑

I434→480

)/(∑
I300→346

)
, (5)

where
∑
I434→480 is the sum of all fluorescence intensities

at every emission wavelength between 434 and 480 nm, and∑
I300→346 is the sum of all fluorescence intensities at every

emission wavelength between 300 and 346 nm, both scanned

with excitation= 255 nm.

2.3.3 Enrichment factors

Enrichment factors (EFs), allow tracking of accumulation

patterns of any compound in the SML with respect to the un-

derlying water (ULW) and comparison among different com-

pounds. EFs are calculated according to the following:

EF= [X]SML/[X]ULW, (6)

where [X] is the concentration of a given parameter in the

SML or ULW, respectively (GESAMP, 1995). EF > 1 indi-

cates an enrichment, EF < 1 indicates a depletion in the SML.

EFs are normally used for quantitative parameters, i.e., mea-

sured in abundance and concentration such as DOC, DHAA,

CDOM, marine gels and cell abundances. Here, we applied

the EF calculation for qualitative ratios and indexes too,

like S(275–295), SR, SMHIX, SUVA254, DHAA%-DOC.

We kept the same wording, which is useful to describe dif-

ferences between SML and ULW for both quantitative and

qualitative parameters.

Statistical tests in data analysis have been accepted as sig-

nificant for p < 0.05. Calculations, statistical tests and illus-

tration were performed with Microsoft Office Excel 2010,

Sigma Plot 12.0 (Systat), Prism (GraphPad), Ocean Data

View and Matlab R2009b (The MathWorks Inc.).

3 Results

Results on dissolved organic carbon and amino acids, gel

particles (TEP and CSP), phytoplankton and bacterial abun-

dance and the relative enrichment of these components in the

SML of our sampling sites have been described elsewhere

(Engel and Galgani, 2016). Here, we focus on the optical

properties of DOM to identify possible sources, sinks and

dynamics in the SML and underlying water of the Peruvian

upwelling region.

3.1 CDOM optical absorption properties

In the upwelling region off the coast of Peru, values for

CDOM absorption coefficient a(325) ranged from 0.09 to

1.47 m−1 in the SML and from 0.07 to 1.47 m−1 in ULW.

Highest values were observed at stations S10_ 1 to S10_4

along the coast for both SML and ULW (Fig. 3). CDOM was

enriched in the SML at most stations (Figs. 4 and 5), with

median EF for a(325)= 1.2 in a range varying between 0.4

and 2.8. A median EF= 1.2 means that at least 50 % of our

observations accounted for a CDOM-enriched SML. Besides

the southern transect, higher EF values were observed at the

northern stations S2 and S2_2, and in the southern coastal

upwelling stations S15_1 to S15_3. Lower EFs and EFs < 1,

indicating a depletion of CDOM in the SML, were observed

at higher distance from the coast (Fig. 5).

The spectral slope parameter between 275 and 295 nm

(S(275–295), nm−1) is a good indicator for CDOM molec-

ular weight as an increase of this parameter indicates de-

creasing molecular weight, thus revealing accumulation or

degradation processes of bioavailable CDOM (Helms et al.,

2008). In our samples, S(275–295) ranged from 0.012 to

0.038 nm−1 in the SML and from 0.017 to 0.043 nm−1 in

ULW. In general, S(275–295) was quite similar between

SML and ULW, and no statistically significant differences

were found between SML and ULW for S(275–295). Higher

spectral slopes were observed in the ULW of the southern

stations below 15◦ S (S19, S19_2, S20, S20_2, S1778). In

the coastal stations S10_1 to S10_4 and S14_ 1 to S15_3

lower S(275–295) values were determined for both SML and

ULW (Fig. 3). Median enrichment factor (EF) for S(275–

295) was 1 (Fig. 4), thus indicating similar molecular weight

of CDOM compounds in the SML and ULW. Lower EFs

were observed in the northernmost and southernmost stations

and along the coast (Fig. 5).
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Table 3. Fluorescent components identified in this study in both SML and ULW samples, according to their Ex–Em maxima ranges (nm),

maximum fluorescence intensity range Fmax (R.U.), corresponding peaks individuated in previous studies (peak name, region, Ex–Em

ranges) and properties. EPS is defined as extracellular polymeric substances.

Components

of this

study

Ex–Em maxima

(nm)

Fmax range (R.U.) Literature peak name

(region, Ex–Em)

Reference Properties

F1 250–290/

320–350

0.001–0.228 (T )

(275/340)

Coble (1996) Protein-like fluorescence of tryptophan

Autochthonous material.

Source: in situ primary production.

6(B)

(280/338)

Stedmon and Markager (2005b) Protein-like fluorescence of tryptophan, au-

tochthonous material.

Source: algal growth.

Sink: microbial reworking, UVB.

T

(280–285/340–350)

Liu and Fang (2002) Protein-like, extracted from EPS.

F2 250–260/

500–520

0.048–1.709 2(A)

(250/504)

Stedmon and Markager (2005a) Fulvic acid C-like allochthonous material present in

all environments.

Terrestrial/autochthonous fulvic acid fluorophore

group.

1(A)

(250/520)

Singh et al. (2010) Fulvic acid C-like.

Bay waters, allochthonous.

2(A)

(< 260/> 500)

Yamashita and Jaffè (2008) Humic acid C-like, river and coastal waters, al-

lochthonous.

Terrestrial humic.

1(A)

(< 230–260/400–500)

Ishii and Boyer (2012) Small sized molecules, photo-resistant and biologi-

cally not available.

Source: photochemistry, terrestrially derived humic

acids in marine waters, highest concentrations near

the water surface.

2(A?)

(250/504)

Coble (2007) UVA humic-like, fulvic acid, terrestrial,

autochthonous.

C2(–)

(256/> 500)

Santín et al. (2009) Humic acid C-like, estuaries of the Iberian peninsula,

allochthonous.

F3 265/520–540 0.019–1.640 2(A+C)

(< 240–275/434–520)

Ishii and Boyer (2012) Larger molecules, hydrophobic compounds, pho-

todegradable by UVA light.

Source: terrestrial or microbial, intermediate inputs of

minimal exposure to sunlight, biologically degraded

and produced.

C1

(∼ 275/400–550)

Jørgensen et al. (2011) Humic-like CDOM microbially produced.

1(A/C)

(< 260/466)

Yamashita et al. (2010) Humic-like CDOM oxidized in situ by microbial pro-

cesses.

F4 250–265/

284–320

0.002–6.507 (T )

(275/300)

Murphy et al. (2008) Protein-like fluorescence of tyrosine.

Autochthonous material.

Source: in situ primary production, northern Pacific

and Atlantic Ocean.

4(T )

(275/306(338))

Stedmon and Markager (2005b) Fluorescence of tryptophan and tyrosine in peptides.

Greatest production rates during establishment of al-

gal bloom.

Source: algae in exponential growth phase. Sinks: not

identified (microbial uptake or aggregation?)

(B)

(275/310)

Coble (1996) Tyrosine-like, marine waters, autochthonous.

C(T )

(270–290/250–365)

Aoki et al. (2008) Autochthonous protein-like hydrophobic acid frac-

tion from phytoplankton cultures.

C3(T ) Jørgensen et al. (2011) Protein-like fluorescence of phenylanine.

Standard

(255–265/284–285)

Yamashita and Tanoue (2003) Protein-like fluorescence of phenylanine.

Source: standard.

(B)

(265–280/293–313)

Yamashita and Tanoue (2003) Protein-like fluorescence of tyrosine.

Source: autochthonous.

F5 270–275/

540–550

0.023–1.714 (A, C)

(< 260–270/> 508)

Mostofa et al. (2013) Humic acid C-like or A-like, allochthonous material

in bay and marine waters.

The SUVA254 and SMHIX indexes are related to the de-

gree of CDOM aromaticity and to its humic content, re-

spectively. In our study, SUVA254 ranged from 0.49 to

1.74 mg C L−1 m−1 in the SML, with highest values at

coastal southern stations S10_1 to S10_4 and S14_1 to

S17_2. Similar values were recorded for ULW, ranging from

0.49 to 1.21 mg C L−1 m−1. Generally, SUVA254 values in

our samples were comparable to the Pacific Ocean with a

typical SUVA254 of 0.6 mg C L−1 m−1 (Helms et al., 2008;

Weishaar et al., 2003). Median EF for SUVA254 was 1.1,
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Figure 3. CDOM absorption coefficient a(325), [m−1], in SML and underlying water (ULW) and spectral slope parameter between 275 and

295 nm, S(275–295), [nm−1].

with higher values in correspondence of northern stations and

coastal southern stations (S2, S2_2, S15_1 to S15_3 and S19

to S1778), where the higher EFs for a(325) were also ob-

served (Figs. 4 and 5). SMHIX ranged from −1.33 to 2.05

for SML and from−0.1 to 3.03 for ULW, with highest values

in ULW. Enrichment factors showed an overall depletion of

high-humic acid containing CDOM in the SML (Fig. 4), with

median EF= 0.8. Higher humic acid enrichment in the SML

was observed on the southern transect S19 to S1778 (Fig. 5),

where we recorded the highest enrichment of CDOM (as

a(325)) as well.

The carbon-normalized yields of dissolved amino acids

(DHAA%-DOC) as indicator of DOM diagenetic state,

ranged from 1.4 to 8.1 % in SML samples and from 0.9

to 3.6 % in ULW samples, indicating relatively more labile

DOM in the SML. This observation was supported by the en-

richment factors (EFs), which showed a general enrichment

of more labile DOM in the SML (Fig. 4), with median EF
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Figure 4. Box and Whiskers plot of enrichment factors for CDOM

absorption coefficient a(325), aromaticity (SUVA254), DOM diage-

netic state (DHAA%-DOC), spectral slope S(275–295), and modi-

fied surface microlayer humification index (SMHIX). The horizon-

tal lines of the boxes represent 25 %, 50 % (median) and 75 % per-

centiles (from bottom to top). In the boxes, crosses represent the

mean. Whiskers represent minimum and maximum values, and cir-

cles are outliers. Outliers are staggered to better visualize them.

To identify the station, see outliers’ labels and color legend. For

a(325), SUVA254 and S(275–295) n= 38. For SMHIX, n= 37 and

for DHAA%-DOC n= 29.

values for DHAA%-DOC of 1.5. Highest EFs were recorded

in the northernmost stations S1 to S3, and on the southern-

most transect S19 to S1778 (Fig. 5).

3.2 PARAFAC analysis for CDOM fluorophores

Five optically active components were identified by

PARAFAC analysis with the DrEEM toolbox in Matlab

(Murphy et al., 2013), hereafter named F1, F2, F3, F4 and

F5 (Fig. 6). The spectral characteristics of the five identi-

fied components were compared to previous studies as de-

scribed in Table 3. F1 had an excitation range of 250–290 nm

with emission peaks between 320 and 350 nm, which cor-

responds to peak T of the amino-acid-like fluorescence of

tryptophan, derived by in situ primary production (Coble,

1996). This component (F1) was generally enriched in the

SML (Figs. 7, 8) with a median EF= 1.5, between a min-

imum EF of 0.5 and a maximum EF of 3.3. Potential loss

processes of this compound are its destruction by UV light

and microbial degradation (Stedmon and Markager, 2005b).

F1 has also been related to protein-like fluorescence of ex-

tracellular polymeric substances (Liu and Fang, 2002). Flu-

orescence intensities of F1 were the lowest compared to the

other fluorophores, but significantly higher in the SML com-

pared to the ULW (Mann–Whitney rank sum test, p < 0.001,

n= 38). Both in SML and ULW, fluorescence intensities

of F1 were positively correlated to components F3, F4 and

F5 (Spearman rank order correlation coefficient C = 0.37,

p < 0.001, n= 76 with F3; C = 0.41, p= 0.001, n= 57 with

F4; C = 0.38, p < 0.001, n= 76 with F5).

Component F2 had a short wavelength excitation range

(250–260 nm) with emission at longer wavelengths (500–

520 nm), corresponding to peak A of fulvic acids and humic

acids (Stedmon and Markager, 2005a; Singh et al., 2010; Ya-

mashita and Jaffé, 2008; Coble, 2007; Santín et al., 2009).

F2 showed a regional enrichment in the SML, with high-

est values at the northernmost stations S2 to S3 and at sta-

tions S10_1 to S10_4 (Fig. 7). F2 enrichment was not ubiqui-

tous (Fig. 8), with median EF= 1, ranging from a minimum

EF= 0.5 and a maximum EF= 3.6. F2 positively correlated

with bacterial abundance and temperature (Table 4) and to

F3 and F5 components (Spearman rank order correlation co-

efficient C = 0.74, p < 0.001, n= 76 with F3, and C = 0.71,

p < 0.001, n= 76 with F5).

Component F3 was characterized by a clear excitation

peak at 265 nm, with emission maxima in the longer wave-

length range 520–540 nm. Component F3 showed a median

EF= 1.1 (minimum EF= 0.3, maximum EF= 4.7), indicat-

ing a slight enrichment in the SML (Fig. 8), with higher ac-

cumulations close to the coast at stations S19_2 to S1778

and at the edge of the continental shelf at stations S4 and

S8 (Fig. 7), in correspondence with the highest enrichment

of gel particles in the SML (Engel and Galgani, 2016). In

our study F3 was positively correlated with the abundance

of bacteria, proteinaceous particles and increasing SUVA254

(Table 4). It showed an inverse correlation to salinity (Ta-

ble 4). Besides F1 and F2, F3 was significantly correlated

to F5 (Spearman rank order correlation coefficient C= 0.87,

p < 0.001, n= 76).

Component F4 was not detectable at all stations, but

showed high enrichment in the SML close to the coast and

along the continental shelf at stations S10_1 to S10_4, S13_1

to S13_3, S14_1 to S15_2 (Fig. 7). F4 was generally en-

riched in the SML (Fig. 8) with median EF= 1.5 (in a

minimum-maximum EF range of 0.4–14.9) and with sig-

nificant differences in fluorescence intensity compared to

the ULW (Mann–Whitney rank sum test, p < 0.001, n= 38).

F4 featured characteristics of an amino-acid-like fluorophore

with excitation–emission maxima in the range 250–265/284–

320 in the fluorescence peak T region of tyrosine (Coble,

1996; Murphy et al., 2008; Aoki et al., 2008; Yamashita and

Tanoue, 2003) and phenylalanine (Yamashita and Tanoue,

2003; Jørgensen et al., 2011) (Table 3). F4 was negatively

correlated to bacterial abundance (Table 4), and to slope ratio

SR with SR= (S(275–295) : S(350 : 400)). F4 was also neg-

atively correlated to SMHIX, indicating a low humic-acid

content of this fluorophore. As for F1, it positively corre-

lated with SUVA254 and DHAA%-DOC (Table 4). Interest-
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Figure 5. Enrichment factors (EFs) in the Peruvian upwelling region. From the top left, EF for absorption coefficient measured at 325 nm

both in SML and ULW, spectral slope parameter S(275–295) as indicator for changes in DOM molecular weight, SUVA254 as indicator for

DOM aromatic content, DHAA%-DOC as indicator of DOM lability, and SMHIX as indicator of humic content of DOM.

ingly, F4 showed the highest fluorescence intensities among

all samples.

Component F5 was quite difficult to identify, as we found

no comparable spectra in the literature. It showed typical

characteristics of allochtonous humic-like material with ex-

citation/emission ranges in the peak A and C regions, which

have been observed in bay and offshore waters (Mostofa et

al., 2013). F5 had the highest fluorescence intensities both in

the SML and ULW but was not clearly enriched in one or the

other compartment (Fig. 8). EFs ranged from a minimum of

0.5 and a maximum of 3, with median value= 1.1. Highest

enrichments in the SML were observed at northern stations

S4 and S4_2, at stations S10_1 to S10_4, and in the south-

ern stations S20 to S1778 (Fig. 7). F5 was similar in charac-

teristics to component F3, and positively correlated to bac-

terial abundance and proteinaceous CSP particles (Table 4).

Component F5 was also positively correlated to all other flu-

orophores F1, F2, F3 as described, and to F4 (Spearman rank

order correlation coefficient C= 0.34, p= 0.009, n= 57).

On the revisited stations, only component F1 showed a di-

rect dependency on light exposure, significantly decreasing

in fluorescence – thus concentration – with increasing global

radiation intensity (r2
= 0.56, p = 0.013, n= 10). Compo-

nents F2 to F5 showed no significant change with increased

irradiation (Spearmank rank order correlation analysis).
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Figure 6. (Above) Contour plots of five fluorescent components as identified by PARAFAC analysis and (below) relative spectral loadings

of overlaid spectra for the 5-components model validated with 3 split comparisons. The axes of contour plots have been scaled to better

visualize the fluorescence intensities (R.U.). A figure with the complete spectrum is included in the Supplement (Fig. S3). The dashed black

line in the spectral loadings indicates excitation maxima for each component, the solid black line indicates emission peaks.

3.3 Changes in CDOM properties related to the

biological and physical environment

Both in the SML and ULW, CDOM optical properties as ab-

sorption coefficient a(325), S(275–295), and SUVA254 were

compared to salinity, temperature, wind speed and particu-

late organic carbon (POC) (Table 5). Data on POC have been

described in detail in Engel and Galgani (2016). CDOM ab-

sorption coefficient a(325) decreased at higher salinity, tem-

perature and wind speed in the SML and ULW, with stronger

dependency on these physical parameters in the SML (Ta-

ble 5). In both compartments, there was a positive correlation

of a(325) to POC. The spectral slope parameter S(275–295),

indicator for DOM molecular weight, source, and degra-
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Table 4. Spearman rank order correlation coefficients (C) between fluorescent components (F1–5) and total bacterial and phytoplankton cells,

TEP and CSP particles, SUVA254, S(275–295), SR, a(325), DHAA%-DOC, SMHIX, salinity and temperature measured in our study, both

in the SML and ULW. Statistical significance was accepted for p < 0.05. n= number of samples. Only statistically significant correlations

are shown. Bold characters indicate negative correlations.

Component Statistics Bacteria Phytoplankton TEP CSP SUVA254 S(275–295) SR a(325) DHAA%-DOC SMHIX Salinity Temperature

[R.U.] [cells mL−1] [cells mL−1] [L−1] [L−1] [mg C L−1 m−1] [nm−1] [m−1] [%] [psu] [◦C]

F1 C 0.285 0.281 0.620 −0.257 −0.387 0.406 0.696 −0.342 −0.261 −0.323

p 0.031 0.014 < 0.001 0.025 < 0.001 < 0.001 < 0.001 0.003 0.023 0.004

n 57 76 76 76 75 76 76 76 76 76

F2 C 0.393 0.225 0.238

p < 0.001 0.050 0.038

n 71 76 76

F3 C 0.355 0.411 0.305 −0.221 −0.226 −0.273

p 0.002 < 0.001 0.007 0.055 0.051 0.017

n 71 76 76 76 76 76

F4 C −0.409 0.346 −0.410 0.392 −0.536

p 0.003 0.008 0.002 0.008 < 0.001

n 52 56 56 56 57

F5 C 0.270 0.402

p 0.023 < 0.001

n 71 76

dation processes (Helms et al., 2008), increased at higher

salinity and temperature (Fig. 9d) in the SML and ULW. It

did not show any correlation to wind speed, but a signifi-

cant negative correlation to POC in both compartments (Ta-

ble 5). Moreover, an increase of bacterial and phytoplank-

ton cells led to a lower S(275–295) both in the SML and

ULW (Fig. 9a, b). The dependency of S(275–295) on bac-

teria in the SML (Spearman rank order correlation coeffi-

cient C =−0.59, p < 0.001, n= 35) was stronger than in

the ULW (C =−0.38, p = 0.02, n= 36), potentially indicat-

ing a higher bacterial CDOM contribution. S(275–295) was

also negatively correlated to phytoplankton abundance with

a stronger relationship in the ULW (C =−0.64, p = 0.001,

n= 22) than in the SML (C =−0.47, p = 0.004, n= 35). In

the SML, we observed a significant decrease in S(275–295)

with increasing abundance of gelatinous proteinaceous par-

ticles (CSP) (Fig. 9c), while in the underlying water a lower

S(275–295) was highly related to increasing concentration of

polysaccharidic gels (TEP). In both SML and ULW, higher

salinity, temperature and wind speed were related to lower

SUVA254 indexes, as indicators of DOM aromaticity. A pos-

itive correlation was observed instead between SUVA254 and

POC (Table 5). An increment in temperature was inversely

correlated to DOM lability, and therefore bioavailability, ex-

pressed as DHAA%-DOC, indicating a higher degree of

DOM degradation (Spearman rank order correlation coef-

ficient C =−0.68, p < 0.001, n= 29 in the SML and C =

−0.66, p < 0.001, n= 29 in the ULW). DHAA%-DOC was

also lower at higher salinity (Spearman rank order correla-

tion coefficient C =−0.42, p = 0.02, n= 29 in the SML and

C =−0.63, p < 0.001, n= 29 in the ULW). As for S(275–

295), we observed similar trends in SR (data not shown): SR

was negatively correlated to DHAA%-DOC (Spearman rank

order correlation coefficient C =−0.50, p < 0.001, n= 75)

and to both gel particles abundance (Spearman rank order

Table 5. Spearman rank order correlation (C) between CDOM opti-

cal properties both in the SML and ULW with salinity (CPSU), wa-

ter temperature (CT ), wind speed (CU ) and particulate organic car-

bon (CPOC ). Significant correlations (p <0.01) are marked in bold

(except a
= p < 0.05). n is the number of samples, except ∗= 36

samples.

SML CPSU CT CU CPOC n

CDOM a(325) −0.420 −0.728 −0.535 0.579 38

S(275–295) 0.640 0.616 0.318 −0.597 38

SUVA254 −0.380a
−0.634 −0.460 0.537 38

ULW

CDOMa(325) −0.329a
−0.637 −0.386a 0.656∗ 38

S(275–295) 0.493 0.613 0.24 −0.622∗ 38

SUVA254 −0.326a
−0.458 −0.324a 0.495∗ 38

correlation coefficientC =−0.37, p < 0.001, n= 75 for TEP

and C =−0.33, p = 0.004, n= 75 for CSP). SR did not

show any significant correlation to total bacteria or phy-

toplankton abundance, but was significantly lower in the

SML, with a median EF= 0.9 (Mann–Whitney rank sum

test, p = 0.013, n= 38). Furthermore, DHAA%-DOC was

significantly higher in the SML (Mann–Whitney rank sum

test, p = 0.036, n= 38).

4 Discussion

4.1 CDOM enrichment and production in the top

surface layer of the ocean

The enrichment of organic material in the SML has been

mainly related to biological processes in the euphotic zone

below the surface (Hardy, 1982; Liss and Duce, 2005). EBUS
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Figure 7. Distribution of enrichment factors (EFs) for fluorescent components F1, F2, F3, F4, F5 identified in this study. Maximum EF for

F4 has been recorded at station S10_2, with a value of 14.9. For visualization purposes, this data point is not included in the figure and

fluorescence intensities have been scaled down to a maximum EF= 6.

are among the most productive regions in the ocean and

therefore interesting systems to investigate the relationship

between organic matter accumulation and SML biogeochem-

ical properties. The Peruvian EBUS is associated with an ex-

tensive OMZ and a key region for the study of gas fluxes from

the ocean (Paulmier et al., 2008; Paulmier and Ruiz-Pino,

2009; Keeling et al., 2010). The presence of an organics-

enriched surface layer may strongly affect gas exchange be-

tween the marine and the atmospheric systems (Engel and

Galgani, 2016). The characterization of CDOM via its opti-

cal properties adds relevant information to the organic matter

composition in the SML, as it allows discriminating between

terrestrial and marine sources of DOM that may be equally

enriched at the surface. Moreover, it helps tracking changes

in DOM “quality” deriving from higher DOM exposure to

solar radiation at the sea surface than deeper in the water col-

umn. As such, microbial and photochemical DOM turnover

in the SML may contribute to the atmospheric emission of

gases and chemical reactive species, and interfere with the

microbial carbon loop in the ocean.

In the Peruvian EBUS, we observed a general enrichment

of CDOM in the SML with respect to the ULW, based on

values of the specific absorption coefficient a(λ) measured

at 325 nm. Higher values for CDOM absorbance were ob-

served in the coastal upwelling stations characterized by low-

est salinity, temperature and highest enrichment of organic
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Figure 8. Box and Whiskers plot of enrichment factors for fluores-

cent components F1, F2, F3, F4 and F5. The horizontal lines of the

boxes represent 25 %, 50 % (median) and 75 % percentiles (from

bottom to top). In the boxes, crosses represent the mean. Whiskers

represent minimum and maximum values, and circles are outliers.

Outliers are staggered to better visualize them. To identify the sta-

tion, see outliers’ labels and color legend. For F4, n= 24. For all

other components, n= 38.

components, both in the particulate and dissolved fraction

(Engel and Galgani, 2016). It is commonly observed that

spectral loadings of allochtonous/terrestrial-like CDOM de-

crease with increasing salinity (Murphy et al., 2008). How-

ever, we did not observe such trends in our samples. In-

stead, we found a negative correlation of amino-acid-like flu-

orophore F1 to salinity and temperature, and no clear enrich-

ment of humic-acid-like fluorophores F2, F3 and F5 in the

SML. Therefore, we think that in the SML of the study re-

gion the contribution of terrestrially derived CDOM, if any,

is overwhelmed by the high productivity of the upwelling

system. Organics enriched in the SML such as the amino-

acidic compounds F1 and F4 found at the upwelling stations

may therefore reflect other processes rather than input of al-

lochtonous CDOM from land. DOC concentrations in the

SML were related to DOC concentrations in the ULW (En-

gel and Galgani, 2016), and the same was true for CDOM

absorption coefficient a(325) (Spearman rank order correla-

tion coefficient C = 0.82, p < 0.001, n= 38), implying a di-

rect dependency of SML CDOM on the organic matter in

the ULW (Zhang and Yang, 2013). CDOM absorption coef-

ficient a(325) as well as its spectral slope S(275–295) did

not show any correlation to changes in DOC concentrations,

neither in the SML, nor in the ULW, but were significantly

related to DOM diagenesis (DHAA%-DOC) POC, and abun-

dance of autotrophic and heterotrophic microorganisms sug-

gesting a recent production of labile or semi-labile substrates

driven by in situ microbial or photochemical processes in

the underlying euphotic zone or at the immediate sea sur-

face. A closer look on CDOM spectral properties revealed

significant differences between SML and ULW. According

to Helms et al. (2008), an increase in S(275–295) and SR

Figure 9. (a) Linear regression between bacterial abundance

[106 cells mL−1] and spectral slope S(275–295) [nm−1] in

SML and ULW. (b) Linear regression (ULW) and Spearman

rank order correlation (SML) between phytoplankton abundance

[104 cells mL−1] and spectral slope S(275–295) [nm−1]. (c) Linear

regression between CSP abundance [108 particles L−1] and spectral

slope S(275–295) [nm−1] in the SML and between TEP abundance

[108 particles L−1] and spectral slope S(275–295) [nm−1] in the

ULW. (d) Linear regression between temperature [◦C] and S(275–

295) [nm−1] in SML and ULW. Black triangles: SML, open dots:

ULW.

suggests CDOM photodegradation and decreasing molecular

weight. DHAA%-DOC is used here as an indicator for DOM

diagenesis, thus, the extent of microbially altered DOM. The

higher DHAA%-DOC, the more labile, bioavailable, recent

and less altered DOM in the sample. We observed a neg-

ative correlation when comparing DHAA%-DOC and POC

to S(275–295) and to SR. The higher DHAA%-DOC, the

lower S(275–295) and SR. Microorganisms adopt several

strategies against tough environments; the correlation be-

tween DHAA%-DOC to S(275–295) and SR was stronger

in the SML than in the ULW, suggesting an accumulation of

HMW-DOM related to the contribution of microorganisms

directly in the SML or in the proximity due to cell lysis or ex-

udation, which has been previously proposed (Tilstone et al.,

2010). Thus, the close correlations of optical parameters to

POC and marine gels lead to hypothesize that autochthonous

CDOM produced in the very surface ocean can actually be

incorporated in the gelatinous organic carbon pool.
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4.2 CDOM composition

The analysis of EEMs allowed the identification of five flu-

orescent components both in the SML and ULW, of which

two (F1 and F4) showed an amino-acid-like fluorescence of

autochthonous material, and three (F2, F3 and F5) had the

characteristics of fulvic-acid-like or humic-acid-like CDOM

(Table 3). These classes of fluorophores are commonly found

in marine environments (Coble, 2007; Mostofa et al., 2013),

but EEMs analyses of SML samples are scarce and up to

now revealed the enrichment in humic-acid-like fluorophores

only (Zhang and Yang, 2013). Phenolic materials deriving

from humic and fulvic acids transported by river drainage,

and from macroalgae polyphenols, are often enriched in the

SML, and indicate the presence of surface slicks (Carlson,

1982; Carlson and Mayer, 1980). Here, we observed a sig-

nificant enrichment of amino-acid-like fluorophores F1 and

F4 with respect to ULW, in good accordance with previous

reports on amino acids enrichment in the SML (Kuznetsova

et al., 2004; Cunliffe et al., 2013; Tilstone et al., 2010), and

with our own observations for the Peruvian EBUS (Engel and

Galgani, 2016). F1 has shown the greatest production rates

during algal blooms, whereas its major sinks are UV light

and microbial degradation (Stedmon and Markager, 2005b).

Moreover, it is assumed that F1 relates to the fluorescence of

amino acids still bound in the proteinaceous matrix (Stedmon

and Markager, 2005b). Based on these previous findings and

on our results (Table 4), we suggest that F1 is a tryptophan-

like fluorophore, originating by in situ primary production,

relatively labile as it features an increase in fluorescence in-

tensity correlated to increasing DHAA%-DOC, and possi-

bly included in the gel particles surface matrix. F4 showed

very high fluorescence intensities compared to F1, F2 and

F3. In the literature, F4 has been associated to the fluores-

cence of amino acids in peptides (Stedmon and Markager,

2005b). Similarly to F1, F4 showed a positive correlation to

DHAA%-DOC, as to indicate its labile nature. The aromatic

content of DOM is highly responsible for its photoreactiv-

ity (e.g., Mopper et al., 2014); F4 correlation to DOM la-

bility (DHAA%-DOC) and aromatic content (SUVA254) was

weaker than for F1. In our study, this may indicate F4 as

an intermediate product of photochemically driven aggrega-

tion or microbial degradation of labile CDOM. F4 has been

linked to the fluorescence of tyrosine and phenylalanine (e.g.,

Coble, 1996; Murphy et al., 2008; Jørgensen et al., 2011) and

both amino acids were enriched in the SML of the Peruvian

EBUS (Engel and Galgani, 2016). Recently, Cao et al. (2014)

performed a laboratory study aimed at understanding inter-

molecular interactions between N2O and phenol (C6H5OH),

cresol (CH3C6H4OH), and toluene (CH3C6H5), which are

representative aromatic compounds and useful models of

various biomolecules such as the aromatic amino acids ty-

rosine and phenylalanine containing a benzene ring. Their

experiment was carried out in a Ne matrix at about 8 K

(−265.15 ◦C) with millimolar concentrations of the aromatic

compounds (Cao et al., 2014), therefore in a setting not at all

comparable to our experimental setup. Cao and colleagues

found interesting πnon-covalent interactions between N2O

and the aromatic compounds, suggesting an interaction of

N2O with tyrosine and phenylalanine of great interest for bi-

ological processes. We mention it here, as the presence of

these specific amino acids in the SML of the Peruvian EBUS

may interfere with the exchange of N2O between the ocean

and the atmosphere, as suggested previously (Engel and Gal-

gani, 2016). The enrichment of fluorophores F1 and F4 in the

SML could be partly due to the upwelling of colder nutrient-

rich waters that boost primary production in the euphotic

zone. Salinity and temperature gradients may thus explain

the variation of F1 in the SML (Table 4), reflecting local up-

welling and DOM production. The observed accumulation of

amino-acid-like CDOM may additionally derive from a local

microbial release within the SML itself due to cell disinte-

gration, or as protection strategy for the exposure to UV light

in a demanding environment (Ortega-Retuerta et al., 2009).

Mycosporine-like amino acids (MAAs), for example, serve

as a natural microbial UV sunscreen against photodamage

(Garcia-Pichel et al., 1993) and have been observed in en-

riched concentrations in the SML (Tilstone et al., 2010). Ma-

jor losses of autochthonous protein-like fluorophores in the

SML may be related to photochemical and microbial degra-

dation: negative correlations of F1 and F4 to SR may hint to

photochemical degradation, recalling that an increase in SR

is usually related to photobleached material (Helms et al.,

2008). The negative correlation of F4 to bacterial abundance

may be instead an indication of a microbial sink of this fluo-

rophore.

The fulvic-acid or humic-acid-like components F2, F3 and

F5 were ubiquitous in SML and ULW, with no significant dif-

ferences in fluorescence intensities between the two compart-

ments. F2 and F3 have been previously observed in coastal

marine environments (e.g., Jørgensen et al., 2011; Ishii and

Boyer, 2012). In the literature, component F2 has been char-

acterized as of terrestrial origin, allochthonous in marine en-

vironments, found in bays, rivers and coastal waters. It is

assumed to reflect small-sized molecules, being resistant to

photodegradation, biologically not available, and mainly de-

rived from photobleached terrestrial-like humic acids in ma-

rine waters with highest concentrations near the surface (Ishii

and Boyer, 2012). In this study we did not find a correla-

tion of F2 to global radiation but a positive correlation to

temperature and to bacterial abundance (Table 4). We also

observed an increase of bacterial abundance with increasing

sea-surface temperature, which is well supported by exist-

ing literature (e.g., Morán et al., 2015). Higher temperature

also stimulates the activity of marine bacteria (e.g., Piontek

et al., 2009). Thus, as F2 probably reflects the fluorescence

of highly degraded small molecules, we may characterize F2

as the ultimate product of microbial CDOM degradation in

the surface ocean: no longer bioavailable anymore. F3-like

fluorophores have been identified as an intermediate product
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of terrestrially derived DOM, still subject to further photo-

chemical degradation (Stedmon et al., 2007). Earlier studies

attributed this optical behavior to fulvic acid C-like compo-

nents showing a peak in region A. According to Ishii and

Boyer (2012), F3 like components may comprise larger hy-

drophobic molecules that are photodegradable by UV light,

of terrestrial or microbial origin, biologically degraded and

produced. Moreover, F3 appearance has been related to ap-

parent oxygen utilization (Yamashita et al., 2010), further

suggesting a microbial source of this material (Jørgensen et

al., 2011). In this study, F3 showed a slight enrichment in

the SML and was related to heterotrophic bacteria as well as

to CSP particles, possibly indicating its origin in microbial

reworking of larger organic compounds. F5 showed charac-

teristics of humic acid fluorophores, with fluorescence max-

imum ranges to the lower end of F3 emission indicating

a more pronounced CDOM alteration with respect to F3.

Showing similar correlations to heterotrophic bacteria and

CSP, F5 may as well derive from a microbial in situ rework-

ing of larger organic molecules both in the SML and ULW

contributing to the size continuum and reactivity of the gel

particles pool in surface waters. In fact, a net production and

accumulation of humic-like CDOM in surface waters may

occur in upwelling regions (Nieto-Cid et al., 2005; Jørgensen

et al., 2011), whereas photochemical loss is thought to be

the major removal mechanism of this material (e.g., Mopper

and Schultz, 1993). In this study, fulvic-acid-/humic-acid-

like fluorophores correlated well among each other, suggest-

ing a common underlying origin.

Based on CDOM absorption and fluorescence character-

istics, we propose a conceptual model for the control of

CDOM production and loss in the SML and ULW by mi-

crobial and photochemical processes (Fig. 1). In this model,

the accumulation of CDOM in the SML is the result of (a) the

biological production of CDOM in the ULW and deeper wa-

ter column, stimulated by the upwelling of nutrient-rich wa-

ters to the sunlit surface and (b) the local microbial release

of CDOM as a response to elevated solar radiation. Previous

and our own observations on amino-acid fluorophores (F1,

F4), as well as on the enrichment of CSP and amino acids

in the SML described elsewhere (Engel and Galgani, 2016),

suggest a rapid turnover of fresh DOM in the sea surface

itself. On one hand, microbes release fresh DOM directly

within the SML or in the upper first centimeters, as a con-

sequence of high light exposure. On the other hand, and both

in the SML and ULW, microbial and photochemical degra-

dation would lead to the loss of amino-acid-like fluorophores

(F1, F4) and to the accumulation of less labile and humic-

like components completely degraded (F2) or still subject to

further photochemical degradation (F3, F5).

4.3 Implications for surface ocean dynamics and future

perspectives

Optical properties of DOM in the Peruvian EBUS revealed a

SML characterized by amino-acid-like CDOM fluorophores.

CDOM enrichment in the SML has been observed in differ-

ent marine regions associated with enrichment in phenolic

compounds, MAAs and humic acids (Carlson, 1982; Carl-

son and Mayer, 1980; Tilstone et al., 2010; Zhang and Yang,

2013). MAAs for example (LMW-DOM) are well known as

microbial sunscreen in aquatic environments (Bhatia et al.,

2011; Shick and Dunlap, 2002), and were observed in higher

concentrations in the SML during surface slicks development

(Tilstone et al., 2010). Here, the accumulation of amino-acid-

like CDOM may have a major microbial source directly in

the SML or the immediate subsurface water, whereas fulvic-

acid-/humic-acid-like CDOM likely originated in the sunlit

zone below by microbial and photochemical processing of

upwelled organic material. Accumulation of amino acids in

the SML has been related to a reduced bacterial activity, be-

ing the SML an extreme environment where the consump-

tion of amino acids may be lower (Santos et al., 2012). A

reduced bacterial activity may thus also explain the amino

acids enrichment in the SML of the Peruvian EBUS (Engel

and Galgani, 2016). We may assume that in the top layer of

the ocean, and at higher extent in the SML, exposure to light

may have determined three main processes: (1) microbial

release of amino-acid-like CDOM as a sunscreen function,

(2) increased availability of biological substrate by CDOM

photolysis and (3) further photochemical degradation of mi-

crobially altered CDOM. Photochemistry is able to alter the

HMW fraction making it more available for microbial attack

(Kieber et al., 1989), but at the same time it may lead to a net

loss of bioavailable substrates (Kieber, 2000). Therefore, the

interplay of photochemistry and microbial activity controls

the accumulation and loss of organic compounds at the sea

surface, implying consequences on gas fluxes worth deeper

investigations in climate-relevant marine regions such as the

OMZ off the coast of Peru. As an example, high microbial

DOM respiration can lead to higher production of CO2 in the

SML (Garabétian, 1990), whereas high concentrations of iso-

prene may be released from photosensitized DOM reactions

in the SML, proving an abiotic source of this gas uncoupled

from biological production (Ciuraru et al., 2015).

It remains unclear whether in the Peruvian EBUS an in-

crease in bioavailable carbon may have implied a higher het-

erotrophic respiration and CO2 production in the SML, and

this is an attractive hypothesis for future studies in this direc-

tion. It may be suggested however, that a net DOM produc-

tion in the SML may take place independently of the biolog-

ical productivity of the underlying waters as a sole microbial

response to light exposure. We assessed the enrichment of

light-absorbing proteinaceous organic material in the SML

of a highly productive oceanic system, which may interfere

with correct estimates of primary production from remote
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measurements. To conclude, we suggest that further primary

production estimates take into account the CDOM enrich-

ment in the first centimeters of the ocean.

The Supplement related to this article is available online

at doi:10.5194/bg-13-2453-2016-supplement.
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