

Supplement of

Contributions of dynamic environmental signals during life-cycle transitions to early life-history traits in lodgepole pine (*Pinus contorta* Dougl.)

Yang Liu et al.

Correspondence to: Yousry A. El-Kassaby (y.el-kassaby@ubc.ca)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

Table S1 A list of important climatic variables

Table S2 Canonical correlation analysis (CCA) and MANOVA statistical test criteria

Table S3 Errors from ecosystem zones in life-history traits' models

Table S4 Parameter estimates and statistical tests for the geographic variables-based hierarchical models regarding life-history traits

Figure S1 Geographical distribution of the 83 populations (green triangles) on the map regarding AMT value (A) and ecosystem zones (B) of British Columbia, Canada.

Figure S2 The distribution of the samples based on mean annual temperature (MAT) against annual heat moisture index (AHM).

Figure S3 Schematic representation of the cumulative germination curve parameters used to characterize seed dormancy.

DI (dormancy index): the gray shaded area, the difference of area under germination curves (*AUC*) of control and any other treatment; *GS* (germination speed): the number of days to reach 50% of final germination; *GC* (germination capacity): the final germination percentage.

Figure S4 PLS biplot of 194 climatic variables (green), 83 populations (red), and 21 (above) 20 (below) categories for 83 population habitats (blue).

Figure S5 PCA for 194 climatic variables. The 15 most correlated climatic variables were marked in red.

Figure S6 Seed dormancy (*DI*, a) and weight (*SW*, b) distribution for the 83 populations labeled on the map of British Columbia, Canada.

Figure S7 Linear relationship between 1,000-seed weight and 'predicted' 1,000-seed weight using 83 populations.

Figure S8 The amount of changes for *DD_0_winter*, *DD5_spring*, and *DD5* in 2050s relative to present.

Note: The population was ranked as per its current *DI* in ascending order. Each data point is the average of predictions using three methods (RCP2.6, 4.5, and 8.5). Bars indicate the SEM. Ranges across populations under different scenarios are provided in a table format.

Abbreviations	Full names
<i>Eref</i> 06, 07, 08, 09, _summer, and _autumn	June, July, August, September, summer, and autumn hargreaves reference evaporation (caculated by temperature
	and solar radiation)
DD_0_summer	summer degree-days below 0°C
PPT 06, 07, 09, 10, and _autumn	June, July, September, October, and autumn precipitation (mm)
<i>Tmax</i> 07 and <i>_summer</i>	July and summer maximum mean temperatures (°C)
PAS04, 05, and _spring	April, May, and spring precipitation as snow (mm)
DD18 _04, _06, _07, 09, _10,	April, June, July, September, October, spring, and autumn
_spring, and _autumn	degree-days above 18°C
DD18	annual degree-days above 18°C
DD5_07, 09, and _autumn	July, September, and autumn degree-days above 5°C
<i>Tmin</i> 04, 10, 11, <i>_spring</i> and	April, October, November, spring and autumn minimum
_autumn	mean temperatures (°C)
CMD 00 and autumn	September and autumn hargreaves climatic moisture deficit
CMD09 and _autumn	(calculated by <i>Eref</i> and precipitation)
NFFD10	October number of frost-free days
MAT	mean aunnal temperature (°C)
MAP	mean annual precipitation (mm)
AHM	annual heat-moisture index (MAT+10)/(MAP/1000))
<i>Tave</i> 09, 10, _ <i>spring</i> , and	September, October, spring and autumn mean temperature
autumn	(°C)

Table S1 A list of important climatic variables

A)					
Canonical function	Likelihood ratio	Approximate F-value	Num DF^\dagger	Den DF [†]	$\Pr > F^{\dagger\dagger}$
1	0.1371	2.89	60	102	<0.0001
2	0.5776	1.31	29	52	0.1943

[†]Num DF and Den DF represent numerator and denominator degrees of freedom, respectively. ^{††} Hypothesis is, H_0 : none of the canonical functions is significant; H_a : at least one of the canonical functions is significant (P < 0.05).

B)

MANOVA tests [†]	F Value	Num DF ^{††}	Den DF ^{††}	$\Pr > F$
Wilks' Lambda	3.30	42	120	<0.0001
Pillai's Trace	3.27	42	122	<0.0001
Hotelling-Lawley Trace	3.34	42	105.24	<0.0001
Roy's Greatest Root	4.53	21	61	<0.0001

[†] null hypothesis for the statistic tests is the centroids of life-history traits are equal across the 22 ecosystem zones (P < 0.05). ^{††} Num DF and Den DF represent numerator and denominator degrees of freedom, respectively.

		Seed dormancy model				Seed weigh	nt model		
Ecosystem	DF	Estimate	STD	t Value	Pr > t	Estimate	STD	t Value	Pr > t
zone			Pred				Pred		
BB	58	-0.8391	1.5939	-0.53	0.6006	0.09572	0.0974	0.98	0.3300
BLK	58	-1.1614	1.6123	-0.72	0.4742	-0.04007	0.1055	-0.38	0.7060
CHL	58	0.1542	1.7931	0.09	0.9318	-0.1539	0.1218	-1.26	0.2110
CP	58	1.8555	1.669	1.11	0.2708	-0.0866	0.1099	-0.79	0.4340
CT	58	-0.6866	1.8897	-0.36	0.7177	0.1130	0.1515	0.75	0.4590
DK	58	0.0068	1.7932	0.00	0.9970	-0.1033	0.1319	-0.78	0.4370
EK	58	1.8960	1.7285	1.10	0.2772	0.05822	0.0989	0.59	0.5590
FIN	58	0.2597	1.641	0.16	0.8748	-0.1450	0.1054	-1.38	0.1740
FN	58	0.2124	1.811	0.12	0.9070	0.1040	0.1377	0.76	0.4530
GL	58	0.6919	1.8805	0.37	0.7143	0.0824	0.1525	0.54	0.5910
HH	58	0.5785	1.5921	0.36	0.7177	0.1606	0.1103	1.46	0.1510
Μ	58	-1.0011	1.7276	-0.58	0.5645	0.1579	0.1440	1.10	0.2780
MGR	58	0.4678	1.8017	0.26	0.7961	-0.2729	0.1316	-2.07	0.0430
MRB	58	-1.2299	1.8959	-0.65	0.5191	-0.0010	0.1509	-0.01	0.9950
NCH	58	-0.3918	1.6630	-0.24	0.8146	-0.0329	0.1127	-0.29	0.7720
NST	58	-2.1080	1.6615	-1.27	0.2096	-0.2655	0.1111	-2.39	0.0200
QL	58	0.0288	1.8147	0.02	0.9874	-0.0751	0.1338	-0.56	0.5770
SA	58	-0.7419	1.6473	-0.45	0.6541	-0.0279	0.1064	-0.26	0.7940
SM	58	-0.4658	1.6725	-0.28	0.7816	-0.1020	0.1200	-0.85	0.3990
TOA	58	0.9769	1.6045	0.61	0.5450	0.2323	0.0996	2.33	0.0230
TOD	58	1.4143	1.6246	0.87	0.3876	0.2303	0.0984	2.34	0.0230
WK	58	0.0826	1.7959	0.05	0.9635	0.0716	0.1203	0.60	0.5540

Table S3 Errors from ecosystem zone for seed dormancy and weight models

The ecosystem zones in BC are abbreviated BB, BLK, CHL, CP, CT, DK, EK, FIN, FN, GL, HH, M, MGR, MRB, NCH, NST, QL, SA, SM, TOA, TOD and WK; these denote Big Bar, Bulkley, Chilcotin, Central Plateau, Cariboo Transition, Dease Klappan, East Kootenay, Finlay, Ft. Nelson, Georgia Lowlands, Hudson Hope, Maritime zones, McGregor, Mt. Robson, Nechako, Nass Skeena Transition, Quesnel Lakes, Shuswap Adams, Submaritime, Tompson Okanagan Arid, Tompson Okanagan Dry, and West Kootenay, respectively.

Table S4 Parameter estimates and statistical tests for the geographic variables-based hierarchical

models regarding seed dormancy and seed weight

Effect	Estimate	Standard Error	DF	Statistic	Р
Intercept [¶] (β_0)	146.32	32.3917	21	t = 4.52	0.0002
Longitude (β_1)	0.9794	0.3150	58	F = 9.66	0.0029
Elevation (β_2)	0.0029	0.0020	58	F = 1.98	0.1643
Latitude (β_3)	-0.1070	0.3808	58	F = 0.08	0.7797

(A) Seed dormancy model

Note: the same model as described in the text but using geographic variables as independent variables,

 $(life-history trait)_{ij} = (\beta_0' + \varepsilon_j) + \beta_1 \times Long_{ij} + \beta_2 \times Elev_{ij} + \beta_3 \times Lat_{ij} + \varepsilon_{ij}$

where *i* and *j* represent two levels, i.e., *i*th population in *j*th ecosystem zone; Long_{ij} , Elev_{ij} and Lat_{ij} represent the longitude, elevation, latitude for *i*th population within *j*th ecosystem zone; ε_j and ε_{ij} represent errors from ecosystem zone and population, respectively. Intercept ($\beta_0^{'} + \varepsilon_j$) and coefficients ($\beta_1^{'}$, $\beta_2^{'}$ and $\beta_3^{'}$) were estimated using our experiment data.

(B) Seed weight model

Effect	Estimate	Standard Error	DF	Statistic	Р
Intercept [¶] (β_0)	10.8374	1.6076	21	t = 6.74	<.0001
Longitude (β_1)	0.0615	0.0127	59	F = 23.32	<.0001
Elevation (β_2)	-0.0003	0.0001	59	F = 11.43	0.0013
	o'.				

Note: assuming that β_3 is zero in the model.

[¶]residual from ecosystem zones (ε_i) is integrated into 'intercept' (data not shown).

Figure S1

Figure S2

Figure S3

Figure S6

a)

Figure S7

Population

Ranges across populations under different scenarios

	RCP2.6	RCP4.5	RCP8.5
ΔDD_0 _winter	-479 ~ -46	- 526 ~ - 51	-689 ~ -57
$\Delta DD5_spring$	$70 \sim 396$	$88 \sim 428$	$112\sim546$
$\Delta DD5$	357~1099	425 ~ 1234	634 ~ 1557