



## Supplement of

## Temperature affects the morphology and calcification of *Emiliania huxleyi* strains

Anaid Rosas-Navarro et al.

Correspondence to: Anaid Rosas-Navarro (anaid.rosas@uab.cat), Gerald Langer (gerlan@MBA.ac.uk), and Patrizia Ziveri (patrizia.ziveri@uab.cat)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.



Figure 1. Sea surface temperatures in the North Pacific in February and August 2002 (http://disc.sci.gsfc.nasa.gov/giovanni/), the year in which the strain RCC1252 was collected. Regions of origin of the RCC1710 and RCC1252 strains in the Japanese coast are marked (stars).



**Figure 2.** Growth rate in relation to the values of pH (a),  $pCO_2$  (b) and  $CO_3^{2-}$  concentration (c) at the end of the temperature experiment. Standard deviations of the triplicate experiment results are shown. Three different strains of *E. huxleyi* were used.



Figure 3. Coccolith morphometry (a and b) and mass (c), in three *E. huxleyi* strains grown at different temperatures, in relation to the final values of  $pCO_2$ . Standard deviations of the triplicate experiment results are shown.



Figure 4. Percentage of malformed (a) and incomplete (b) coccoliths, in three *E. huxleyi* strains grown at different temperatures, in relation to the final values of  $pCO_2$ . Standard deviations of the triplicate experiment results are shown.