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Abstract. The global warming debate has sparked an

unprecedented interest in temperature effects on coc-

colithophores. The calcification response to temperature

changes reported in the literature, however, is ambiguous.

The two main sources of this ambiguity are putatively dif-

ferences in experimental setup and strain specificity. In this

study we therefore compare three strains isolated in the North

Pacific under identical experimental conditions. Three strains

of Emiliania huxleyi type A were grown under non-limiting

nutrient and light conditions, at 10, 15, 20 and 25 ◦C. All

three strains displayed similar growth rate versus tempera-

ture relationships, with an optimum at 20–25 ◦C. Elemen-

tal production (particulate inorganic carbon (PIC), particu-

late organic carbon (POC), total particulate nitrogen (TPN)),

coccolith mass, coccolith size, and width of the tube element

cycle were positively correlated with temperature over the

sub-optimum to optimum temperature range. The correlation

between PIC production and coccolith mass/size supports the

notion that coccolith mass can be used as a proxy for PIC pro-

duction in sediment samples. Increasing PIC production was

significantly positively correlated with the percentage of in-

complete coccoliths in one strain only. Generally, coccoliths

were heavier when PIC production was higher. This shows

that incompleteness of coccoliths is not due to time shortage

at high PIC production. Sub-optimal growth temperatures

lead to an increase in the percentage of malformed coccoliths

in a strain-specific fashion. Since in total only six strains have

been tested thus far, it is presently difficult to say whether

sub-optimal temperature is an important factor causing mal-

formations in the field. The most important parameter in bio-

geochemical terms, the PIC : POC ratio, shows a minimum at

optimum growth temperature in all investigated strains. This

clarifies the ambiguous picture featuring in the literature, i.e.

discrepancies between PIC : POC–temperature relationships

reported in different studies using different strains and differ-

ent experimental setups. In summary, global warming might

cause a decline in coccolithophore’s PIC contribution to the

rain ratio, as well as improved fitness in some genotypes due

to fewer coccolith malformations.

1 Introduction

Emiliania huxleyi (Lohmann) Hay and Mohler is a cos-

mopolitan (McIntyre and Bé, 1967; Brown, 1995), geneti-

cally diverse (Medlin et al., 1996; Schroeder et al., 2005;

Iglesias-Rodríguez et al., 2006; Hagino et al., 2011; Read

et al., 2013), morphologically variable (Hagino et al., 2005;

Hagino and Okada, 2006; Cubillos et al., 2007) marine pho-

tosynthetic and calcifying (Brownlee and Taylor, 2004) uni-

cellular haptophyte algae species and the most abundant

of the coccolithophores. It produces calcite (CaCO3) plates

called coccoliths which cover the cell. As a photosynthetic

organism, E. huxleyi shifts the seawater carbonate system to-

wards [CO2−
3 ], but as a calcifier it shifts the seawater car-

bonate system towards [CO2]. Therefore, part of the interest

in E. huxleyi derives from its role in the global carbon cy-

cle. In particular, extensive blooms (Westbroek et al., 1993;
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Paasche, 2001) might impact air–sea gas exchange (Robert-

son et al., 1994; Buitenhuis et al., 1996). Climate-change-

induced surface water stratification was shown to trigger E.

huxleyi blooms (Harada et al., 2012).

The ratio of particulate inorganic carbon (PIC) and par-

ticulate organic carbon (POC) influences surface water–

atmosphere gas exchange as well as the composition of mat-

ter exported from surface waters to the deep ocean (Ridgwell

and Zeebe, 2005; Findlay et al., 2011). The response of PIC

and POC production and their ratio in the prolific species E.

huxleyi to temperature is a necessary first step towards an un-

derstanding of its possible impact on global biogeochemical

cycles.

The relationship of PIC production/PIC : POC and temper-

ature in E. huxleyi is not clear. De Bodt et al. (2010) found

that PIC production was higher at lower temperatures in a

strain grown at 13 and 18 ◦C, while Sett et al. (2014) found

the opposite in another strain grown at 10, 15 and 20 ◦C. De

Bodt et al. (2010) found higher PIC : POC ratios at lower

temperatures for a strain of E. huxleyi and Gerecht et al.

(2014) found a similar relationship for a strain of the species

Coccolithus pelagicus. Sett et al. (2014), however, found a

different relationship for the PIC : POC ratio in another strain

of E. huxleyi, which is not supported by the experiment of

Langer et al. (2007) on the same strain. Feng et al. (2008) did

not find differences in the PIC : POC ratio in another strain

grown at 20 and 24 ◦C. These discrepancies between stud-

ies might stem from different experimental setups and a lack

of knowledge of the optimum growth temperature or indeed

strain-specific differences (Hoppe et al., 2011). Therefore, it

is necessary to test more than one strain for its temperature

response under otherwise identical conditions. This we have

done in the present study.

Apart from biogeochemical considerations, global warm-

ing might also be of interest in terms of the ecological suc-

cess of coccolithophores, because different groups of organ-

isms might be differently affected by warming and therefore

ecological succession patterns, grazing pressure etc. might

change. The latter was proposed to depend on coccolith mor-

phology more than it does on PIC production (Langer et al.,

2011). The effect of temperature on coccolith morphogene-

sis is evident in field observations (Bollmann, 1997; Ziveri

et al., 2004) and is best assessed with respect to the optimum

growth temperature in laboratory experiments. While the ef-

fect of supra-optimal temperature is unequivocally detrimen-

tal (Watabe and Wilbur, 1966; Langer et al., 2010), it is not

clear whether there is an effect of sub-optimal temperature at

all (Watabe and Wilbur, 1966; Langer et al., 2010; De Bodt

et al., 2010). A temperature increase in the sub-optimal range

is probably what most coccolithophore clones will experi-

ence in the course of global warming (this study Buitenhuis

et al., 2008; Langer et al., 2009; Heinle, 2014), and there-

fore this temperature range is particularly interesting. In the

present study we focus on coccolith morphology under sub-

optimal temperature, doubling the amount of data currently

available, and thereby clarifying whether sub-optimal tem-

peratures can cause malformations. We selected three strains

of E. huxleyi from a single area, the Japanese coast in the

North Pacific Ocean, in order to assess the plasticity within

strains originating from a particular environmental setting.

2 Materials and methods

2.1 Pre-culture and batch culture experiments

Clonal cultures of Emiliania huxleyi were obtained from

the Roscoff Culture Collection. We selected three strains of

E. huxleyi, two from the Japanese coast in the North Pa-

cific Ocean (RCC1710 – synonym of NG1 and RCC1252

– synonym of AC678 and MT0610E) and a third strain

from the same region but of unknown exact origin and

strain name, named here IAN01. Strain RCC1710 was col-

lected off Nagasaki at Tsushima Strait (Japan) and RCC1252

at Tsugaru Strait (Japan); both places are strongly influ-

enced by the Tsushima warm current. Additional infor-

mation about the strain RCC1252 can be found at http:

//roscoff-culture-collection.org/.

The culture media was sterile-filtered North Sea water

(filtered through 0.2 µm pore size sterile Sartobran 300 fil-

ter cartridges, Sartorius, Germany) supplemented with nu-

trients (nitrate and phosphate), metals and vitamins accord-

ing to Guillard and Ryther (1962). Cell densities were de-

termined using a Multisizer 3 Coulter Counter (Beckman

Coulter for particle characterization). To prevent significant

changes in seawater carbonate chemistry, maximum cell den-

sities were limited to≈ 1×105 cellsmL−1 (e.g. Oviedo et al.,

2014). We used a 16/8 light/dark cycle, and an irradiance of

≈ 300µmolphotons s−1 m−2. The three strains were grown

for at least 20 generations.

The dilute batch culture experiments were conducted in

triplicate, for the strains RCC1710 and RCC1252 at 10, 15,

20 and 25 ◦C of temperature, and for IAN01 at 15, 20 and

25 ◦C. The strains were grown in 2 L of sea water within

transparent sterilized 2.3 L glass bottles. Cell density at in-

oculation was 500 to 1000 cellsmL−1, and at harvest it was

a maximum of 1× 105cellsmL−1. Harvesting was done 9 h

after the onset of the light period.

Growth rate was calculated from exponential regression

according to

µ= (lnc1− lnc0)1t
−1, (1)

where c1 and c0 are the final cell concentration and the ini-

tial cell concentration, respectively, and1t is the duration of

incubation in days. Averages of triplicates and SD were used

in tables and figures (Table 1 and Fig. 1a).

2.2 Carbonate chemistry

The seawater carbonate system was monitored because tem-

perature and coccolithophore production alter the system. We
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Table 1. Growth rate and cellular PIC, POC, and TPN content and production of the three strains of E. huxleyi at different temperatures.

Standard deviation of the triplicates in parentheses. Measured growth rates for extra temperatures from the pre-experiments are included, but

PIC, POC and TPN were not measured for these temperatures.

Strain T Growth rate PIC POC TPN PPIC PPOC PTPN

(◦C) (µ) (pgcell−1) (pgcell−1) (pgcell−1) (pgcell−1 d−1) (pgcell−1 d−1) (pgcell−1 d−1)

RCC1710 6.5 0.19

RCC1710 10 0.26 (0.00) 15.31 (0.15) 8.91 (0.29) 1.54 (0.07) 3.98 (0.03) 2.32 (0.08) 0.40 (0.01)

RCC1710 15 0.75 (0.01) 14.07 (0.40) 9.90 (0.11) 1.47 (0.01) 10.55 (0.41) 7.42 (0.16) 1.10 (0.01)

RCC1710 20 1.15 (0.02) 11.47 (0.09) 12.05 (0.79) 1.71 (0.06) 13.16 (0.15) 13.82 (0.63) 1.98 (0.04)

RCC1710 25 1.24 (0.01) 10.80 (0.24) 9.30 (0.80) 1.38 (0.04) 13.34 (0.33) 11.48 (0.99) 1.70 (0.06)

RCC1710 27.5 1.04

RCC1710 30 0.23

RCC1252 6.5 0.18

RCC1252 10 0.26 (0.04) 8.29 (0.49) 6.35 (0.11) 1.16 (0.03) 2.15 (0.39) 1.64 (0.23) 0.30 (0.04)

RCC1252 15 0.73 (0.00) 9.92 (0.32) 8.64 (0.29) 1.34 (0.03) 7.22 (0.23) 6.29 (0.22) 0.97 (0.02)

RCC1252 20 1.15 (0.14) 9.89 (0.28) 8.75 (0.71) 1.35 (0.07) 12.01 (0.74) 9.99 (1.13) 1.56 (0.26)

RCC1252 25 1.22 (0.02) 12.20 (0.21) 10.19 (0.75) 1.41 (0.02) 14.84 (0.38) 12.39 (0.86) 1.72 (0.02)

RCC1252 27.5 1.02

RCC1252 30 0.00

IAN01 6.5 0.12

IAN01 15 0.81 (0.01) 10.18 (0.30) 9.89 (0.43) 1.47 (0.08) 8.20 (0.19) 7.97 (0.30) 1.18 (0.06)

IAN01 20 1.17 (0.00) 8.12 (0.21) 8.95 (0.43) 1.75 (0.09) 9.46 (0.25) 10.43 (0.51) 2.04 (0.11)

IAN01 25 1.32 (0.03) 11.21 (0.36) 9.95 (0.11) 1.46 (0.01) 14.84 (0.49) 13.17 (0.22) 1.94 (0.03)

IAN01 27.5 1.01

IAN01 30 −0.11

employed the dilute batch method (Langer et al., 2013) to

minimize production effects.

During the harvesting, samples for total alkalinity (TA)

measurements were sterile-filtered (0.2 µm pore size) and

stored for less than 2 months prior to measurement in 25 mL

borosilicate flasks at 4 ◦C. TA was calculated from linear

Gran plots (Gran, 1952) after potentiometric titration (in du-

plicate) (Bradshaw et al., 1981; Brewer et al., 1986).

Samples for dissolved inorganic carbon (DIC) were

sterile-filtered (0.2 µm pore size) with gentle pressure us-

ing cellulose-acetate syringe filters and stored bubble-free

for less than 2 months prior to measurement at 4 ◦C in 5 mL

borosilicate flasks. DIC was measured, in triplicate, using a

Shimadzu TOC 5050A.

The carbonate system was calculated from temperature,

salinity (32 ‰), TA and DIC, using the program CO2SYS

(Lewis and Wallace, 1998), applying the equilibrium con-

stants from Mehrbach et al. (1973), refitted by Dickson and

Millero (1987). For an overview of carbonate chemistry final

conditions in all treatments, see Table 2.

2.3 Particulate organic and inorganic carbon,

particulate nitrogen and calcite

Duplicate samples for the determination of total particu-

late carbon (TPC) and total particulate nitrogen (TPN) were

filtered onto pre-combusted (500 ◦C; 12 h) 0.6 µm nominal

pore size glass fibre filters (Whatman GF/F), placed in pre-

combusted Petri dishes (500 ◦C; 12 h), oven-dried (60 ◦C

24 h) and stored at −20 ◦C. Before analysis, TPC and TPN

samples were dried for 24 h in a drying cabinet at 60 ◦C prior

to measurement. All samples were then measured on a Euro

EA analyser (Euro Vector).

Particulate inorganic carbon (PIC) was calculated measur-

ing calcium content of samples with 3.6×106 E. huxleyi cells

filtered onto 47 mm polycarbonate (PC) filters (0.8 µm pore

size). PC filters were immersed overnight in an acid solu-

tion of 1% HNO3 to dissolve calcite. Calcium was deter-

mined by analysing an aliquot of the samples using an in-

ductively coupled plasma mass spectrometer (ICP-MS, Ag-

ilent model 7500ce). Cellular PIC was calculated from the

molecular mass of calcite, using the following equations:

PIC
cell−1 =

PICs

c ·Vs
, where PICs =

[Ca2+
]s · 12.0107

40.078
, (2)

where PICcell−1 is the cellular PIC (in pg), PICs is the PIC

sampled contained in the filter (in pg), c is the cell concentra-

tion (in cellsL−1), Vs is the volume sampled (in L), [Ca2+
]s

is the calcium content in the sample (in pg), 12.0107 cor-

responds to the relative atomic mass of carbon, and 40.078

corresponds to the relative atomic mass of calcium. Partic-

ulate organic carbon (POC) was calculated as the difference

between TPC and PIC. PIC, POC and TPN production (PPIC,

PPOC, PTPN) were estimated as the product of cellular PIC,

www.biogeosciences.net/13/2913/2016/ Biogeosciences, 13, 2913–2926, 2016
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Figure 1. Results at different temperatures. Growth rate (a) (extra temperatures from pre-experiments are included and shown as empty

symbols); cellular PIC and its concomitant calcite (b), POC (e) and TPN (h) content; PIC (c), POC (e) and TPN (i) production (linear trend

lines and r squared values are shown); and PIC : POC ratio (d) and POC : TPN ratio (g). Standard deviations of the triplicate experiment

results are shown. Three different strains of E. huxleyi were used.

POC or TPN, and growth rate. Calcite (CaCO3) per cell (con-

comitant of PIC) can also be estimated, substituting in Eq. (2)

the calcium carbonate molecular mass (100.0869) in place of

the relative atomic mass of carbon. The ratio between PIC

and POC (PIC : POC) and the ratio between POC and TPN

(POC : TPN) were also calculated.

2.4 Coccolith morphology – by scanning electron

microscopy

Thirty millilitres of culture was filtered onto polycarbonate

filters (0.8 µm pore size) and dried at 60 ◦C for 24 h. A small

portion (∼ 0.7 cm2) of each filter was mounted on an alu-

minium stub and coated with gold (EMITECH K550X sput-

ter coater). Images were captured along random transects

using a ZEISS-EVO MA10 scanning electron microscope

(SEM).

Emiliania huxleyi SEM images were used to measure and

categorize 300 coccoliths per sample (e.g. Langer et al.,

2009); the coccoliths were on coccospheres. The tube width

(width of the tube elements cycle) of each coccolith (Fig. 2c)

was the average of the tube width measured on the two semi-

minor axes (along the coccolith width) on the distal view

of the coccolith. Tube width measurements were manually

taken using the program Gimp-2.8. Examples of the tube

width variations in the three different strains are shown in

Fig. 2. The 300 coccoliths were classified as normal, mal-

formed or incomplete (e.g. Langer et al., 2011), as described

in Table 3, with examples in Figs. 3 and 4.

Biogeosciences, 13, 2913–2926, 2016 www.biogeosciences.net/13/2913/2016/
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Table 2. The carbonate system final values. Standard deviation of the triplicates in parentheses.

Strain T TA DIC pH pCO2 HCO−
3

CO2−
3

Omega

(◦C) (µmolkg−1) (µmolkg−1) (total scale) (µatm) (µmolkg−1) (µmolkg−1) calcite

RCC1710 10 2138 (23) 2012 (3) 7.95 (0.07) 482 (74) 1893 (14) 98 (15) 2.38 (0.36)

RCC1710 15 2167 (14) 2023 (12) 7.92 (0.01) 530 (13) 1893 (11) 111 (3) 2.69 (0.07)

RCC1710 20 2291 (25) 2110 (4) 7.92 (0.06) 571 (84) 1953 (19) 139 (18) 3.39 (0.45)

RCC1710 25 2306 (24) 2123 (7) 7.86 (0.03) 688 (55) 1961 (4) 142 (11) 3.51 (0.28)

RCC1252 10 2249 (8) 2095 (12) 8.02 (0.03) 427 (30) 1959 (16) 117 (6) 2.84 (0.15)

RCC1252 15 2219 (57) 2065 (6) 7.94 (0.12) 533 (136) 1925 (21) 119 (32) 2.90 (0.78)

RCC1252 20 2212 (20) 2043 (15) 7.91 (0.01) 571 (10) 1896 (11) 129 (4) 3.15 (0.09)

RCC1252 25 2229 (8) 2052 (10) 7.85 (0.04) 670 (64) 1896 (19) 137 (11) 3.37 (0.26)

IAN01 15 2206 (9) 2064 (16) 7.92 (0.02) 551 (33) 1932 (19) 111 (4) 2.70 (0.11)

IAN01 20 2249 (28) 2106 (6) 7.84 (0.05) 698 (86) 1969 (5) 115 (14) 2.80 (0.34)

IAN01 25 2243 (2) 2066 (4) 7.85 (0.01) 677 (13) 1910 (5) 137 (2) 3.37 (0.05)

(d) (e) (f)

(a) (b) (c)

(g) (h) (i)

Tube width
Coccolith width

C
o

cc
o

lit
h

 l
e

n
g

th

Figure 2. Examples of tube width variations observed in E. huxleyi RCC1710 (a–c), RCC1252 (d–f), and IAN01 (g–i) coccoliths. Tube

width (c) was measured along the two semi-minor axes (along the coccolith width) of each coccolith and averaged. Scale bar equal to 1 µm.

2.5 Coccolith length and mass – by polarized light

microscopy

Between 10 and 30 mL of culture was filtered with

∼ 200 mbar onto cellulose nitrate filters (0.2 µm pore size)

and dried at 60 ◦C for 24 h. A radial piece of filter was em-

bedded and made transparent in immersion oil on microscope

slides (e.g. Ziveri et al., 1995).

Images were taken at a magnification of 1000× with

a Leica DM6000B cross-polarized light microscope (LM)

equipped with a SPOT Insight camera (e.g. Bach et al., 2012;

Horigome et al., 2014). Between 50 and 200 image frames

from each sample were taken along radial transects and anal-

ysed using SYRACO software (Dollfus and Beaufort, 1999;

Beaufort and Dollfus, 2004). A minimum of 300 coccolith

images were automatically identified by the software and

measured in pixels. The software also automatically mea-

sures the grey level for each pixel by a birefringence method

based on the coccolith brightness when viewed in cross-

polarized light (Beaufort, 2005). Coccolith length and mass

were subsequently calculated from the pixels and from the

measured grey level, respectively, following Horigome et al.

www.biogeosciences.net/13/2913/2016/ Biogeosciences, 13, 2913–2926, 2016
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(a) (b) (c)

Figure 3. Examples of malformed coccoliths found in E. huxleyi RCC1710 (a), RCC1252 (b), and IAN01 (c). Scale bar equal to 1 µm.

(a) (b) (c)

Figure 4. Examples of incomplete coccoliths of E. huxleyi RCC1710 (a), RCC1252 (b), and IAN01 (c). Scale bar equal to 1 µm.

(2014) and Beaufort (2005). Therefore, coccolith length was

converted from pixels to micrometres, where 832 pixels cor-

respond to 125 µm, and coccolith mass was converted from

grey level units to picograms, where 2275.14 grey level units

were equivalent to 1 pg of calcite.

2.6 Statistics

For the three E. huxleyi strains together, ANOVA (two-factor

with replication) was used to test whether a response vari-

able (i.e. growth rate, element variables, morphological vari-

ables and mass) presented significant (p < 0.05) differences

between the temperature treatments, to test whether the ef-

fect was strain-independent or strain-specific (p < 0.05), and

to test whether there were significant differences in the inter-

action between treatment and strain (p < 0.05) and therefore

whether the different strains respond similarly or not regard-

less of whether they were presenting differences between

them. If the temperature effect was strain-specific, further

ANOVA was used for pairs of strains.

If a response variable presented significant differences be-

tween the temperature treatments, and the variable also pre-

sented a significant strain-independent response to tempera-

ture, or at least the same response on two of the strains, the

variable for the similar strains was analysed with simple and

multiple linear regressions, including CO2 partial pressure

(pCO2), CO2−
3 concentration and pH, in order to find the

useful coefficients (t statistics, p < 0.05) of the significant

equation (F test, p < 0.05) that would estimate the assessed

variable value, e.g. the single or combined variables signifi-

cantly estimating growth rate.

3 Results

3.1 Population growth

The three strains of E. huxleyi presented a stable growth rate

(per day) that changed with temperature (Fig. 1a, Table 1),

with significant differences between the temperature treat-

ments (F = 244.11, p = 0.000). The strains RCC1710 and

RCC1252 presented similar growth rates, not statistically dif-

ferent from one another (F = 0.372, p = 0.550). From 15

to 25 ◦C, the IAN01 growth rate was significantly different

from the other two E. huxleyi strains (F = 4.53, p = 0.025),

but there was no significant difference in the interaction be-

tween treatment and strain (F = 0.71, p = 0.597), so the

three strains behaved significantly similarly. The optimum

temperature for the three strains was 25 ◦C. When RCC1710

and RCC1252 were analysed together, changes in growth

rate only depended significantly on temperature (linear re-

gression: R2
= 0.91, F = 229.58, p = 0.000); the carbonate

system variables (Table 2) did not much increase the coeffi-

cient of determination (maximum to an R2
= 0.92) and none

of them were significantly useful in predicting growth rate

when used together with temperature (t statistics: p > 0.05).

According to Eq. (1), on the three strains, a minimum of one

duplication per day was obtained from 15 to 27.5 ◦C.

3.2 Element measurements, ratios and production

Cellular PIC (and its concomitant calcite), POC and TPN

(pgcell−1) did not show a consistent trend related to temper-

ature when comparing the three strains of E. huxleyi (Fig. 1b,

e, h; Table 1). When cellular PIC and TPN response to

temperature (from 15 to 25 ◦C) were statistically analysed

(ANOVA), significant differences were found between treat-

ments (F = 113.42, p = 0.000 and F = 36.52, p = 0.000,
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Table 3. Morphological categorization of coccoliths (from SEM images) of E. huxleyi used in this study.

Morphological category Description

Normal Regular coccolith in shape, with well-formed distal shield elements

aligned forming a symmetric rim. Considered normal when zero or only

two malformations were present.

Malformed Irregular coccolith in shape or size of individual elements and a general

reduction in the degree of radial symmetry shown; teratological

malformation (Young and Westbroek, 1991). Considered malformed

when three or more malformations were present in the coccolith.

Incomplete Coccolith with variations in its degree of completion according to its

normal growing order, with no malformations. Primary calcification

variation (Young, 1994).

respectively), but these were not strain-independent (F =

182.86, p = 0.000 and F = 33.32, p = 0.000, respectively).

Cellular POC, conversely, did not show significant differ-

ences between strains (F = 1.71, p = 0.209), nor did be-

tween the temperature treatments (F = 0.09, p = 0.908).

There was no consistent explanatory variable for cellular

PIC, POC, and TPN when analysing the three strains inde-

pendently.

In the three strains, production of PIC (and its concomi-

tant calcite), POC and TPN (pgcell−1day−1) showed a pos-

itive relationship with temperature (Fig. 1c, f, i; Table 1).

Highest PIC and POC production was in general reached

at 25 ◦C, except for RCC1710, which reached it at 20 ◦C.

From the statistical analysis, PIC and POC production re-

sponse to temperature, when comparing the three strains of

E. huxleyi together, was significantly different between the

temperature treatments (F = 8.36, p = 0.003) and the re-

sponse was strain-independent (F = 0.89, p = 0.428). High-

est TPN production was in general reached at 20 ◦C, ex-

cept for RCC1252, which reached it at 25 ◦C. The latest

was supported statistically, as TPN production response,

with significant differences between temperature treatments

(F = 499.96, p = 0.000), was strain-specific (F = 65.92,

p = 0.000) when comparing the three strains of E. huxleyi

together, and yet still the strains RCC1710 and IAN01 pre-

sented a similar interaction between treatment and strain

(F = 3.52, p = 0.062); thus, the two strains had a similar be-

haviour in the TPN production response despite the different

values between the strains (F = 19.02, p = 0.000).

Changes in PIC production on the three strains of E.

huxleyi mostly depended on temperature (linear regression:

R2
= 0.89, F = 217.36, p = 0.000); pCO2 with [CO2−

3 ],

when used together with temperature, only slightly increased

the coefficient of determination (R2
= 0.93). Changes in

POC production on the three strains of E. huxleyi only de-

pended significantly on temperature (linear regression: R2
=

0.85, F = 157.71, p = 0.000).

The PIC : POC ratio decreased from 10 to 20 ◦C in the

three strains of E. huxleyi (Fig. 1d). POC was higher than

PIC only in the strains RCC1710 and IAN01 at 20 ◦C. From

the statistical analyses, the only significant similitude ob-

tained was in the interaction between treatment and strain for

RCC1252 and IAN01 (F = 2.12, p = 0.163), which means

that the PIC : POC ratio behaves similarly towards tempera-

ture in these two strains.

The POC : TPN ratio (Fig. 1h) relationship with temper-

ature was strain-specific (F = 9.59, p = 0.001). The differ-

ences between the temperature treatments were significant

(F = 16.95, p = 0.000). There were no significant differ-

ences between the strains RCC1710 and RCC1252 (F =

2.71, p = 0.119), in which the lowest POC : TPN ratio was

found at 10 ◦C; however, there were significant differences

in the interaction between treatment and strain (F = 3.52,

p = 0.039), as observed in the different temperatures at

which maximum POC : TPN ratios were found for each strain

(20 and 25 ◦C, respectively). The strain IAN01 showed a

much different relationship with temperature, with a mini-

mum POC : TPN ratio found at 20 ◦C.

3.3 Coccolith morphology and mass

Although there was great variation between replicates, mean

tube width of coccoliths (Fig. 5a, Table 4) presented a posi-

tive trend with temperature, independent of the strain of E.

huxleyi (F = 1.73, p = 0.204). Changes in tube width on

the three strains of E. huxleyi only depended on temperature

(linear regression:R2
= 0.47, F = 28.09, p = 0.000); pCO2

and [CO2−
3 ] did not much increase the coefficient of deter-

mination (R2
= 0.51) and none of them were significantly

useful in predicting tube width when used together with tem-

perature (t statistics: p > 0.05).

Coccolith length (Fig. 5b, Table 4) showed a positive

trend with temperature, especially on strains RCC1252 and

IAN01. The positive trend in strain RCC1710 was not so

clear; however, minimum length was also found at 10 ◦C

and maximum length also at 25 ◦C. Strains RCC1252 and

IAN01 were analysed together in a multiple linear regres-

sion analysis, as they did not present significant differences
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Table 4. Coccoliths morphology and mass. Standard deviation of the triplicates is shown in parentheses.

Strain T Tube width Coccolith length Coccolith mass Malformed Incomplete

(◦C) (µm) (µm) (pg) (%) (%)

RCC1710 10 0.20 (0.02) 2.03 (0.06) 0.99 (0.11) 33.18 (2.02) 2.39 (0.75)

RCC1710 15 0.22 (0.03) 2.12 (0.03) 1.63 (0.25) 29.19 (4.50) 2.38 (2.36)

RCC1710 20 0.26 (0.02) 2.05 (0.04) 1.75 (0.09) 33.66 (5.85) 8.60 (4.51)

RCC1710 25 0.28 (0.02) 2.16 (0.05) 2.48 (0.16) 37.75 (7.90) 20.10 (5.24)

RCC1252 10 0.21 (0.04) 2.06 (0.00) 1.61 (0.00) 56.39 (3.54) 1.22 (0.51)

RCC1252 15 0.26 (0.05) 2.15 (0.09) 1.97 (0.07) 7.65 (5.29) 1.28 (1.25)

RCC1252 20 0.28 (0.04) 2.27 (0.03) 2.49 (0.30) 10.09 (3.21) 7.09 (5.01)

RCC1252 25 0.27 (0.02) 2.30 (0.03) 3.00 (0.18) 9.09 (3.67) 5.08 (4.85)

IAN01 15 0.22 (0.03) 2.15 (0.06) 2.02 (0.19) 52.13 (8.41) 2.58 (0.66)

IAN01 20 0.25 (0.03) 2.24 (0.00) 2.63 (0.00) 47.09 (2.92) 3.05 (1.78)

IAN01 25 0.27 (0.02) 2.26 (0.02) 2.66 (0.27) 41.18 (4.01) 8.95 (3.01)
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Figure 5. Changes in coccolith morphometry (a, b) and mass (c), at different temperatures. Standard deviations of the triplicate experiment

results are shown. Three different strains of E. huxleyi were used.

between them (F = 2.12, p = 0.171); temperature gave the

highest coefficient of determination (R2
= 0.62, F = 24.03,

p = 0.000) and was the only useful coefficient in estimat-

ing coccolith length when making any combination with

pCO2, [CO2−
3 ] or pH. The strain RCC1710 was analysed

independently of the other two strains: temperature pre-

sented a low and non-significant coefficient of determination

(R2
= 0.28, F = 3.55, p = 0.092); instead, pH presented the

highest coefficient of determination (R2
= 0.65, F = 16.87,

p = 0.002).

The positive relationship of the mean tube width with

temperature reflects the increased coccolith calcite quota at

higher temperature. Coccolith mass and coccolith size are

positively correlated. Why coccolith mass or size should in-

crease with temperature cannot be decisively answered based

on our data.

Regardless of the strain, coccolith calcite mass (Fig. 5c,

Table 4) showed a positive trend with temperature; sig-

nificant differences were found between treatments (F =

35.59, p = 0.000) and no significant differences were found

in the interaction between treatment and strain (F = 2.53,

p = 0.08). The strains RCC1252 and IAN01 were analysed

together as they did not show significant differences be-

tween them (F = 0.65, p = 0.425). Temperature presented

the highest coefficient of determination for RCC1252 and

IAN01 (R2
= 0.75, F = 45.93, p = 0.000) and also for

RCC1710 (R2
= 0.87, F = 58.58, p = 0.000), and adding

other coefficients was not significantly useful in estimating

coccolith mass. On average, coccolith mass increased with

temperature ∼ 2.2× from 10 to 25 ◦C, ∼ 1.5× from 15 to

25 ◦C, and ∼ 1.2× from 20 to 25 ◦C; on average, coccolith

mass increased 1.28× (or 0.45 pg) each 5 ◦C.

The percentage of malformed coccoliths per sample

(Fig. 6a, Table 4) did not show a consistent trend with tem-

perature when comparing the three strains of E. huxleyi (F =

113.21, p = 0.000). Only one strain (RCC1252) presented

significant differences between the temperature treatments,

with higher percentage at the lowest experimented tempera-

ture.

Only in strain RCC1710, the percentage of incomplete

coccoliths presented a significant increase with temperature

(Fig. 6b, Table 4). Higher percentages of incomplete coccol-
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Figure 6. Percentage of malformed (a) and incomplete (b) coccoliths in three E. huxleyi strains grown at different temperatures. Standard

deviations of the triplicate experiment results are shown.

iths in strain RCC1710 were found at 25 ◦C. ANOVA re-

sults showed that, between the three strains, there were no

significant differences between only the strains RCC1252

and IAN01 (F = 0.06, p = 0.810) and their interaction be-

tween treatment and strain (F = 2.33, p = 0.139), though

in this case (analysed from 15 to 25 ◦C) there were also no

significant differences between the temperature treatments

(F = 3.78, p = 0.053). Significant strain-independent and

strain-specific responses of E. huxleyi to temperature, found

in the three strains of this study, are summarized in Table 5.

4 Discussion

4.1 Growth rate, elemental production and incomplete

coccoliths

All three E. huxleyi strains investigated here displayed simi-

lar growth rate versus temperature relationships, with an op-

timum at 20–25 ◦C (Fig. 1a). This is a typical range for many

E. huxleyi strains (e.g. Watabe and Wilbur, 1966; Van Rijssel

and Gieskes, 2002; Sorrosa et al., 2005; De Bodt et al., 2010;

Langer et al., 2009). We expect that strains isolated, for ex-

ample, in the Arctic will have a lower temperature optimum,

though. Also not untypical, elemental production (PIC, POC,

TPN) increased with temperature over the sub-optimum to

optimum temperature range (Fig. 1; Langer et al., 2007;

Sett et al., 2014). It is intuitive that, approaching optimum,

higher temperature increases elemental production, because

biochemical rates are temperature-dependent. It is also in-

tuitive that the percentage of incomplete coccoliths should

increase with higher PPIC, as indeed observed in RCC1710

(Fig. 6b). The idea underlying this intuition is that less time

is taken to produce one coccolith and that the production pro-

cess is stopped before the coccolith is fully formed. A com-

parison of RCC1710 and RCC1252 shows how wrong this

idea is (Table 6). The percentage of incomplete coccoliths in-

creases in the former only. While it is true that coccolith pro-

duction time in RCC1710 decreases from 31 min at 10 ◦C to

22 min at 25 ◦C, this decrease is even more pronounced in

RCC1252 (from 88 to 23 min). Hence, RCC1252 should

show a steeper increase in incompleteness than RCC1710.

This is not the case. Please note that the increase in incom-

pleteness in RCC1252 (Fig. 6b) is not significant, because the

increase is well below 10% and the error bars overlap (see

also Langer et al., 2013, for a discussion of this criterion).

Another piece of evidence which does not fit the “premature

release of coccoliths because of time shortage” idea is that

both RCC1710 and RCC1252 manage to produce heavier

coccoliths in a shorter time at higher temperature (Tables 4

and 6). We do not know why the stop signal for coccolith

growth is affected by temperature in RCC1710. Nothing is

known about the biochemical underpinning of that stop sig-

nal, so it is unfortunately impossible to speculate about the

mechanism of a temperature effect. It was, however, argued

that the processes involved in the stop signal are different

from those producing teratological malformations (Young

and Westbroek, 1991; Langer et al., 2010, 2011). This is sup-

ported by our data, because there is no correlation between

incompleteness and malformations (Fig. 6). We will discuss

malformations in Sect. 4.3.

Interestingly coccolith mass is positively correlated with

temperature (and PPIC) in all strains tested here. The positive

correlation of coccolith mass and PPIC was also observed by

Bach et al. (2012) in a carbonate chemistry manipulation ex-

periment and is the basis of using coccolith mass as a proxy

for PPIC (Beaufort et al., 2011). This is an interesting option,

because in field samples coccolith mass might be a promis-

ing indicator of PPIC. There are only few proxies available to

reconstruct past coccolithophore PPIC, the traditional one be-

ing the calcite Sr /Ca ratio, established at the turn of the mil-

lennium (Stoll and Schrag, 2000). Analysing Sr /Ca, how-

www.biogeosciences.net/13/2913/2016/ Biogeosciences, 13, 2913–2926, 2016



2922 A. Rosas-Navarro et al.: Temperature affects the morphology and calcification of E. huxleyi

Table 5. Significant strain-independent and strain-specific responses of E. huxleyi to temperature found in the three strains of this study.

Strain-independent responses Strain-specific responses

– Growth rate optimum temperature was 25 ◦C. – Highest PIC,

POC, and TPN production values were found at 20 or 25 ◦C. –

The PIC : POC ratio decreased from 10 to 20 ◦C. – Tube width

increased with temperature, from ∼ 0.20 µm

at 10 ◦C to ∼ 0.27 µm at 25 ◦C. – Maximum coccolith length

was found at 25 ◦C. – Coccolith mass increased with tempera-

ture (∼ 2.2× from 10 to 25 ◦C, ∼ 1.5× from 15 to 25 ◦C, and

∼ 1.2× from 20 to 25 ◦C; on average, 0.45 pg each 5 ◦C).

– Cellular PIC, POC and TPN (pg per cell). –

POC : TPN ratio. However, in the two strains tested at

10 ◦C (RCC1710 and RCC1252), the POC : TPN ratio

was lowest at 10 ◦C. – Percentage of malformed coc-

coliths per sample. – Percentages of incomplete coccol-

iths. – Coccolith length, although in strains RCC1252

and IAN01 was positively correlated with temperature.

Table 6. Coccolith production time. Standard deviation of the triplicates is shown in parentheses. Lith: coccolith; d: day; h: hour; min:

minutes.

Strain T (◦C) pgPIC lith−1 lith cell−1 lith cell−1 d−1 lith cell−1 h−1 min lith−1 pgPICh−1

RCC1710 10 0.12 (0.01) 121 (2) 31 (0) 2.0 (0.0) 31 (0) 0.25 (0.00)

RCC1710 15 0.20 (0.03) 74 (14) 55 (10) 3.4 (0.6) 18 (3) 0.66 (0.03)

RCC1710 20 0.21 (0.01) 53 (0) 61 (1) 3.8 (0.1) 16 (0) 0.82 (0.01)

RCC1710 25 0.30 (0.02) 36 (2) 45 (2) 2.8 (0.1) 22 (1) 0.83 (0.03)

RCC1252 10 0.19 (0.00) 43 (2) 11 (2) 0.7 (0.1) 88 (18) 0.13 (0.02)

RCC1252 15 0.24 (0.01) 42 (1) 31 (1) 1.9 (0.1) 31 (1) 0.45 (0.01)

RCC1252 20 0.30 (0.04) 35 (6) 42 (4) 2.6 (0.2) 23 (2) 0.75 (0.05)

RCC1252 25 0.36 (0.02) 34 (3) 41 (3) 2.6 (0.2) 23 (2) 0.93 (0.02)

IAN01 15 0.24 (0.02) 42 (3) 34 (2) 2.1 (0.2) 28 (2) 0.51 (0.01)

IAN01 20 0.32 (0.00) 26 (1) 30 (1) 1.9 (0.0) 32 (1) 0.59 (0.02)

IAN01 25 0.32 (0.03) 35 (5) 47 (6) 2.9 (0.4) 21 (3) 0.93 (0.03)

ever, requires either a sizable sample or comparatively so-

phisticated secondary ion mass spectrometry (SIMS) mea-

surements (Stoll et al., 2007; Prentice et al., 2014). Recently,

coccosphere diameter and coccolith quota were introduced as

growth rate proxies (Gibbs et al., 2013). However, complete

coccospheres are the exception rather than the rule in sed-

iment samples, so it is important to have a proxy based on

individual coccoliths. Hence, coccolith mass and size (which

are correlated; Fig. 5, Table 4) are an option which it is worth-

while exploring in the future.

4.2 Emiliania huxleyi PIC : POC response

As detailed in the introduction there is considerable vari-

ability in the PIC : POC response of E. huxleyi to tempera-

ture changes. This variability cannot be traced back to strain-

specific features, but it might partly reflect the fact that dif-

ferent temperature ranges were investigated, mostly without

the knowledge of the optimum temperature. Other experi-

mental conditions, such as light intensity and nutrient con-

centrations, varied and might have also played a role (Hoppe

et al., 2011). In this study we ran three strains under identical

conditions and, for the first time, are presented with a co-

herent picture. All three strains display a bell-shaped curve

with lowest PIC : POC close to the optimum growth temper-

ature (Fig. 1d). Although our data on the right-hand side of

the PIC : POC minimum are not conclusive for RCC1252, the

bell-shaped curve is discernible in the latter strain. This find-

ing seems to fit data on other E. huxleyi strains (De Bodt

et al., 2010; Sett et al., 2014) and on C. pelagicus (Gerecht

et al., 2014). This comparison is, however, not straightfor-

ward since two of the studies (De Bodt et al., 2010; Gerecht

et al., 2014) employed two temperatures, one of the studies

employed three temperatures (Sett et al., 2014), only with-

out determining the optimum temperature in all three stud-

ies. Be that as it may, based on our data, we might con-

clude that E. huxleyi tends to show the lowest PIC : POC

close to its optimum growth temperature. In the context of

global warming, that would mean that, in the future, E. hux-

leyi and possibly coccolithophore PIC : POC will tend to

decrease because most strains live at sub-optimal temper-

atures in the field (Buitenhuis et al., 2008; Langer et al.,

2009; Heinle, 2014). This trend might be pronounced be-

cause global warming is accompanied by lower surface water

nutrient levels and ocean acidification (Cermeño et al., 2008;

Doney et al., 2009). All these changes apparently cause a de-

crease in E. huxleyi’s PIC : POC (our data; Hoppe et al., 2011;

Oviedo et al., 2014). A marked decline in coccolithophore

PIC : POC will have implications for long-term carbon burial

and might even affect surface water carbonate chemistry on
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short timescales, i.e. 1 year (Barker et al., 2003; Ridgwell

and Zeebe, 2005; Cermeño et al., 2008).

4.3 Coccolith malformations

The coccolith shaping machinery is, besides the ion trans-

port machinery, an essential part of coccolith formation (for

an overview see Holtz et al., 2013). The latter commences

with heterogeneous nucleation on an organic template, the

so-called base plate. The nucleation determines crystal axis

orientation. Crystal growth proceeds in principle inorgani-

cally, with the notable exception that crystal shape is strongly

modified by means of a dynamic mould, which essentially

consists in the coccolith vesicle shaped by cytoskeleton ele-

ments and polysaccharides inside the coccolith vesicle. Mal-

formations can be due to an abnormal base plate which would

affect crystal axis orientation, aberrations in the composition

or structure of the polysaccharides, and disturbance of cy-

toskeleton functionality. The last of these would most likely

also cause a decline in growth rate, which is why this mech-

anism was disregarded in the case of carbonate-chemistry-

induced malformations (Langer et al., 2011). By the same

reasoning, temperature-induced malformations might be due

to cytoskeleton disturbance, because temperature does also

alter growth rate (Fig. 1a). However, it is not straightforward

to see why lower than optimum temperature should disturb

cytoskeleton functionality (see also Langer et al., 2010). At

any rate, coccolith malformations are most likely detrimen-

tal to fitness, because malformed coccoliths result in frag-

ile coccospheres, which are regarded as instrumental in coc-

colithophore fitness (Dixon, 1900; Young, 1994; Langer and

Bode, 2011; Langer et al., 2011). One of the many hypothe-

ses concerning function of calcification is that the cocco-

sphere confers mechanical protection (Dixon, 1900; Young,

1994). After more than a century of research, it still remains

the most plausible hypothesis.

Coccolith malformations, i.e. disturbances of the coccolith

shaping machinery, occur in both field and culture samples,

but usually more so in the latter (Langer et al., 2006, 2013).

The causes of malformations are only partly known. In cul-

tured samples, artificial conditions (not present in the field)

such as cell densities of 106cellsmL−1, cells sitting on the

bottom of the culture flask, stagnant water, and confinement

in a culture flask play a role in inducing the surplus of mal-

formations compared to field samples (Langer et al., 2013;

Ziveri et al., 2014). However, in the field malformations

do occur, and sometimes in considerable percentages (Gi-

raudeau et al., 1993; Ziveri et al., 2014). The environmental

conditions leading to elevated levels of malformations have

long since been disputed. Besides nutrient limitation (Honjo,

1976), temperature and carbonate chemistry are conspicuous

candidates. Although the range of temperatures used here ex-

ceeds 2100 projections (IPCC, 2013), we used it not only on

physiological grounds but also for ecological reasons. Over

the course of the year, coccolithophores in the North Pa-

cific experience the whole range of temperatures used here

(http://disc.sci.gsfc.nasa.gov/giovanni/, maps in the Supple-

ment). In a seminal experimental study it was shown that

moving away from the optimal growth temperature increases

malformations in E. huxleyi (Watabe and Wilbur, 1966). This

result was confirmed for higher than optimum temperature

in another strain (Langer et al., 2010) but could not be con-

firmed for sub-optimal temperature in two strains (De Bodt

et al., 2010; Langer et al., 2010). The sub-optimal tempera-

ture range is of particular interest because most clones live

at sub-optimal temperatures in the field. Here we investi-

gated sub-optimum to optimum temperatures in three further

strains. While RCC1710 showed no change in the percentage

of malformations and IAN01 featured a shallow gradual in-

crease from 25 to 15 ◦C, RCC1252 was insensitive over the

latter range but displayed a steep increase in malformations

at 10 ◦C (Fig. 6). Based on our own and the literature data,

we conclude that the sub-optimal temperature effect on mor-

phogenesis is strain-specific. The fact that the base level of

malformations in cultured coccolithophores differs between

species and strains (and also varies with time) has been rec-

ognized for many years and is now well documented (e.g.

Langer and Benner, 2009; Langer et al., 2011, 2013). Also,

the response of the morphogenetic machinery to environmen-

tal factors is strain-specific (Langer et al., 2011). We cur-

rently do not have enough accessory information to formu-

late a hypothesis why exactly one strain differs from another.

The fact that they do indeed differ, however, probably reflects

the high genetic diversity in E. huxleyi.

Can we see a pattern in this strain specificity? It is intrigu-

ing that E. huxleyi clones fall into two distinct groups char-

acterized by their temperature preference: the warm-water

and the cool-water group (Hagino et al., 2011). Of the strains

analysed for morphology, the following belong to the warm-

water group: BT-6 (Watabe and Wilbur, 1966), RCC1710,

RCC1252, and possibly RCC1238 (Langer et al., 2010). The

latter was unfortunately not included in the study by Hagino

et al. (2011). Since these strains display different responses

to temperature, their being part of the warm-water group does

unfortunately not help finding common features of sensitive

strains. However, only a few strains have been studied so far,

and it might be worthwhile testing a statistical number from

the warm-water and the cool-water group.

5 Conclusions

1. Temperature, PIC production, coccolith mass, and coc-

colith size are positively correlated. Since the positive

correlation between coccolith mass and PIC production

was observed in response to seawater carbonate chem-

istry changes as well (Bach et al., 2012), it can be hy-

pothesized that coccolith mass might be a good proxy

for PIC production independent of the environmental

parameter causing the change in PIC production.
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2. Sub-optimal growth temperature was identified as one

of the potential causes of coccolith malformations in

the field. Since the effect of sub-optimal temperature

on coccolith morphogenesis is strain-specific, a statis-

tically relevant number of strains have to be tested in

order to clarify whether this effect is indeed ecologi-

cally relevant.

3. We consistently showed for the first time that E. huxleyi

features a PIC : POC minimum under optimum growth

temperature. Taken together with literature data, this

finding suggests that global environmental change will

lead to a marked decrease in PIC : POC of E. huxleyi and

possibly coccolithophores as a group.

The Supplement related to this article is available online

at doi:10.5194/bg-13-2913-2016-supplement.
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