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Abstract. Observed bimodal distributions of woody cover
in western Africa provide evidence that alternative ecosys-
tem states may exist under the same precipitation regimes. In
this study, we show that bimodality can also be observed in
mean annual shortwave radiation and above-ground biomass,
which might closely relate to woody cover due to vegetation–
climate interactions. Thus we expect that use of radiation
and above-ground biomass enables us to distinguish the two
modes of woody cover. However, through conditional his-
togram analysis, we find that the bimodality of woody cover
still can exist under conditions of low mean annual shortwave
radiation and low above-ground biomass. It suggests that this
specific condition might play a key role in critical transitions
between the two modes, while under other conditions no bi-
modality was found. Based on a land cover map in which
anthropogenic land use was removed, six climatic indicators
that represent water, energy, climate seasonality and water–
radiation coupling are analysed to investigate the coexistence
of these indicators with specific land cover types. From this
analysis we find that the mean annual precipitation is not suf-
ficient to predict potential land cover change. Indicators of
climate seasonality are strongly related to the observed land
cover type. However, these indicators cannot predict a stable
forest state under the observed climatic conditions, in con-
trast to observed forest states. A new indicator (the normal-
ized difference of precipitation) successfully expresses the
stability of the precipitation regime and can improve the pre-
diction accuracy of forest states. Next we evaluate land cover
predictions based on different combinations of climatic indi-
cators. Regions with high potential of land cover transitions
are revealed. The results suggest that the tropical forest in

the Congo basin may be unstable and shows the possibility
of decreasing significantly. An increase in the area covered
by savanna and grass is possible, which coincides with the
observed regreening of the Sahara.

1 Introduction

Precipitation is the primary constraint for the presence of
woody vegetation in Africa. Although the mean annual rain-
fall determines the maximum woody cover (Bucini and
Hanan, 2007; Good and Caylor, 2011), large variation in
vegetation cover is observed across a broad range of rain-
fall bands (Sankaran et al., 2005). It suggests that the actual
cover fraction is significantly influenced by other factors and
increases the difficulty of projecting ecosystem responses to
future climate change. Obviously only precipitation is not
sufficient to interpret the dynamics of ecosystems. Explicit
climate conditions and mechanisms should enhance our un-
derstanding of current and future woody cover distributions.

From satellite observations, Hirota et al. (2011) and Staver
et al. (2011b) showed that the distribution of the tropical
woody cover fraction was not unimodal. For a given mean
annual precipitation (P ), a range of ecosystems including
grass (no trees), savanna (sparse tree cover) and forest states
are observed, suggesting that alternative stable states of veg-
etation may exist (Van Nes et al., 2012; Kéfi et al., 2016).
The alternative stable states are caused by feedback mecha-
nisms (Scheffer et al., 2001, 2009) due to the interactions be-
tween vegetation and its local climate (Rietkerk et al., 2004;
Dekker et al., 2007; Dijkstra, 2011). Staver et al. (2011a)
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demonstrated that due to a positive fire feedback the savanna
state can maintain in water sufficient areas. The positive fire
feedback implies that fire will decrease woody cover and
the burned area will be colonized by herbaceous plants rela-
tively quickly, which in turn provide more fuel for fire in the
next dry season. On the other hand, fire hardly occurs when
woody cover exceeds 60 % as the amount of fuel is limited
(Roy et al., 2008). Trees then colonize spaces from grass and
the high degree of woody cover can be kept. Simultaneously,
if water supply by precipitation is not sufficient, high transpi-
ration rates by forest can lead to more enhanced convective
cloud cover than by savanna (Entekhabi et al., 1992; Dekker
et al., 2007), which can reduce incoming shortwave radia-
tion and avoid further water loss (Seneviratne et al., 2010).
Consequently forest can keep a wet environment for a longer
time. This cloud feedback plays an important role for the sta-
bility of the forest state, especially during drought conditions.

Although alternative stable states can lead to bimodality
in woody cover, it can also be caused by discontinuities in
environmental drivers or variation in for instance the growth
rates of woody plants (Yin et al., 2014b). Thus a better under-
standing of the cause of the observed bimodality is needed,
for instance to evaluate the resilience of the current ecosys-
tem to climate variation (Scheffer et al., 2009) and to predict
potential shift of vegetation states.

To address the proposed questions, we focus on feed-
back mechanisms that can explain the essential cause of the
alternative stable states (Kéfi et al., 2016). Assuming that
the observed bimodality is related to the alternative stable
states, the proposed feedback mechanisms should exist. Con-
sequently, bimodality should also be found in variables that
interact in the feedback loops. For instance, the mean annual
shortwave radiation (R) is a key factor in the cloud feedback.
High and low R are expected to associate with low and high
woody cover respectively if the cloud feedback is significant.
Thus also R should have a bimodal distribution, correspond-
ing to the bimodality of woody cover. The existence of bi-
modality in specific variables is therefore an extra piece of
evidence for the existence of alternative stable states. More
importantly, these feedback-integrated variables indicate the
strength of a specific feedback loop, through which we are
able to assess the stability of the current ecosystem.

Via vegetation–climate feedbacks, vegetation states and
climatic variables are clearly linked. Obviously, these inter-
actions comprise a wider set of characteristics than just mean
annual rainfall and woody cover. Seasonality of rainfall has
a clear impact on the dynamics of soil water, and conse-
quently available water, for vegetation (Good and Caylor,
2011; Staver et al., 2011b). To explore the effects of rainfall
seasonality on current ecosystem states, scientists have made
use of the length of the dry season (Staver et al., 2011b), en-
tropy of the rainfall time series (Feng et al., 2013) and a sea-
sonality index (Good and Caylor, 2011). Moreover, vegeta-
tion states can clearly be controlled by climatic factors other
than precipitation; radiation and its seasonality also result in

spatial and temporal growth patterns, particularly under en-
ergy limited evaporation regimes (Seneviratne et al., 2010).
Ignoring these additional drivers in the coupled vegetation
climate system may lead to an incomplete picture of the pre-
vailing mechanisms, probably misinterpreting the detected
areas of potential bistability.

In this paper we hypothesize that bimodality should not
only be found in woody cover, but due to the strong climate-
vegetation interaction they should also be found in some
related variables. Above-ground biomass B (Hansen et al.,
2003) and mean shortwave radiation R (Boone et al., 2009)
are chosen to verify our hypothesis. B can be seen as a proxy
for the development age of woody plants. It is also a mea-
sure of the fire feedback (Mayer and Khalyani, 2011) as high
fire frequency and severity can reduce woody biomass sig-
nificantly and lead to low B. R is a climatic variable for esti-
mating the strength of the cloud feedback. A low R is inter-
preted as an environment with a more uniformly distributed
precipitation regime, where fire is rare and woody plants can
extend their canopies to increase woody cover W . And high
W can in turn diminish R by affecting cloud cover through
reinforcing evapotranspiration (Entekhabi et al., 1992). We
first expect that the bimodality can be found in both B and R.
Moreover, the mode of low W in the bimodality is expected
to match with low B and high R; and high W is expected to
match with high B and low R.

After the detection of areas with bimodal states in B, W
and R, we use conditional histograms to attribute distribu-
tions of one quantity to other quantities. As such we create
a predictive set of equations for W , driven by the climate
data for diagnosing areas displaying potential bimodality in
the vegetation states. By analysing observations of multiple
climatic indicators and classified land cover types, we inves-
tigate different prediction accuracies of these climatic indica-
tors to different land cover types. A new method is proposed
to predict potential land cover by combining predictions of
these climatic indicators. Then we readdress the spatial dis-
tribution of potential land cover types in western and central
Africa to illustrate areas where land cover change might oc-
cur in response to changes in the driving climatic conditions.

2 Data and analysis methods

2.1 Data

The region of interest covers western Africa ((20◦W,
30◦ E)× (5◦ S, 20◦ N), see Fig. 1a and b). The MODIS
(Moderate Resolution Imaging Spectroradiometer) Vegeta-
tion Continuous Fields (VCF) product (MOD44B; Hansen
et al., 2003) provides high-resolution (500 m) satellite re-
trieved woody cover W averaged over the period Octo-
ber 2000 to December 2001. Four consecutive annual cy-
cles (2000–2003) of above-ground biomass B are taken from
Baccini et al. (2008), with 1 km spatial resolution. This data
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Figure 1. (a, b) Map of averaged woody cover (W ) and above-
ground biomass (B) in western Africa. In one climatic grid cell
(0.5◦× 0.5◦), about 12 321 data points of W and B (at 500 m res-
olution) are located. From this set 50 samples of W and B are
taken randomly and averaged to estimate the mean value of W
and B in each climatic grid cell. Note that the region covered by
B-observations (denoted by black contour) is smaller than for W .
Total rainfall in area covered by W -observations ranges between
212 and 4340 mmyr−1, while B data are only available where
P > 641 mmyr−1. (c, d, e) Histograms of observed W , B and R in
the area where B-observation is available (the dark contour region
in (b)). The y axis is the density of the histograms. Solid and dashed
curves represent savanna and forest states from the bimodality test
respectively.

set only comprises biomass of woody plants, which is con-
sistent with the woody cover data set. Six years (2002–2007)
of precipitation (P ) and radiation (R) data are calculated
from a 3 hourly observation based data set intended for use as
a climate forcing for the AMMA (African Monsoon Multi-
disciplinary Analysis) Land Surface Model Intercomparison
Project (ALMIP; Boone et al., 2009). The spatial resolution
is 0.5◦.

Figure 1a and b shows grid-cell-averaged values ofW and
B from observations. The areal extent of B is smaller than
that of W , indicated by the dark contour line. In the overlap-
ping region (where the conditional histogram analysis is car-
ried out; see below), the mean annual precipitation P ranges
from 950 to 1350 mmyr−1 and the mean annual radiation R
from 173 to 260 W m−2. Note that P ranges between 0 and
4340 mmyr−1 when the entire western Africa is considered.

Anthropogenic land use is filtered from the data sets
of W and B, using data from the GlobCover project of

the European Space Agency (ESA; http://due.esrin.esa.int/
page_globcover.php). This data set provides 300 m resolu-
tion global land cover data in 2005–2006 and 2009. As the
2009 version improves the classification of deforested pat-
terns in tropical regions, it is used in this study.

2.2 Conditional histograms

The B data set was resampled from 1 km to 500 m to adjust
theW data set by bilinear interpolation. In each 0.5◦ grid cell
of the climate data set, samples with zeroW or zero B are fil-
tered out first. A random subsample of 50 data points of W
andB was assigned to every climate data grid cell. Next a sta-
tistical bimodality test was applied using the “flexmix” pack-
age (version 2.3–13) in R (version 3.2.2; Grün and Leisch,
2007), evaluating the integrated completed likelihood (ICL)
criterion (Biernacki et al., 2000). For various numbers of as-
sumed data clusters the expectation maximization (EM) al-
gorithm (Grün and Leisch, 2007) is used to determine the
number of clusters best matching the observations (Biernacki
et al., 2000). For cases where a bimodal distribution is found
to provide the best data fit, the thresholds of the modes of
W , B and R are calculated. For instance, in a mixture of sa-
vanna and forest (S–F), Wl indicates the low woody cover
biome (the savanna state), whileWh indicates the forest state.
Similarly, Bl and Bh refer to the savanna and forest states re-
spectively, while Rh corresponds to the savanna state as high
radiation levels are associated with a shorter rainfall season
limiting the maximum potentialW (Good and Caylor, 2011).
Consequently, Rl refers to the forest state.

Conditional histograms are compiled by selecting data of
one distribution conditioned on whether or not the corre-
sponding data in the other distribution belong to the savanna
or forest categories. For instance, histograms of W under
both low and high conditions of R are constructed (that is,
(W |Rl) and (W |Rh) respectively), and subsequently it is
tested whether the bimodality still exists.

Currently there is a contentious debate about the availabil-
ity of the MODIS VCF product (Hansen et al., 2003) for mul-
timodality research. The classification and regression tree
(CART) method used for woody cover retrieval can lead to
artificial bias, which is suggested to be the real reason for the
observed multimodality (Hanan et al., 2014, 2015). However
through MODIS data calibration, Staver and Hansen (2015)
figure out that the bimodality of woody cover larger than
30 % is not attributable to artificial bias. Similarly bias also
exists in the above-ground biomass product (Baccini et al.,
2008). The discontinuity in the satellite estimation is accom-
panied by the same discontinuity in validation data (Baccini
et al., 2008), implying that the bimodality is not a reflection
of the CART method (Hanan et al., 2015). Thus we conclude
that both the woody cover and the above-ground biomass
data sets are appropriate for a bimodality analysis of the co-
existence of savanna and forest. More details are discussed
in the Supplement.
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2.3 Spatial classification of land cover

The filtering of anthropogenic land use change is applied
to all W data for the entire western African area. For this,
all vegetation cover data in every 0.5◦ climatic grid cell
(containing 12 321 MODIS 500 m× 500 m grid cells each)
in this larger domain are processed, and GlobCover data
points flagged as human activities are removed. These in-
clude the GlobCover classifications: post-flooding or irri-
gated croplands, rainfed croplands, mosaic cropland (50–
70 %)/vegetation (grassland, shrubland, forest) (20–50 %),
water bodies, artificial surfaces and associated areas (ur-
ban areas> 50 %) and mosaic vegetation (grassland, shrub-
land, forest) (50–70 %)/cropland (20–50 %) (Bontemps et al.,
2011). If the number of remaining W samples in a climatic
grid cell is less than 500, the entire grid cell is considered to
be anthropogenic and no bimodality testing is applied. Clas-
sification into treeless, savanna and forest states is calculated
using a bimodality test (Yin et al., 2014b). A positive de-
tection of a bimodal distribution is followed by a check on
the location of the peak values in the histogram to distin-
guish between grass–savanna (G–S) or savanna–forest (S–F)
states. In addition, the relative proportion of the size of the
two modes is calculated. We find that if the proportion of
one mode is less than 5 %, large uncertainty will occur in
the bimodality test. In cases with less than 5 % in one mode,
we assume an unimodal grid cell occupation by either grass,
savanna or forest. More details are shown in the online Sup-
plement.

2.4 Climatology and potential shifts of ecosystem states

The degree to which potential woody cover distributions can
be explained by mean annual precipitation (P ) and rainfall
seasonality has been addressed in various studies (Sankaran
et al., 2005; Bucini and Hanan, 2007; Good and Caylor,
2011; Staver et al., 2011b; Hirota et al., 2011). In these stud-
ies, rainfall seasonality is characterized by different indica-
tors (Good and Caylor, 2011; Staver et al., 2011b; Feng et al.,
2013), which may lead to different sensitivities in the shift of
climate regimes and ecosystem states. By including the pre-
cipitation seasonality in their analysis, Staver et al. (2011b)
find a somewhat surprising potential bimodality in the heart
of the Congo basin, in spite of a high precipitation amount
even in the dry season of that region. The studies listed above
did not include an analysis of climatic features that exclude
the existence of a bistable vegetation regime, like seasonal-
ity patterns that do not allow fire or other processes that are
essential for vegetation states.

We review a number of climatic indicators for expressing
the variability of rainfall, and we explore the degree to which
these indicators explain variations in ecosystem states. The
relationships, trained with observed vegetation and climate
characteristics, are used to determine the stability of woody

cover and its sensitivity to potential shifts in climatic indica-
tors in western Africa.

2.5 Indicators for rainfall seasonality

We use six climatic indicators to express the temporal dy-
namics of the water and energy cycle in western Africa. The
mean annual precipitation (P ) represents the amount of wa-
ter available to the land surface and is calculated from daily
observations during the 6-year ALMIP period between 2002
and 2007 (Boone et al., 2009). The mean annual shortwave
radiation (R) describes the total amount of solar energy in-
tercepted by the land surface and is calculated from the mea-
sured daily-averaged incoming shortwave radiation over the
same 6-year period.

Two commonly used indicators of rainfall seasonality are
the relative length of the dry season (LD in Staver et al.,
2011b) and the entropy of relative monthly rainfall (Ep in
Feng et al., 2013). LD is indicative for the length of the veg-
etation growing season, which in turn is related to the max-
imum potential woody cover. It is calculated by ranking the
monthly rainfall (pm) in ascending order. LD is defined as
the fraction of months with a cumulative rainfall amounts
less than 10 % of the total rainfall in the record.
Ep (Feng et al., 2013) is also determined using the monthly

rainfall amount (pm). For each year, the hydrological year is
defined to start after the month with the minimum of pm.
A climatological monthly rainfall amount pm is derived by
averaging the monthly rainfall in these hydrological years.
When qi is the relative rainfall amount in a hydrological
month (pm/P ), Ep can be obtained:

Ep =

12∑
i=1

qi log2

(
qi

ph

)
, (1)

where ph (= 1/12) is the uniform distribution of pm. Al-
though the value of Ep varies greatly across climatic regimes
(especially in monsoon areas in western Africa), the differ-
ence of Ep between the Sahara and tropical regions is very
small, as rainfall seasonality is low in both regimes.

The final indicator is the normalized difference of precipi-
tation (1p):

1p =
max(pm)−min(pm)

max(pm)+min(pm)
, (2)

where max(pm) and min(pm) are maximum and minimum
of climatologically averaged monthly precipitation respec-
tively. A low value of 1p reflects tropical precipitation
regimes, characterized by a small difference between mini-
mum and maximum monthly precipitation and a high annual
mean precipitation amount. The use of max(pm)+min(pm)

as a denominator in Eq. (2) limits the range of 1p in [0,1].
Compared with LD and Ep, 1p is able to discriminate be-
tween low and wet precipitation regimes with a strong sea-
sonality of both.
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Another indicator is the correlation coefficient of monthly
mean precipitation and shortwave radiation across the num-
ber of years ρPm,Rm

, which accounts for seasonally varying
magnitude of land–atmosphere coupling. The transpiration–
precipitation feedback promotes cloud cover, which in turn
blocks the incoming shortwave radiation and decreases
ρPm,Rm

. Thus high negative correlation between Pm and
Rm occurs in regions with strong land–atmosphere coupling
(Koster et al., 2004).

2.6 Relationship between climatic indicators and
ecosystem states

We analyse the relationship between climatic indicator (CI)
and land cover (LC) for five different types: forest (F), grass
(G), savanna (S) and coexisting grass–savanna (G–S) and
savanna–forest (S–F). Note that bare ground is not consid-
ered in this analysis. For each of the six climatic indica-
tors CIk (k ∈ [1,6] corresponding to P , R, Ep, 1p, LD and
ρPm,Rm

), n equal width bins are defined, spanning the range
of that indicator in our data set. A CIk ×LC matrix, consist-
ing of the number of grid cells (vi,j , i is the number of bins
and j is LC) found in our data set of n CIk ranges and five
LC types, is constructed:

CIk1
CIk2
...

CIkn


G G–S S S–F F
v1,1 v1,2 v1,3 v1,4 v1,5
v2,1 v2,2 v2,3 v2,4 v2,5
...

...
...

...
...

vn,1 vn,2 vn,3 vn,4 vn,5.

 (3)

We test how for a given value of CIk , grid cells are distributed
over the five LC types. For this we use the probability qk,j ,
defined as follows:

qk,j =
vi,j∑5
j=1vi,j

, (4)

where k ∈ [1,6] represents the specific CIk , and j is the LC
type. i indicates the band CIki (Eq. 3) where the given CIk

value is located. With this probability matrix, a prediction
of potential land cover in every grid cell is constructed by
giving the value of a climatic indicator. For different types
of climatic indicators these predictions will be different, as
different sensitivities of LC types to different climatic in-
dicators are found. For instance, by using the mean annual
rainfall (P ), every land cover type in a given grid cell can
be predicted with equal possibility (20 % for G, G–S, S, S–
F, F), while 1p indicates a different probability distribution
(0 % for G, G–S, S, S–F and 100 % for F). To evaluate the
predicted uncertainty of each climatic indicator to climate
regimes, we define an entropy-like quantity wk:

wk =−

5∑
j=1

qk,j log2qk,j . (5)

Note that both qk,j and wk are grid cell dependent. Each
grid cell has its own qk,j and wk . So do variables which ap-
pear in Sect. 2.7.

2.7 Predicted land cover types by climatic indicators

The probability qk,j and uncertainty index wk can be used to
predict the potential land cover for a given CI-combination.
The two-step prediction procedure first redistributes the
probability of mixed vegetation states (G–S and S–F) over
uniform vegetation probabilities ck,g, ck,s and ck,f for grass,
savanna and forest respectively:

ck,g = qk,1+
1
2
qk,2

ck,s =
1
2
qk,2+ qk,3+

1
2
qk,4 (6)

ck,f =
1
2
qk,4+ qk,5.

In the second step the weighted mean of cg, cs and cf is
calculated. For cg this is the following:

cg =

∑ 1
wk
ck,g∑ 1
wk

, (7)

where the weights wk are taken as the uncertainty index of
CIk (Eq. 5). For wk = 0 (100 % probability for a given vege-
tation structure) a low value (10−3) is chosen. Similar equa-
tions exist for savanna and forest.

From Eqs. (4), (6) and (7), we can find that cg+cs+cf = 1.
A probability exceeding 90 % for a certain land cover type is
considered a stable, unimodal vegetation structure. A prob-
ability less than 90 % but exceeding 50 % is considered to
be an unstable ecosystem dominated by a single land cover
type. Coexistence of grass, savanna and forest (each having
considerable cover fractions) is found to be rare. As a result,
the vegetation structure in western Africa can be classified by
seven types: stable grass (Gs), savanna (Ss) and forest (Fs);
and bimodal types dominated by grass (Gb), savanna (Sb)
and forest (Fb), where the bimodal structure dominated by
savanna includes two cases: G–S and S–F.

2.8 Difference between observed and predicted land
cover types

To evaluate the stability and potential transition of current
land cover in western Africa, we compare the predicted po-
tential land cover with the observed land cover classification
(Sect. 2.3). In this exercise the prediction uses the combina-
tion of climatic indicators P ,LD and1p, and the comparison
comprises each land cover type (G, S and F) individually. For
grass, G and G–S are combined as grass in the observation,
while predicted stable and grass-dominated vegetation types
are similarly combined into a single grass category. By com-
paring the predicted and observed grass cover distributions
we can distinguish three situations:

www.biogeosciences.net/13/3343/2016/ Biogeosciences, 13, 3343–3357, 2016
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Figure 2. Histograms of observed woody cover for different cate-
gories of mean annual radiation R, being Rl (< 220 W m−2, grey
bars) and Rh (> 220 W m−2, shaded bars). Panels represent sam-
ples taken under different total precipitation regimes.

1. Area currently covered by grass with predicted grass
cover.

2. Area currently covered by grass with other predicted
cover types.

3. Area currently covered by other types with predicted
grass cover.

The same method is applied for savanna and forest. Note that
G–S in the observation is shared by grass and savanna, while
S–F is shared by savanna and forest. This overlap has no sig-
nificant effect on the analysis in principle.

3 Results

3.1 Conditional histograms

Figure 1c–e show the histograms of observed woody vege-
tation cover W , above-ground biomass B and mean annual
radiation R for the research area after filtering the anthro-
pogenic land use out of the data. The bimodal distribution
of W and B are clearly illustrated. Related bimodality anal-
yses are implemented by Hirota et al. (2011) and Yin et al.
(2014b) respectively. In the online Supplement we provide
the evaluation of potential classes of R. Based on the ICL
and the density distributions of R under different P bands,
two classes are determined as the best fit. A clear threshold
between the savanna and forest states is found forW (0.6), B
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Figure 3. Histograms of above-ground biomass B conditioned on
woody cover Wl (< 0.6, shaded bars) and Wh (> 0.6, grey bars)
under different precipitation regimes.

(7 kg C m−2) and R (220 W m−2). Low R is generally asso-
ciated with forest, while high R corresponds to the savanna
state.

Based on the detected thresholds while including the
whole research area in the analysis, we apply the conditional
histogram method (Sect. 2.2) after stratifying the data into
different P regimes (1000± 50, 1100± 50, 1200± 50 and
1300± 50 mmyr−1). Figure 2 shows these conditional his-
tograms of W under fixed R intervals for the four precipi-
tation regimes. The histograms (W |Rh) successfully classify
all data that obey the calculated threshold (< 0.6) for all four
precipitation bands. This implies that under high radiation
only low W is found. In contrast, the histograms (W |Rl) are
bimodal, indicating that alternative states coexist under low
R conditions. The distribution ofW samples overWl andWh
is listed in Table 1. For all four precipitation regimes at least
94 % of the data with R > 220 W m−2 have a lowW (< 0.6).
For the low R class, however, only 19 to 62 % of the W data
correspond to the high W class.

Figure 3 shows the histograms of B conditioned on the W
class. The histograms (B|Wl) successfully classify all data
below the threshold B < 7 kg C m−2. Again, at least 94 % of
all data with a low W (< 0.6) are associated with low B (Ta-
ble 1). However, for (B|Wh) a bimodal distribution is found,
indicating that two B modes exist with low W . Only 55 to
78 % of the high B data are associated with Wh.

Table 2 summarizes the results. We found that the W state
can be determined under two conditions: (1) low R and high
B, (2) high R and low B. The only regime where a bimodal-

Biogeosciences, 13, 3343–3357, 2016 www.biogeosciences.net/13/3343/2016/
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Table 1. Percentage of woody cover fraction W and above-ground biomass B falling into different R and W categories respectively, being
high radiation (Rh, R > 220 W m−2) and low radiation (Rl). High and low values of W (higher or lower than 0.6) are denoted by Wh and
Wl, while biomass is categorized into high (Bh) and low (Bl) values by taking 7 kg m−2 as threshold.

Conditions Expected state 1000 mm 1100 mm 1200 mm 1300 mm

Rh W < 0.6 98.55 98.01 94.21 96.33
Rl W > 0.6 18.54 37.68 62.84 48.32

Wl B < 7 kgC m−2 97.88 96.75 94.83 95.96
Wh B > 7 kgC m−2 55.91 68.02 78.91 78.91

Table 2. Woody cover states determined by radiation (R) and
biomass (B) states. Bimodality is considered to be a coexistence
of savanna and forest states.

Low B High B

Low R Bimodality High W
High R Low W N/A

ity is found is the combination of low B and low R. In the
study area, a combination of highB and highR did not occur.

3.2 Spatial patterns of bimodal regimes

We analysed all natural W samples and applied the bimodal-
ity test on each climatic grid cell (Sect. 2.3). In Fig. 4a, west-
ern Africa is classified into six different W classes using
thresholds of 0, 0.1 and 0.6 to separate the unimodal classes:
bare soil (B, W = 0), grass (G, 0<W < 0.1), savanna (S,
0.1<W < 0.6) and forest (F, W > 0.6). If a bimodal distri-
bution was found, it was classified as either grass–savanna
(G–S) or savanna–forest (S–F) depending on the location of
the individual peaks. Figure 4a reveals that bimodal distri-
butions only occur in the transition zones between unimodal
land cover types. The coexistence of savanna and forest is
only found in the south of Liberia and Ghana as well as in
the Congo basin. In the Congo basin, the tropical forest is
surrounded by the bimodal savanna–forest states.

To demonstrate the relations between land cover types and
climate forcing, we distinguished between unimodal and bi-
modal cells in a P–R scatter plot (Fig. 4b and c). For a given
P , different unimodal or bimodal classes can be found, while
R appears to be a better discriminator between the different
classes.

20° W 10° W 0° E 10° E 20° E 30° E

5°
 S

0
N°

5°
   N

10
N

°
15

N
°

20
°

N
B

G

G−S

S

S−F

F

(a)

●

●

●

●●
●

●

●●

●●

●

●

●
●●●●

●

●
●
●●●●●

●●●●

●

●●●
●

●●
●●●

●●●●

●
●
●●●●●●●

●
●●

●●●●●●●●

●

●●●●●●●●●●●●

●●●●
●●
●
●●●●●●

●
●
●
●●

●●●●●●●●●●●●●
●●●●

●
●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●
●
●

●
●●

●●●●
●●●●●●●●●●●●
●●●●●

●●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●

●●●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●
●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●
●

●
●●●●
●●●●● ●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●

●
●●
●●●●●●●●●●●●●●●●●●

●

●●

●●●●
●●

●●●●●●●●
●●●●●

●●●●●●●●●●●
●●
●●●●●

●●
●●●●●●●●●●●●●●●●

●
●

●

● ●●●●●●●●●●●
●●●●

●●●
●●●●●●

●●●●●●●●●

●●
●●●●●●●●●
●●●●●

●●●
●●●●●●●●●●●●
●●●●●

●●●
●●●●●
●●●●●●●●

●
●●

●●●
●●

●
●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●
●●

●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 1000 2000 3000 4000

18
0

20
0

22
0

24
0

26
0

28
0

P  (mm)

R
 (

W
 m

−2
)

●

●
●

●

●●
●●●●●

●●●

●

●

●

●

●
●●

●
●

●
●

●●●●
●●●

●●

●

●

●●●
●

●
●
●●

●

●

●

●
●
●

●
●
●●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

● ● ●●
● ● ●

●●
●●●

●

●

● ●

●
●●

●●●●●●

●●●●
●●●●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●●●●●

●●●●●●
●●●

●

●●●●
●●●●●

●
●●
●●

●●

●

●

●
●

●

●

●

●●●
●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●
●●●●●

●●

●

●

●
●

●

●
●
●●

●●●
●

●●
●
●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●
●

●
●●●●
●●

●

●
●●
●

●
●● ●●

●

● ●

●
●

●●●●●●●
●
●
●●●
●
●●●●●●●●●●●●

●

●●●●●●●●●●●

●●

●●●●
●
●●

●

●

●●●

●●

●

●

●
●
● ●

●
●
●
●

●

●●
●

●
●

●
●●●

●●
●
●
●
●●●●●●●●●●●●●●●●●

●

●●
●●●●●●●

●
●

●
●

●

●●●
●●●

●●●

●

●

●●●
●

●

●●

●

●

●
●
●●
●
●

●
●

●
●

●
●
●

●
● ●

●
●●

●●
●●

●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●

●
●
●

●

●

●

●
●●
●
●
●●●
●
●
●

●
●

●●
●

●

●

●
●

●

●
●
●●
●
●

●
●●

●●●
●
●

●
● ● ● ●

●
●●

●
●

●
●●●●●●●●●●●

●
●●●●●●●

●
●
●●●●●●

●
●
●

●

●
●

●

●

●
●●
●
●
●
●●●●●

●

●●
●●

●
●
●
●
●

●
●●●
●

●

●
●●

●

●●●
●

●
●
●●

● ●

●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●

●
●

●

●
●●

●
●
●●

●

●

●
●●
●●●●●●●●

●
●●●● ●●

●●●
●

●●
●

●
●●●

●

●
●●●●

●

●
●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●
●

●
●

●●

●

●
●
●

●
●
●●
●●●●
●●●●●
●●
●●●●

●●●
●

●●

●
●●●●
●

● ●
●

●

●
●

●●●
●●●●●●●●●●●●●●

●●●●●●●●●
●●

●
●

●●
●

●
●
●
●●
●●●●●●●●●●●

●●●●●●●●
●●

●●
●

●●

●
●

●
●●

●

●●
●●●●●●●●●●●●●●●

●●●●●

●
●

●

●●
●●

●

●

●●●
●●●
●●●●●●●●●

●●●●●
●●●●
●●

●

●●●●●●●●●●●●●●
●●

●

●●●●
●

●

●
●●●●●●●
●●●●●●

●●●●
●●●●●
●

●

●●●
●●●●●●●●

● ●●●●
●

●
●●●●●

●●●●
●●●●●●●●

●●●●

●●●●●●

●●●●●
●●

●●●●
●

●●●
●●●

●
●●●●●●●●

●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●
●●●● ●

●
●●

●

●●●
●
●
● ●

●

●●●●●●

●
●
●

●

●
●

●● ●●●●●●●●

●
●

●

●

●●
●

●

● ●●●●●●●●●●
●

●
● ●

●
●

●

●

●●
●

●

●

● ● ●●●●●●●●●

●
● ●

● ●
●

●

●

●●

●

●

●●●●●●●●●●●
●
●●

●
● ● ● ●

●

●

●

●●

●

●●
●●

●●●● ●●●●●●●●●●●
●●

●●● ●
●

●

●

●

●

●
●
●

●

●●●●●●●●●●●●●
●
●

●●●● ● ●
●

●

●
●

●

●

●● ●● ●●●●●●●●●●●●
●

●
●●● ●

● ●

●

●
●

●
●
●

●

●

●
●●●●● ●●●●●●●●●●●●

●

●●●●● ●●●

●
●

●

●
●
●

●●●●
●●●●●●●●●●●●●●●

●

●● ●●●●
●

●
●

●

●
●●●

●
●●

●●
●
●●

●●●●
●●●●●●●●●●●●

●
●

●●●● ●● ●
●

●

●

●●●

●
●
●●

●
●●
●●●

●●●
●● ●●●●●●●

●●●

●●
●● ● ●

●
●

●

●

●

●
●●
●
●
●

●
●
●●

●●
●●●●●●●●●●●●●●●●

●●●●●●
●
●
●

●

●

●●
●●

●
●

●
●
●

●●
●
●
●●●● ●●●●●●●●●

●●
●●
●●

●

●

●●●
●
●

●
●●●

●
●●●●
●●●●●●●

●
●●
●●

●

●

●
●
●

●

●
●

●●
●●

●●
●●●●

●
●

●

●●

●
●

●

●●●

●●

●

●

●

●●
●

●●

●
●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

G
S
F

(b)

● ●
●●●

●

●

●

●
●

●

●
●

●
●

●

●
●●●
●

●

●●

●

●●●●

●
●

●

●●
●
●●●

●
●
●

●
●●●

●

● ●

●

●●●
●

●

●●
●

●

●●

●
●●

●●●●●

●●

●

●●
●

●●

0 1000 2000 3000 4000
18

0
20

0
22

0
24

0
26

0
28

0

P  (mm)

R
 (

W
 m

−2
)

● ●

●
●●●●

●●

●●●
●

●

●

●

●

●
●●●●

●

●●

●

●

●

●

●

●

●
●●●●

●
●
●●●●●●●●●●●

●●●
●

●
●

●

●

●●
●●

●

●●

●
●●●●●

●
●
●

●
●

●

●
●●
●

●

●●●●● ●
●●

●
●●

●

●

●

●
●●

●

●

●●●●

●

●

●●

●

●●

●
●

●
●●●

●
●

●

●

●

●
●

●
●

●

●
●

●●●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●●
●●

●

●

●

●

●
●

●
●●

●●●●
●

●

●

●●

●●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●●●●

●
●

●

●

● ●

●●

●

●●●
●

●
●
●

●

●

●

●

●
●

●● ● ●

●●

●●

●

●

●

●

● ●●
●

●
●

●

●
●

●
●

●
●
● ●●●●●

●

●●
●

●

●●

●

● ●●●

●

●

●
●●

●●●

●●

●

●

●●●
●
●
●

●
●

●●

●
●

●

●

●●
●●

●●●●

●

●

●●●
●●
●

●
● ●

●

●
●

●

●

●

●●
●

●

●
●
●
●●
●●

●

●

●●●
●

●

●
●

●

●
●

●

●
●

●
●
●
●

●

●

●●

●●

●

●
●●

●●

●

●

●
●

●
●

●
●●

●

●
●

●
●●

●

●

G−S
S−F

(c)

Figure 4. (a) Bimodality classification of woody cover in western
Africa according to the integrated completed likelihood (ICL) cri-
terion in the bimodality test. (b, c) Classification of mean annual
precipitation P vs. mean annual radiation R based on Fig. 4a. B:
bare soil. G: grass. G–S: grass–savanna. S: savanna. S–F: savanna–
forest. F: forest.

3.3 Sensitivity of land cover types to climatic indicators

The six climatic indicators (CI, Sect. 2.5) are calculated from
the ALMIP climate data and stratified by land cover type
(LC) as shown in Fig. 5. P (top left panel of Fig. 5) increases
with an LC shift from G to F, suggesting that precipitation
is the main driver of LC. However, the response of different
LC types shows a large mutual overlap, implying that with
a given P multiple LC states can exist. Precipitation is a poor
predictor for LC. The precipitation range where LC overlap
occurs reflects the bimodality regime found by P .

For R a negative relation with the woody cover fraction
(from G to F) is shown. R shows stronger sensitivity to the
LC type than P . Both G and G–S are found for R exceeding
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Figure 5. Box plot of six climatic indicators versus land cover types.
P is mean annual precipitation, R is mean annual shortwave radia-
tion, Ep is entropy of relative monthly precipitation, 1p is normal-
ized difference of averaged monthly precipitation, LD is the maxi-
mum length of the dry season and ρ

PmRm
is correlation coefficient

of monthly precipitation and monthly radiation.

240 W m−2. For higher R (> 262 W m−2) only G is found,
suggesting that high R is a necessary condition for stable
G. A LC type consisting of S is found in a narrow window
(218< R < 238 W m−2), implying that the savanna state is
very stable in this range of R. Some samples of G and G–S
are also found in this range. However, they are in the tail of
the specific distributions. F is found when R < 228 W m−2,
which contains the LC type S–F as well. As shown in Table 2,
a low value of R is necessary but not exclusive for finding F.

The covariation between LC and Ep is similar to the pat-
tern shown for R. However the range of Ep where grass is
found is larger than the range occupied by forest. Ep > 1.3 is
sufficient to predict the existence of grassland, which is thus
a good climatic indicator for G. Both Ep and R focus on the
detection of a seasonality of the forcing. However, they are
not sufficient to predict a stable forest state. For instance, in
spite of a strong seasonality in precipitation, if the amount of
precipitation during the dry season is high enough to prevent
fire occurrence, a stable F state can exist.

To distinguish the forest state from other LC types, we
analyse the covariation between the normalized difference
of precipitation (1p, Eq. 2) and LC. 1p = 1 occurs when
max(pm)�min(pm) or min(pm)= 0. A low value of 1p
requires a small seasonality in combination with a high value

of minimum pm. This quantity successfully segregates the
range of climate regimes according to rainfall seasonality,
amplified in a regime with a high precipitation amount. The
results (middle right panel of Fig. 5) illustrate a successful
introduction of new piece of information to the previously
discussed climate indicators. G and G–S are dominant for
a specific value of 1p. A shift from grass to forest is accom-
panied by a strong decrease of1p. For1p < 0.90, forest will
surely be present and very stable for 1p < 0.59, which pro-
vides a sufficient diagnostic of the occurrence of forest.

The length of the dry season (LD, Fig. 5) is another in-
dicator expressing the climate seasonality. Although LD is
defined differently from Ep, their results are similar.

The ρPm,Rm
represents the coupling between monthly pre-

cipitation and radiation, which is predominantly negative
(Fig. 5). The observed range of ρPm,Rm

is between −0.81
and 0.54. G, G–S, S–F and F are all found in large ranges
of ρPm,Rm

-values, which complicates its use as LC predictor.
Detection of savanna vegetation types could be linked to its
dominant coexistence with negative values of ρPm,Rm

mean-
ing that savanna apparently requires an environment with
a strong rainfall–radiation coupling, although its distribution
has a fairly long tail.

Each of the climatic indicators does give useful informa-
tion about the vegetation states, but they are not mutually
statistically independent. Figure 6 shows the correlations be-
tween all climatic indicators. The highest correlation is found
betweenEp and LD, demonstrating that the prediction ability
of the Ep is equivalent to that of the LD. R is highly corre-
lated with both Ep and LD, since rainfall is strongly corre-
lated to the downward radiation flux. The P is highly corre-
lated with R, Ep and LD, but is not a good discriminator for
LC due to the large overlapping LC regimes for a given pre-
cipitation amount (Fig. 5).1p behaves similarly to P , having
a high correlation with Ep and LD. However, 1p provides
new information compared to the other climatic indicators,
shown by the scatter plot of Ep vs. 1p (row 4, column 3 in
Fig. 6). Ep can distinguish grass from other LCs, but this
is not true for S, F and S–F, which show great overlapping
regions. In contrast, 1p is able to detect the differences be-
tween these LCs.
ρPm,Rm

is fairly independent from other climatic indica-
tors. The scatter plots between ρPm,Rm

and other climatic in-
dicators confirm the negative relation between rainfall and
radiation, but quite different values of ρPm,Rm

are shown for
different land cover types. The U -shaped curves (the last row
of Fig. 6) indicate that the strongest rainfall–radiation cou-
pling is apparent for the savanna region. The tails of this dis-
tribution are populated by grass (dry climate) and forest (wet
climate) where the correlation between rainfall and radiation
is weaker.

Figure 7 illustrates the spatial distribution of the uncer-
tainty index (wk defined in Eq. 5) of six climatic indica-
tors in our analysis domain. In two regions P provides LC
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Figure 6. Correlation matrix of the six climatic indicators: r is the
correlation coefficient and p is the p value. Woody cover samples
are coloured based on land cover types: red is G, blue is S, magenta
is F, green is G–S and cyan is S–F.

predictions with high confidence (Fig. 7a). In the Sahara
this is obviously related to the stationary low precipitation
regime (< 300 mm yr−1) without vegetation. At the bound-
ary between Nigeria and Cameroon near the Gulf of Guinea
(10◦ E, 5◦ N), in contrast, a high P (> 3000 mm) makes the
prediction of forest vegetation very robust (see also top left
panel of Fig. 5). Low R is found in three regions (Fig. 7b).
The first region is the long band of savanna between 5 and
12◦ N. Intermediate R is strongly related to stable savanna
vegetation (top right panel of Fig. 5). The other two regions
are the west and the east of the Congo basin ((10◦ E, 3◦ S–
5◦ N) and (25–30◦ E, 3◦ S–3◦ N)). In these regions R is low
(< 180 Wm−2). However, R cannot determine the vegeta-
tion type in the majority of the Congo basin area (0.65<
wk < 1.0), which is forest dominated. The uncertainty esti-
mations for Ep and LD are similar (Fig. 7c and e). The pre-
dicted band of savanna is narrower than produced with R.
However, the Congo basin is mainly highlighted with low
uncertainty (0.39<wk < 0.54). The stable forest vegetation
predicted by 1p occupies a larger area than produced with
Ep and LD with lower uncertainty (wk < 0.4), which demon-
strates 1p to be a better climatic indicator for stable forest.
Savanna can be well predicted by ρPm,Rm

with relatively low
uncertainty, but the result is not as good as produced with R,
Ep or LD. However, ρPm,Rm

can predict the land cover in the
west of the Congo basin, where a weak positive correlation
between rainfall and radiation is displayed.
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Figure 7. Uncertainty index of the six climatic variables for land
cover prediction. A low value (wk is defined in Eq. 5) denotes a high
confidence of the specific variable to predict the local land cover
types.

3.4 Prediction and potential shifts of land cover

Figure 8a–c displays the predicted land cover using three
combinations of climatic indicators. In Fig. 8a LC is pre-
dicted using solely precipitation as climatic indicator. Stable
forest is only found for several grid cells around (10◦ E, 5◦ N)
with high rainfall (> 3000 mmyr−1). The area where both sa-
vanna and forest can exist ranges from the coast of Guinea to
the Congo basin. The Congo basin is currently covered by
forest, but is predicted to be unstable and has the potential
to shift to the savanna state using P only. The region around
(14◦W, 10◦ N) is also predicted to be forest dominated, while
in reality it is covered by a G–S vegetation type (Fig. 4a).
With high LD (> 0.7) and radiation (> 230 W m−2), S–F
hardly occurs.

Figure 8b shows LC prediction generated using both P
and LD as climatic indicators. Stable forest vegetation is
predicted in a small area of the Congo basin. The forest-
dominated area occurs on the south coast of Liberia and
Ghana ((10◦W, 5◦ N) to (1◦W, 5◦ N)), which coincides with
observations. In addition, stable savanna is present as a shal-
low band around 10◦ N. 1p is added as climatic indicator in
Fig. 8c, which leads to an increase of the area with stable
forest cover. The stable savanna region shown in Fig. 8b is
reduced in areal extent.
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Figure 8. (a, b, c) Predicted land cover type using different combi-
nations of climatic indicators. (a) Only total rainfall P , (b) P and
length of the dry season LD, (c) P , LD and the entropy of the rela-
tive monthly precipitation 1p. B is bare soil, Gs is stable grass; Gb
is bimodality dominated by grass, Sb is bimodality dominated by
savanna, Ss is stable savanna, Fb is bimodality dominated by forest
and Fs is stable forest. Note that Sb appears twice. The top Sb is
a bimodality between savanna and forest, and the bottom one rep-
resents a bimodality between grass and savanna. (d, e, f) Difference
between predicted and observed land cover based on Figs. 8c and 4a
respectively. In (d), the area marked by “+” is predicted to be dom-
inated by forest but currently is covered by other states. The area
marked by “−” is predicted to be covered by other states but cur-
rently is dominated by forest. The area marked by “=” is predicted
to be dominated by forest and currently is dominated by forest. For
(e) and (f) the same signs are used for savanna and grass.

Figure 8d–f illustrates the difference between observed
and predicted LC (Fig. 8c). For each pattern, the mean value
of P , 1p and LD are listed in Table 3. Note that Fig. 8d–f
only shows the potential shift of the specific state, whereas
the values in Table 3 show the explicit direction of the po-
tential shift. For instance, the “+” in Fig. 8e indicates the re-
gions that have potential to shift from other land cover types
to the savanna state. This includes two possibilities: F→S
and G→S (in Table 3), representing patterns where current
forest and current grass can shift to savanna.

Figure 8d shows that a large area covered by forest has the
potential for a transition to savanna. It includes the forest area
in Guinea and a large boundary of the Congo basin. However,
forest recovery can only occur in a few areas at the border be-
tween F and S states, including the south coast of Ghana and
Côte d’Ivoire. The P (1513 mmyr−1, Table 3) of the S→F

Table 3. The mean value of P , 1p and LD of different patterns
shown in Fig. 8d–f. The first column represents the status of the
specific patterns. For instance, F→S indicates the patterns that are
observed as forest but predicted to be savanna.

Land cover P 1p LD
change (mm yr−1) (–) (1)

F→F 1601 0.70 0.30
F→S 1481 0.92 0.40
S→F 1513 0.78 0.32
S→S 1174 0.96 0.49
S→G 695 1.00 0.66
G→S 887 1.00 0.59
G→G 525 1.00 0.68
G→B 259 1.00 0.75
B→G 378 1.00 0.70

patterns is slightly higher than the P (1481 mmyr−1) of the
F→S patterns, but the 1p (0.78 for S→F; 0.92 for F→S)
and LD (0.32 for S→F; 0.40 for F→S) show a consider-
able difference. It implies that in such regions the seasonality
of precipitation is more important to forest than the mean
annual precipitation. The regions with low 1p and LD are
more likely to be covered by forest. The potential transition
of savanna into another vegetation type is shown in two re-
gions (Fig. 8e). For the S→G transition, there is an increas-
ing trend of savanna between 8◦W and 19◦ E, suggesting
regreening of the Sahel. This is compensated by a replace-
ment of savanna by grass in the adjacent areas. Compared
with the transitions between forest and savanna, the differ-
ences between S→G and G→S mainly exist in P (695 and
887 mmyr−1) and LD (0.66 and 0.59) rather than in 1p (Ta-
ble 3). A large area of the Sahara has the potential to be
recovered by grassland due to sufficient P (378 mmyr−1)
to sustain grassland (Fig. 8f and Table 3). The main recov-
ery occurs in the northern Sahel front between 15◦W and
20◦ E. Especially in the centre of this front (between 0◦ E
and 10◦ E), the regreening trend can promote vegetation ex-
tension approximately 3 ◦ northward.

4 Discussion

4.1 Conditional analysis of bimodalities

Multiple studies (e.g. Staver et al., 2011b; Hirota et al., 2011;
Yin et al., 2014a; Baudena et al., 2015) found that the ob-
served distribution of woody cover (W ) provides evidence
that alternative vegetation states may exist under a given pre-
cipitation regime. Due to the interactions between vegetation
and local climate (Rietkerk et al., 2002; Staver et al., 2011a;
Seneviratne et al., 2010), alternative stable states can exist.
Therefore we have hypothesized that bimodality should be
found in both vegetation and climate variables, especially for
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western Africa, where land surface is strongly coupled with
atmosphere (Koster et al., 2004).

Our results confirm our hypotheses and show that alterna-
tive states also exist in above-ground biomass (B) and mean
shortwave radiation (R). Two modes of W generate different
amounts of evapotranspiration under the same P . It strongly
influences radiation regimes through cloud formation (Bo-
nan, 2008; Seneviratne et al., 2010). Furthermore, rainfall
seasonality, which can be represented by R, affects the tem-
poral distribution of water (van den Hurk and van Meijgaard,
2009; Good and Caylor, 2011) and the fire frequency (Hig-
gins et al., 2000; Archibald et al., 2009; Mayer and Khalyani,
2011), which in turn influences the W . Although the inter-
actions between W and R are extremely complex, the bi-
modality found in both variables reveals the existence of
vegetation–climate interactions.

By applying conditional histograms in the analysis of dis-
tributions of B and R we found that our hypothesis was not
totally true. For instance, vegetation under high R must have
low W , but low W does not mean that it correlates with high
R. Low W indicates that the vegetation has low B, but high
W occurs in both low and high B cases. These results are
summarized in Table 2, containing four cases. The first case
is that with lowB and highR only lowW is found. It is a typ-
ical condition for savanna states. Low B implies weak colo-
nization ability of woody plants while high R represents high
rainfall seasonality. Both of them provide ideal conditions for
grass growth in the wet season and fire occurrence during the
dry season, suggesting that the savanna state here is very sta-
ble. This is consistent with findings of Staver et al. (2011b)
for areas where annual rainfall exceeds 1000 mmyr−1: in ar-
eas with a long dry season (associated with high radiation),
only savannas with low woody cover were observed.

The second case is that only high W can exist under the
condition of high B and low R. It suggests that high biomass
and low variation of rainfall seasonality are sufficient condi-
tions for a stable forest state. The importance of rainfall sea-
sonality on vegetation cover was highlighted before in var-
ious studies Baudena and Provenzale (2008). Furthermore,
Good and Caylor (2011) did find for Africa that areas with
similar annual rainfall amounts have higher woody cover
if the rainfall climatology is dominated by frequent low-
intensity precipitation events.

For the previous two cases, the mode of W can be deter-
mined because the vegetation–climate interactions under the
given conditions are very strong. For instance, low R pro-
vides a steady rainfall climatology for highB and in turn high
B reinforces the stability of lowR. With a disturbance, for in-
stance rainfall decreasing during the dry season, the high B
can remain as high cloud cover through evapotranspiration to
avoid further water loss, which in turn keeps R at a low level.
However, apart from these two stable states we also find two
unstable states. The first is highB and highR, which is rarely
observed in our study. It suggests that the system would fast
shift to the two stable states once this situation occurs.

The most interesting condition is low B and low R, where
the bimodality of W is still found. This status can be ob-
served at the boundary between savanna and forest. In this re-
gion, B is low due to the fire effect from the savanna side but
woody plants can benefit from high cloud cover from the for-
est side. Thus they can produce both low and high W , which
is subject to the strength of fire and cloud cover. In this case
the system can easily shift from one state to another. If high
W occurs, it can reinforce the transpiration-cloud feedback
and get rid of fire. Consequently, this region will be colo-
nized by forest. Otherwise, fire frequency increases due to
low W and the savanna will extend to the forest.

Based on the bifurcation theory, ecosystems may form al-
ternative stable states under the same climate condition due
to different feedback mechanisms. In this study, the mean an-
nual precipitation is the general climate condition. Thus the
observed bimodalities of B and R are strong evidence for
alternative stable states under different P bands. Moreover
we notice that R can be an ideal measure of the strength of
the vegetation–climate interactions, through which we can
estimate the stability of the two W modes. Our results (in
Table 2) demonstrate that unimodality of W is found under
specific conditions of W and R. It implies that the W state
is stable under such conditions. However bimodality of W
still exists under an intermediate status: low B and low R,
revealing where critical transitions might occur. Numerous
studies tried to find early warning signals of possible criti-
cal transitions through different approaches (Scheffer et al.,
2009; Kéfi et al., 2007; Dakos et al., 2011; Tirabassi et al.,
2014; Yin et al., 2016). However they only focused on indi-
cators from the dynamics of vegetation to estimate ecosystem
states. The essential cause of most alternative stable states in
ecology, feedback mechanisms (Cochrane et al., 1999; Ri-
etkerk et al., 2002; Dekker et al., 2010), is not explicitly con-
sidered. This study uses a climatic variable R and a proxy
variable of woody plants’ age B to estimate the stability of
vegetation states through measuring the strength of the spe-
cific feedback mechanism. This approach does not need long
time series data of vegetation dynamics, only a screen shot of
vegetation biomass and short time observations of a proper
climatic variable. However we agree that this approach does
not allow the quantification of complex feedbacks between,
e.g. land cover and local climate, for which more complex
observations and analyses are needed.

This study simply tests the climatic approach in western
Africa. In the next step, this approach will be extended to
the whole tropical region to estimate the stability of vegeta-
tion states at global scale. Recently a new version of MODIS
VCF (Collection 5) has become available (DiMiceli et al.,
2010). Xu et al. (2015) found that the multimodality of boreal
plants still exists in the new version, but the density distribu-
tion varies significantly compared with the previous version
Hansen et al. (Collection 3, 2003). Thus the difference be-
tween the two VCF versions in the tropical area should be
carefully investigated before analysis. Moreover, it will be of
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interest to investigate whether the two modes ofW from Col-
lection 3 are equal to that from Collection 5 according to the
conditional histogram.

4.2 Climate indicators and land cover prediction

Although rainfall is the primary driver of the maximum
woody cover in Africa (Sankaran et al., 2005; Bucini and
Hanan, 2007), the land cover predicted by the mean annual
precipitation is highly uncertain due to complex ecohydro-
logical processes and sensitivities. It is essential to consider
rainfall seasonality (Good and Caylor, 2011; Staver et al.,
2011b), and clearly helps in understanding vegetation pattern
anomalies, for instance during drought conditions (Good and
Caylor, 2011). However, other climatic indicators play im-
portant roles as well.

In this study, we link vegetation patterns to six climatic
indicators, including mean annual precipitation, rainfall sea-
sonality, incoming shortwave radiation and correlation co-
efficient of Pm and Rm. Taking total rainfall as the only
indicator results in high uncertainty of the LC prediction
(Fig. 7a). Overlapping vegetation states for a given precip-
itation climate (Fig. 5) can be misinterpreted as the existence
of a bimodal vegetation structure. Mean annual shortwave
radiation explains more variability in observed LC patterns
(Fig. 7b). It is closely related to savanna and increases confi-
dence in estimated vegetation states in the west of the Congo
basin. This is also found from ρPm,Rm

, indicating a relatively
strong positive correlation between Pm and Rm. The precipi-
tation seasonality relates to the strong monsoon season mod-
ulates cloud cover, which leads to a low or negative value
of ρPm,Rm

. The western Congo basin, however, has a contin-
uous high cloud coverage. The variation of the radiation is
thus strongly linked to the solar zenith angle and the correla-
tion between rainfall and radiation is weakly positive instead
of negative as is found in most regions.

Predictions of LC with three incremental combinations of
climatic indicators are illustrated and compared to observed
LC distributions (Fig. 8). Using P alone (Fig. 8a) yields sim-
ilar LC patterns to the findings of (Staver et al., 2011b). In
the Congo basin with intermediate rainfall amounts (1300<
P < 2500 mmyr−1) a potential bimodal S–F vegetation
structure (currently covered by forest) is found (Fig. 8a).
However, the rainfall seasonality in this area is relatively low
compared to other climatic zones. The precipitation amount
during the dry season is high enough to prevent fire occur-
rence, leading to a relatively stable ecosystem with low prob-
ability of bimodal vegetation states.

A new analysis in this comparison is the climate driven
potential LC transition in western Africa. The results (Fig. 8)
show that a strong reduction in tropical forest area is pos-
sible due to high seasonality (Table 3). Predicted grassland
expansion around 15◦ N coincides well with observations
(Dardel et al., 2014). However, the regreening trend of sa-
vanna around 10◦ N was not detected by observations as the

remote sensing data used are fairly insensitive to possible
changes in woody cover during the growing season (Dardel
et al., 2014).

Our analysis is limited by the use of a short (6 years) cli-
mate data set (Boone et al., 2009). Prediction of future LC
transition related to climate change is hard (Higgins and
Scheiter, 2012), but could be complemented by including cli-
mate model data (Seneviratne et al., 2013). Changes in CO2
concentration (Higgins and Scheiter, 2012) and factors like
soil type (Dardel et al., 2014), plant diversity (Claussen et al.,
2013; Dekker, 2013) and topography (Klausmeier, 1999)
have not been included in our analysis. Including dynamic
vegetation-climatic interactions (Dekker et al., 2007; Rietk-
erk et al., 2011; Siteur et al., 2014), vegetation competition
for limited resources (Loon et al., 2014; Scheffer et al., 2014)
and grazing pressure in these systems (Kéfi et al., 2007) fur-
ther promotes the understanding of the complexity of the po-
tential woody cover prediction (Dijkstra, 2011).

Apart from natural factors, human activities (e.g. defor-
estation, grazing and urbanization) also significantly influ-
ence the tropical ecosystem. In fact, based on the GlobCover
data we found that over 80 % of an area can be affected by
humans in specific climatic grid cells (0.5◦ resolution). Es-
timating the amount and type of land use change is difficult
as it involves many different social processes, such as econ-
omy, cultivation culture and policy both on local and global
scales. In turn these land use changes interact with climate
change as well. Thus its contributions to climate change and
ecosystems should be carefully investigated to improve the
prediction of potential land cover change.

5 Conclusions

Observed bimodality of woody cover suggests that alter-
native stable states may exist under the same precipitation
band due to vegetation–climate interactions. In this study we
find that bimodality also exists in the density distribution
of mean annual incoming shortwave radiation and above-
ground biomass. The bimodality of climatic variables pro-
vide another evidence of strong vegetation–climate interac-
tion in tropical regions. By means of analysing conditional
histograms, we find two stable conditions under which the
mode of woody cover can be determined. It indicates that a
climatic variable, which should be a measure of the strength
of vegetation–climate interactions, can be used to estimate
the stability of vegetation states. We also find that the bi-
modality of woody cover still exists under the condition of
low mean annual radiation and low above-ground biomass.
It is demonstrated as the environment where vegetation state
is unstable and critical transition can occur.

Although mean annual precipitation is an important driver
of maximum woody cover variations, it is not a sufficient
climatic indicator to predict potential land cover types. In-
cluding mean shortwave radiation and rainfall seasonality in-

Biogeosciences, 13, 3343–3357, 2016 www.biogeosciences.net/13/3343/2016/



Z. Yin et al.: Climate and bimodality of ecosystems 3355

creases the confidence of land cover prediction. The normal-
ized difference of monthly-averaged precipitation is a good
predictor for stable forest states, which is important to un-
derstand vegetation stability in high tropical rainfall areas in
the Congo basin. By comparing the observed and predicted
land cover types, we find that the area of the tropical forest is
under pressure, while the savanna and grassland trend in the
Sahel suggests a regreening of western Africa under current
climate conditions.
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