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Abstract. Leaf area index (LAI) is an important parame-
ter related to carbon, water, and energy exchange between
canopy and atmosphere and is widely applied in process
models that simulate production and hydrological cycles in
forest ecosystems. However, fine-scale spatial heterogeneity
of LAI and its controlling factors have yet to be fully un-
derstood in Chinese subtropical forests. We used hemispher-
ical photography to measure LAI values in three subtropi-
cal forests (Pinus massoniana–Lithocarpus glaber conifer-
ous and evergreen broadleaved mixed forests, Choerospon-
dias axillaris deciduous broadleaved forests, and L. glaber–
Cyclobalanopsis glauca evergreen broadleaved forests) from
April 2014 to January 2015. Spatial heterogeneity of LAI
and its controlling factors were analysed using geostatisti-
cal methods and the generalised additive models (GAMs)
respectively. Our results showed that LAI values differed
greatly in the three forests and their seasonal variations were
consistent with plant phenology. LAI values exhibited strong
spatial autocorrelation for the three forests measured in Jan-
uary and for the L. glaber–C. glauca forest in April, July,
and October. Obvious patch distribution pattern of LAI val-
ues occurred in three forests during the non-growing pe-

riod and this pattern gradually dwindled in the growing sea-
son. Stem number, crown coverage, proportion of evergreen
conifer species on basal area basis, proportion of deciduous
species on basal area basis, and forest types affected the spa-
tial variations in LAI values in January, while stem number
and proportion of deciduous species on basal area basis af-
fected the spatial variations in LAI values in July. Floristic
composition, spatial heterogeneity, and seasonal variations
should be considered for sampling strategy in indirect LAI
measurement and application of LAI to simulate functional
processes in subtropical forests.

1 Introduction

Many fundamental ecological processes in forest ecosys-
tems, such as carbon (C) flux as well as water and energy
exchanges, take place between the canopy layer and atmo-
sphere (GCOS, 2006; Brut et al., 2009; Alonzo et al., 2015;
Liu et al., 2015b). At a finer scale, leaves within the canopy
are the primary organ to perform a series of physiological
activities (i.e. photosynthesis, respiration, and evapotranspi-
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ration) (Aragão et al., 2005) and physical reactions (i.e. rain-
fall and radiation interception) (Aston, 1979; Smith, 1981;
Crockford and Richardson, 2000). Therefore, the amount of
leaves in a forest is the determinant of above-ground eco-
logical processes and ecosystem functions. Leaf area index
(LAI), defined as total one-sided leaf area per unit ground
surface area (Biudes et al., 2014), is a widely used parameter
(Kross et al., 2015) to quantitatively describe the vegetation
canopy structure (Woodgate et al., 2015), to simulate eco-
logical process models (Brooks et al., 2006; Sprintsin et al.,
2007; Facchi et al., 2010; Gonsamo and Chen, 2014), and to
reveal tree growth and productivity in forests at stand scale
and landscape level (Lee et al., 2004; Liu et al., 2015b). In
addition, LAI is listed as one of the essential variables for
observation of global climate (Mason et al., 2003; Manninen
et al., 2009) and for remote sensing data validation (Asner
et al., 2003; Clark et al., 2008). Thus, accurate estimates of
LAI values are important to understand ecological processes
in forest ecosystems.

At present, various direct and indirect methods have been
developed to measure LAI in forests. Direct estimation meth-
ods including leaf harvest (Clark et al., 2008), allometric
equations, and litter collection (Ryu et al., 2010; Liu et
al., 2015a) are recognised as the most accurate. However,
leaf harvest and allometric equations methods need time-
consuming, labour-intensive, and destructive sampling pro-
cesses, while litter collection is more feasible for temperate
deciduous forests. Obviously, the direct methods are less ap-
plicable to large-scale and long-term LAI monitoring (Be-
quet et al., 2012; Biudes et al., 2014). Indirect methods in-
clude using a plant canopy analyser (Licor LAI-2000), hemi-
spherical or fisheye photography (Macfarlane et al., 2007),
and remote sensing (Biudes et al., 2014). The indirect meth-
ods retrieve LAI value from light transmittance through
canopies or from canopy image analysis. For large-scale LAI
estimates, remote sensing is the most effective method but
requires validation with ground-based LAI data. LAI esti-
mates on the ground at small scales are still a challenge due to
the problems of sampling strategies associated with accepted
level of accuracy, time, and cost considerations (Richardson
et al., 2009). Hemispherical photography is a relatively sim-
ple and easily operated method among many indirect meth-
ods to retrieve LAI value at small scales (Demarez et al.,
2008). Correction of the effects of woody materials, clump-
ing and zenith angels or exposure is critical to improve the
accuracy of LAI estimation (Liu et al., 2015b). Analysis soft-
ware development and portable and timely characteristics al-
low hemispherical photography to measure spatial hetero-
geneity and seasonal variations of LAI in forests.

Forest canopy structure is highly complex so LAI values
show great temporal and spatial variations at scales rang-
ing from stand to global scale. For example, LAI values in
the 7.9 ha plot of an old humid temperate forest tended to
increase spatially as elevation increased and showed a tem-
poral variation with plant phenology (Naithani et al., 2013).

The spatial patterns of LAI values at stand scale were sig-
nificantly influenced by spatial distribution of tree species,
which was dependent on topography and soil types (Naithani
et al., 2013). The coefficient of variation (CV) in LAI de-
creased as the scale increased and LAI values did not have
any relationship to biome type and climate patterns, but they
were influenced by land use and land cover, terrain features,
and soil properties at stand scale (Aragão et al., 2005). The
CV of LAI of three species (i.e. beech, oak, and pine) had
different degrees of spatial variation in a 1 ha plot at stand
level (Bequet et al., 2012). LAI values in sagebrush displayed
strong spatial patterns with time after disturbance and in-
creased with stand age and total plant cover (Ewers and Pen-
dall, 2007). The LAI values derived from MODIS data (My-
neni et al., 2002; Huang et al., 2008) revealed strong spatial
variations at global scale, which were correlated with lati-
tude (Tian et al., 2004). At the global scale, temperature is
the limiting factor for LAI under cool conditions while water
plays a predominant role under other conditions, and this pat-
tern differed among plant functional types (Iio et al., 2014).
The factors that govern the spatial variations in LAI values
at stand level include forest types, stand structure (Bequet et
al., 2012), climate (Shao and Zeng, 2011), topography, soil
moisture condition (Breshears and Barnes, 1999), and human
disturbance and management activities (Huang and Ji, 2010).
Although effects of topography, soil properties (Aragão et al.,
2005; Naithani et al., 2013), and stand characters (Bequet et
al., 2012; Yao et al., 2015) on LAI values have been investi-
gated in detail, the effect of forest type, stand structural diver-
sity, and stand structure on spatial heterogeneity and seasonal
variations of LAI has yet to be fully understood.

Chinese subtropical forests contain a diversity of tree
species with complex canopy structure that mostly grow
on heterogeneous topography and soil conditions. As a re-
sult, LAI in subtropical forests may exhibit great spatial
and seasonal variations, which is worthy of further inves-
tigation. However, LAI data of subtropical forests are rel-
atively deficient in the global database (see Asner et al.,
2003). In this study, we selected three different forests: Pinus
massoniana–Lithocarpus glaber coniferous and evergreen
broadleaved mixed forests, Choerospondias axillaris decid-
uous broadleaved forests, and L. glaber–Cyclobalanopsis
glauca evergreen broadleaved forests, which were measured
by using hemispherical photography to measure LAI values.
Spatial heterogeneity of LAI was investigated through geo-
statistical analysis, and generalised additive models (GAMs)
were used to examine how stand structural diversity and
stand characters affect LAI variations in the three forests.
Specifically, the objectives of this study were (1) to exam-
ine differences and seasonal variations in LAI among three
forests in subtropical China; (2) to analyse spatial hetero-
geneity of LAI values within a specific forest; and (3) to
identify how forest types, stand structural diversity, and stand
characters control the spatial heterogeneity and seasonal
variations of LAI values in three forests.
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2 Materials and methods

2.1 Study site description

The study was carried out at Dashanchong Forest Farm
(latitude 28◦23′58′′–28◦24′58′′ N, longitude 113◦17′46′′–
113◦19′08′′ E), Changsha County, Hunan Province, China.
The farm experiences a humid mid-subtropical monsoon cli-
mate. Mean annual air temperature was 16.5 ◦C, with a mean
monthly minimum temperature of −11◦C in January and
maximum temperature of 40 ◦C in July. Mean annual pre-
cipitation ranged from 1412 to 1559 mm, mostly occurring
between April and August. The topography is characterized
by a typical low hilly landscape with an altitude between 55
and 260 m above sea level. Soil type is designated as well-
drained clay loam red soil developed on slate and shale rock,
classified as Alliti–Udic Ferrosols, corresponding to Acrisol
in the World Reference Base for Soil Resource (IUSS Work-
ing Group WRB, 2006). Evergreen broadleaved forest is the
climax vegetation of the region. As a result of human distur-
bance and management activities, the farm has no primary
forest, and possesses a range of secondary forests in different
stages of succession (based on species composition) domi-
nated by different tree species, including (1) early-stage P.
massoniana–L. glaber coniferous and evergreen broadleaved
mixed forests dominated by the shade-intolerant coniferous
species typical of early succession, (2) middle-stage C. ax-
illaris deciduous broadleaved forests dominated by shade-
intolerant deciduous broadleaf species, and (3) late-stage L.
glaber–C. glauca evergreen broadleaved forests dominated
by the shade-tolerant evergreen broadleaved species com-
monly observed in the late stage of succession in this farm
(Xiang et al., 2015; Ouyang et al., 2016).

2.2 Determination of stand characteristics

We established a permanent plot for each of three forests
(i.e. 90 m× 190 m irregular plot for P. massoniana–L. glaber
mixed forests, 100 m× 100 m plot for C. axillaris decidu-
ous forests, and 100 m× 100 m plot for L. glaber–C. glauca
evergreen broadleaved forests). Each plot was divided into
10 m× 10 m subplots, where tree species, diameter at breast
height (DBH, in centimetres), tree height (H , in metres),
height under the lowest live branch (in metres) and crown
width (in metres) were measured for the individual stem with
DBH larger than 1 cm. Stand characteristics for the trees with
DBH > 4 cm of the three forests are presented in Table S1 in
the Supplement.

To identify the factors that control spatial heterogeneity of
LAI values in the forests, we selected individual trees with
H larger than average height of each stand (see Table S1)
and calculated their stem number, average DBH, H , total
basal area at breast height (BA), crown width, crown cover-
age (calculated from crown diameter measured for individual
trees within a stand), tree species diversity, tree size diversity,

the proportion of BA of three functional groups (coniferous,
deciduous, and evergreen broadleaved species) to total stand
BA within a subplot. Tree species diversity (biodiversity in-
dex, BDI) was determined using the Shannon–Wiener index
as follows:

BDI=−
∑

Pi lnPi, (1)

where Pi is important value of ith species and is calculated
by dividing the sum of relative abundance degree and relative
dominance degree of ith species within a subplot by two.

Based on the Shannon–Wiener index, 2 cm was used for
the DBH class, so tree size diversity (H) was determined
using the formula of Lei et al. (2009):

H =−
∑

Pi lnPi, (2)

where Pi is the proportion of basal area for the ith diameter
class.

2.3 Sampling design for LAI measurement

At the centre of each subplot of the three forests, hemi-
spherical photographs were taken using a LAI measuring
instrument (SY-S01A, Shiya Scientific and Technical Co-
operation, Hebei, China) throughout four measurement sea-
sons, i.e. in April (spring), July (summer) and October (au-
tumn) in 2014, and January (winter) in 2015. The operation
was carried out below canopy with the fisheye lens (Pentax
TS2V114E, Japan) 1.0 m above the ground (Manninen et al.,
2009) with a viewing angle of 180◦. The picture exposure
is automatic exposure set by the manufacturer, and we took
the photographs (768× 494 pixels, BMP) in the morning, at
dusk, or when cloudy in order to minimise influence of di-
rect sunshine (Rich, 1990; Bequet et al., 2012). The images
were processed and effective LAI values (Le) were recorded
using plant canopy analysis software developed by the man-
ufacturer, for which appropriate pixel classification (thresh-
olding) was chosen (752(H )× 494(V ), where V is vertical
resolution), viewing angle was considered (150◦), and the
hemispherical photography was divided into five rings to ob-
tain results. To obtain accurate LAI (L), the correction was
made to Le based on previous theory (Chen, 1996):

L=
(1−α)LeγE

�E
, (3)

where α is the ratio of woody to total area and reflects the
contribution of woody materials to Le, and �E is the clump-
ing index that quantifies the effect of foliage clumping be-
yond shoots level. In the method getting accurate �E values,
the hemispherical photography was divided into 10 sectors.
γE is the needle-to-shoot-area ratio and quantifies the effect
of foliage clumping within shoots.

Photoshop software (Adobe Photoshop CS5, Adobe Sys-
tems Incorporated, North America) was used to calculate α.
After total pixel number of Le image was determined, in the
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Photoshop software, we used the clone stamp tool to select
the image of the woody materials (e.g. stems) and excluded
the pixels, leaving only leaves on the photos, recorded as LAI
of leaves (LAIleaf). The value of α was calculated accord-
ingly:

α = (Le−LAIleaf)/Le. (4)

The logarithm averaging method proposed by Lang and Xi-
ang (1986) was applied to calculate �E:

�(θ)=
ln[P(θ)]
ln[P(θ)]

=
n ln[P(θ)]∑n
k=1 ln(Pk(θ)]

, (5)

where P(θ) is the average gap fraction (expressed without
the bar in the text), ln[P(θ)] is the logarithm average of the
gap fraction, and Pk(θ) is the gap fraction of segment k. For
deciduous and evergreen broadleaved species, γE = 1.0; for
coniferous species γE is always > 1.0, but we ignored the ef-
fect of needle to shoot area on LAI in this study.

2.4 Data analysis

The minimum, maximum, mean value, standard deviation,
and CV were calculated for the LAI data measured in
100 plots within each forest. Two-way analysis of variance
(ANOVA) was used to detect effect of forest type and mea-
surement season on LAI value. The LAI data in the three
forests were tested for normal distribution using the K–S test
(P < 0.05). We followed Chiang et al. (2003) in regarding
LAI values as normal when they fell within the mean value
±3 standard deviations. Otherwise, the LAI values were re-
garded as outliers and replaced with the maximum or the
minimum of normal values. Because the geostatistical analy-
sis requires that the data meet normal distribution, the trans-
formation was applied when the data did not meet normal
distribution (Dai et al., 2014). Most values required natu-
ral logarithm transformation to meet assumptions of normal-
ity. The exception is for L. glaber–C. glauca in April and in
November, which were ARTAN-transformed.

To investigate spatial heterogeneity of LAI values over
four seasons measured in the three forests, the semivariance
function was calculated as follows:

γ (h)=
1

2N(h)

N(h)∑
i=1
[Z(xi)−Z(xi +h)]

2, (6)

where γ (h) is the semivariance value of lag distance h,N(h)
is the number of pair data for lag distance h, and Z(xi)

and Z(xi +h) represent LAI values at coordinate xi and
(xi +h) (Rossi et al., 1992). Based on the semivariogram
plotting γ (h) values against hvariable, the appropriate mod-
els were fitted and we obtained the values of nugget (C0), sill
(C0+C), range (A0) (Ewers and Pendall, 2007), and the ratio
[C / (C0+C)] that reflected the degree of spatial autocorre-
lation of LAI values in a forest. Because spatial autocorrela-
tion and semivariogram theory make unbiased optimal esti-
mation for regional variables in a limited area (Bivand et al.,

2013), the Kriging interpolation method, an unbiased estima-
tion of the regional variables of the sampling points using the
structure of the data and semivariogram function, was used
to predict unknown LAI values in the forests from the data
measured and to produce spatial distribution maps of LAI
values for the three forests and four seasons. Compared with
other methods, the Kriging method can overcome the diffi-
culty in analysing error of interpolation, does not produce the
boundary effect of regression analysis, and estimates the spa-
tial variability distribution of measured parameters. Ordinary
Kriging – one of the Kriging methods – is a least-squares
method of spatial prediction based on the assumption of an
unknown mean. It is the most common type of Kriging in
practice (Dai et al., 2014) and is widely used in soil spatial
heterogeneity studies (Elbasiouny et al., 2014). In our study,
we also used the ordinary Kriging interpolation method to
investigate spatial heterogeneity of LAI values.

Because the largest amount of defoliated leaves occurs
in January and leaves fully expand in July in subtropical
forests, we chose LAI values measured in January and July
in three forests as response variables. The explanatory vari-
ables include forest types, stand structural diversity (species
richness, tree species diversity, and tree size diversity) and
stand characters (stem number, average DBH,H , BA, crown
width, crown coverage, and the proportion of two functional
groups (deciduous and evergreen conifer species) to total
stand BA). GAMs are able to analyse complex and nonlin-
ear relationships (Guisan et al., 2002; Austin, 2002; Wood,
2006). Therefore, we used GAMs to examine how the fac-
tors affect LAI values. The function of GAMs is the addition
of many smooth functions and each smooth function has an
explanatory variable. In our study, we chose smooth spline
with two splines as the smooth method for GAMs. The vari-
ance inflation factor (VIF) – the ratio of the regression co-
efficient variance for a variable when fit with all variables
to that for the variable if fit on its own – was used to test
the multi-collinearity of explanatory variables (James et al.,
2013). When the VIF of an explanatory variable is between
0 and 10, the variable was retained to the model; otherwise,
we discarded the variable (Shen et al., 2015). The Akaike
information criterion (AIC) or generalised cross-validation
(GCV) was used to determine whether the model was good
or bad (Clark, 2013). The factors selected after the multi-
collinearity test were used for multi-factor analysis. After all
the possible models in multi-factor analysis, we determined
the optimal model based on the significant influence of all
explanatory variables in the model with the smallest AIC or
GCV (Dong et al., 2012). Geostatistical analysis was per-
formed with GS+ software (Gamma Design Software). Sta-
tistical analysis and GAMs analysis were operated in R 3.2.1
(R Development Core Team, 2015). The car packages were
used to test multi-collinearity and the GAM packages were
used to select the optimal model.
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Figure 1. Seasonal variation in mean LAI value (with standard de-
viation) in P. massoniana–L. glaber, C. axillaris, and L. glaber–C.
glauca forests. The different letters by values indicate significant
differences (P < 0.05) among measurement seasons in a given for-
est.

3 Results

3.1 Variation in LAI values

The LAI values varied with forest type and measurement
season (Table 1). Generally, LAI differed significantly be-
tween measurement seasons (P < 0.001), but LAI difference
was not significant among forest types (P > 0.05). Interac-
tive effects of measurement seasons and forest types on LAI
were significant (P < 0.01). Among three forests, LAI in the
P . massoniana–L. glaber forest had relatively low variation,
while LAI in the L. glaber–C. glauca forest had the high-
est variation. In the P . massoniana–L. glaber forest, LAI
showed the largest variation (the highest CVs) in October
and the lowest variation (the smallest CVs) in January. In the
C. axillaris forest, the largest variation in LAI was found in
April and the lowest was found in January. In the L. glaber–
C. glauca forest, LAI showed the largest variation in April
and had the lowest variation in July.

Mean LAI values in the three forests showed different sea-
sonal variation patterns (Fig. 1). The C. axillaris forest exhib-
ited a unimodal pattern of seasonal variation, with the maxi-
mum mean LAI value (3.11± 1.18) occurring in July and the
minimum mean LAI value (1.28± 0.44) in January. In the P.
massoniana–L. glaber forest and L. glaber–C. glauca forest,
the maximum mean LAI values occurred in October and the
minimum mean LAI values appeared in January. During the
growing season (April and July), the C. axillaris forest had
the highest mean LAI value and the L. glaber–C. glauca for-
est had the lowest mean LAI value. During the non-growing
season (October and January), the L. glaber–C. glauca for-
est had the highest mean LAI value in January, while the P.
massoniana–L. glaber forest had the highest mean LAI value
in October, and the C. axillaris forest had the lowest mean
LAI values.

Mean α values in the three forests showed different sea-
sonal variation patterns (Table 2). The C. axillaris forest ex-
hibited a unimodal pattern of seasonal variations in mean α
value, with the maximum mean α value occurring in Jan-
uary and the minimum mean α value in July. No obvious
seasonal variations were found for the mean α value in the P.
massoniana–L. glaber forest and in the L. glaber–C. glauca
forest. Mean �E values in the three forests were between
0.84 and 0.92, but they did not show clear seasonal varia-
tions, and the standard deviations were small.

3.2 Spatial heterogeneity in LAI values

The semivariogram results for LAI across the three forests
during different measurement seasons are summarised in Ta-
ble 3. The spatially dependent variance [C] accounted for
88.9–98.4 % of the total variance [C+C0] for LAI values
measured in January in the three forests and also in April,
July, and October in the L. glaber–C. glauca forest. This in-
dicated the strong spatial autocorrelations of LAI values over
short distances. These LAI data were best fitted with a Gaus-
sian model or exponential model (r2 > 0.50).

Spatial autocorrelation ranges of LAI values differed
among forests and measurement seasons (Table 3). In Jan-
uary, the largest spatial autocorrelation range was found in
the P. massoniana–L. glaber forest, and the smallest was
found in the C. axillaris forest. In April, the largest spatial
autocorrelation range of LAI was found in the C. axillaris
forest, and the smallest was found in the P. massoniana–L.
glaber forest. In July, the largest spatial autocorrelation range
of LAI was in the P. massoniana–L. glaber forest, while the
smallest was in the C. axillaris forest. In October, the largest
spatial autocorrelation range of LAI was in the L. glaber–C.
glauca forest, while the smallest was in the P. massoniana–
L. glaber forest. Seasonal changes of range showed one peak
pattern for C. axillaris forest and L. glaber–C. glauca forest,
where the large range appeared in the growing season (April
and July) and the small range appeared in the non-growing
season (October and January).

Spatial distribution pattern of LAI values also varied with
forest type and measurement season (Fig. 2). For example,
LAI values in January across the three forests exhibited ob-
vious patch and heterogeneous spatial distribution. In April
and July, less spatial heterogeneity was found for LAI values
especially in the P. massoniana–L. glaber forest. In October,
heterogeneous and patch spatial distributions of LAI values
appeared in the L. glaber–C. glauca forest, and banded spa-
tial distributions of LAI values obviously appeared in the C.
axillaris forest.

www.biogeosciences.net/13/3819/2016/ Biogeosciences, 13, 3819–3831, 2016
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Figure 2. Spatial heterogeneity map of LAI values interpolated through ordinary Kriging method for P. massoniana–L. glaber, C. axillaris,
and L. glaber–C. glauca forests.
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Table 1. Descriptive statistical characteristics of LAI values measured from April 2014 to January 2015 in P . massoniana–L. glaber, C.
axillaris, and L. glaber–C. glauca forests (n= 100).

Measurement Forest Minimum Maximum Variance P value of Data
season type value value coefficient (%) K–S test transformation

January P. massoniana–L. glaber 1.29 4.03 27.5 0.021 0.275
C. axillaris 0.53 2.38 34.0 0.260
L. glaber–C. glauca 0.43 6.98 40.2 0.018 0.243

April P. massoniana–L. glaber 1.57 7.83 36.4 0.076
C. axillaris 1.34 8.33 47.0 0.047 0.535
L. glaber–C. glauca 1.34 10.22 59.6 0.000 0.158

July P. massoniana–L. glaber 1.56 8.16 38.0 0.003 0.075
C. axillaris 1.73 8.17 37.8 0.166
L. glaber–C. glauca 1.68 7.58 33.1 0.010 0.170

October P. massoniana–L. glaber 1.55 6.79 38.3 0.321
C. axillaris 0.37 6.51 44.1 0.102
L. glaber–C. glauca 1.49 7.88 49.3 0.000 0.212

Table 2. Average woody to total leaf ration (α) and clumping index (�E) values in P . massoniana–L. glaber, C. axillaris, and L. glaber–C.
glauca forests. Values in parenthesis are the standard deviation of α and �E values (n= 100).

Measurement season Forest type Mean Standard
value deviation

α �E α �E

January P. massoniana–L. glaber 0.06 0.88 0.04 0.09
C. axillaris 0.15 0.92 0.09 0.08
L. glaber–C. glauca 0.07 0.87 0.09 0.09

April P. massoniana–L. glaber 0.08 0.87 0.05 0.09
C. axillaris 0.07 0.85 0.06 0.10
L. glaber–C. glauca 0.15 0.86 0.07 0.09

July P. massoniana–L. glaber 0.07 0.87 0.04 0.09
C. axillaris 0.04 0.90 0.03 0.07
L. glaber–C. glauca 0.05 0.87 0.03 0.08

October P. massoniana–L. glaber 0.09 0.85 0.10 0.08
C. axillaris 0.14 0.87 0.14 0.10
L. glaber–C. glauca 0.09 0.84 0.08 0.09

3.3 Factors affecting LAI variation

The multi-collinearity test indicated that the explanatory
variables in January and July did not have multi-collinearity.
Thus, forest type, species richness, tree species diversity, tree
size diversity, stem number, average DBH, H , BA, crown
width, crown coverage, and the proportion of two func-
tional groups (deciduous and evergreen conifer species) to
total stand BA were included as explanatory variables in
multi-factor analysis for LAI values measured in January in
the three forests. After comparing all possible models, the
best-fitted GAMs for LAI values in January were expressed
as LAI∼ s (stem number, 2) + s (crown coverage, 2) + s
(PESB, 2) + s (PDSB, 2) + factor (forest types) (Table 4).

For LAI values measured in July, all these factors selected
by the multi-collinearity test were included as explanatory
variables in multi-factor analysis. The best-fitted GAMs for
LAI values in July were expressed as LAI∼ s (stem number,
2) + s (PDSB, 2) (Table 4).

The explanatory variables included in GAMs reflected
their effects on or relationship with LAI variations. Given
that other variables were fixed, LAI measured in January
tended to decrease as stem number increased. LAI showed
a positive nonlinear relationship with crown coverage up to
∼ 200 m2 and then decreased with increasing crown cover-
age. The LAI values tended to increase as the proportion
of evergreen conifer species to total stand BA increased and
tended to decrease as the proportion of deciduous species to
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Table 3. Semivariogram theoretical models and fitted parameters for LAI values in P . massoniana–L. glaber (90 m× 190 m irregular shape),
C. axillaris (100 m× 100 m), and L. glaber–C. glauca (100 m× 100 m) forests.

Measurement season Forest type Model Nugget (C0) Sill (C0+C) C/(C0+C) Range (A0, m) r2 Residual sum of
squares (RSS)

January P. massoniana–L. glaber Exponential 0.0068 0.0614 0.889 27.00 0.607 9.762× 10−5

C. axillaris Exponential 0.0030 0.1820 0.984 13.80 0.504 1.219× 10−4

L. glaber–C. glauca Gaussian 0.0029 0.1178 0.975 15.42 0.888 3.468× 10−5

April P. massoniana–L. glaber Exponential 0.1220 0.7670 0.841 17.70 0.229 0.017
C. axillaris Linear 0.1760 0.1760 0.000 52.96 0.189 1.762× 10−4

L. glaber–C. glauca Exponential 0.0008 0.0152 0.951 26.40 0.978 2.290× 10−7

July P. massoniana–L. glaber Linear 0.0843 0.0843 0.000 92.69 0.074 1.383× 10−4

C. axillaris Exponential 0.1460 0.9340 0.844 17.70 0.258 0.017
L. glaber–C. glauca Exponential 0.0065 0.0684 0.905 22.80 0.951 5.781× 10−6

October P. massoniana–L. glaber Exponential 0.1620 1.6310 0.901 11.70 0.173 0.017
C. axillaris Spherical 0.0050 0.5830 0.991 11.90 0.000 1.870× 10−3

L. glaber–C. glauca Exponential 0.0005 0.0125 0.960 21.90 0.894 4.444× 10−7

Table 4. Estimated coefficients of the generalised additive models (GAMs) for the factors with effects on LAI values measured in P .
massoniana–L. glaber, C. axillaris, and L. glaber–C. glauca forests.

Measurement season Parameter F value P value r2 AIC

January s (Stem number, 2) 16.716 < 0.0001*** 0.3481 655.91
s (Crown coverage, 2) 4.545 0.034∗

s (PESB, 2) 26.105 < 0.0001∗∗∗

s (PDSB, 2) 27.281 < 0.0001∗∗∗

factor (Forest types) 39.847 < 0.0001∗∗∗

July s (Stem number, 2) 5.027 0.026∗ 0.040 880.93
s (PDSB, 2) 7.115 0.008∗∗

The significance of the regressions (P) are ∗, ∗∗, and ∗∗∗ for P < 0.05, 0.01, and 0.001 respectively.

total stand BA increased (Fig. 3). Given that other variables
were fixed, LAI measured in July tended to increase as stem
number increased up to∼ 7 and then decreased at higher val-
ues. The effect of the proportion of deciduous species to total
stand BA on LAI appeared more complicated, in that LAI in-
creased as the proportion of deciduous species to total stand
BA increased up to∼ 0.7 and then decreased at higher values
(Fig. 4).

4 Discussion

4.1 Seasonal variation in LAI value among forest type

LAI data in subtropical forests in southern China are lacking
compared to other global regions (Asner et al., 2003). This
study provided seasonal LAI data in three subtropical forests
that consist of contrasting functional types of species. Their
mean LAI values varied from 1.28± 0.44 to 3.28± 1.26 (Ta-
ble 1). This result is close to the LAI range (from 1.0 in win-
ter to 4.0 in summer) retrieved by remote sensing techniques
from the subtropical area of China from 2000 to 2010 (Liu et
al., 2012). Compared with the LAI values estimated from al-

lometric equations (Xiang et al., 2016) and specific leaf area
values in 40 m× 40 m plots in this study (5.29–9.19), the LAI
values measured by hemispherical photography are low but
significantly correlated (r2

= 0.40 and P = 0.035). Previous
studies (see Lopes et al., 2015) have proved the underestima-
tion of LAI using hemispherical photography. However, the
method is feasible to obtain forest LAI data and to investi-
gate spatial and seasonal variation in such values (Coops et
al., 2004; Dovey and Toit, 2006).

The ratio of woody to total area (α) and the clumping in-
dex (�E) have been recognised as the error sources in LAI
measurement by optical methods (Chen et al., 1997; Bréda,
2003; Liu et al., 2015a). So far these two parameters have
been measured in northeastern China (Liu et al., 2015a, b),
which showed that the α values ranged from 0.04± 0.01
to 0.69± 0.12 and �E values ranged from 0.88± 0.04 to
0.96± 0.01. These values were measured in temperate for-
est in northeastern China and differed from our study (mean
α values varied from 0.04± 0.03 to 0.15± 0.09 and mean
�Evalues varied from 0.84± 0.09 to 0.92± 0.08) (Table 2),
so they are not suitable for LAI correction in subtropical
forests. Also literature on α and �E values in subtropical
forests is scarce. The variations in α are probably due to
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Figure 3. Partial effects of stem number, crown coverage (m2), the
proportion of evergreen conifer species to total stand BA (PESB),
the proportion of deciduous species to total stand BA (PDSB),
and forest types (calculated for overstorey trees with height larger
than average stand height) on the LAI values observed in January
in P. massoniana–L. glaber, C. axillaris, and L. glaber–C. glauca
forests.

the seasonal variations and spatial heterogeneity of canopy
structure in the three forests. In general, the α values are
consistent with the amount of leaf litter. Our results showed
that the large mean αvalues occurred in autumn for the P.
massoniana–L. glaber forest and the C. axillaris forest but
in spring and autumn for the L. glaber–C. glauca forest (Ta-
ble 2). This seasonal change in mean α value in three forests
was generally consistent with the amount of leaf litter col-
lected by a litter trap installed in each forest type (Guo et al.,
2015). The average �Evalue (0.87) in this study was smaller
than the values of mixed broadleaved Korean pine forest in
northeastern China (Liu et al. 2015b) and this could be at-
tributed to the different region and forests. The values of α
and �E obtained in this study fill the gap of calibration for
optical measurement of LAI in subtropical forests.

Mean LAI values differed among the three forests and the
differences were significant between the C. axillaris forest
and the other two forests at a given measurement season. The
C. axillaris forest had a relatively high mean LAI value dur-

Figure 4. Partial effects of stem number and the proportion of de-
ciduous species to total stand BA (PDSB) (calculated for overstorey
trees with height larger than average stand height) on the LAI val-
ues observed in July in P. massoniana–L. glaber, C. axillaris, and
L. glaber–C. glauca forests.

ing the growing season but changed to the lowest mean LAI
value during the non-growing season. The change in mean
LAI values in the C. axillaris forest was consistent with the
study of a deciduous species-dominated forest reported by
Naithani et al. (2013). It has been reported that the forests
consisting of different plant functional types showed differ-
ent LAI values (Asner et al., 2003; Iio et al., 2014). The dif-
ferences and seasonal variations of LAI values in the three
forests could be attributed to floristic composition and pheno-
logical defoliation patterns of tree species especially the de-
ciduous species. The C. axillaris forest consisted of 74.15 %
deciduous species, 25.80 % evergreen broadleaved species,
and 0.05 % evergreen coniferous species, while the propor-
tions of deciduous species were 10.05 and 25.70 % in the
P. massoniana–L. glaber and L. glaber–C. glauca forests re-
spectively. Seasonal growth and defoliation of different func-
tional types of species lead to the change in leaf lifespan and
foliage area (Niinemets, 2010) during different seasons re-
lated to temperature and water availability, which are respon-
sible for the unimodal pattern of seasonal variation in mean
LAI values. This agrees with the results of Liu et al. (2012),
where the highest LAI was found in summer (July), followed
by autumn (October) and spring (April), and the lowest was
found in winter (January).

4.2 Within-forest spatial heterogeneity and factors
controlling LAI

Semivariograms of LAI values in the three forests were fit-
ted with spherical, Gaussian, exponential, or linear models
(Table 3). Based on the fitted models, the degree of spatial
autocorrelation could be evaluated. Spatial autocorrelation is
weak when the determination coefficient (r2) of the best-
fitted semivariogram model is less than 0.5 (Duffera et al.,
2007). The ratio [C / (C0+C)] is also used to describe the de-
gree of spatial autocorrelation. A ratio of between 0 and 0.25
indicates a weak spatial autocorrelation, of between 0.26 and
0.75 indicates moderate autocorrelation, and of more than
0.75 indicates strong autocorrelation (Lopez-Granados et al.,
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2004). Spatial autocorrelation of LAI in this study varied
with forest and measurement season (Table 3). Strong spa-
tial autocorrelation in LAI values at a short range measured
in January in all three forests indicated the sampling distance
is reasonable for LAI variables within the spatial range (Liu
et al., 2008). On the contrary, weak autocorrelation indicated
that more samples and smaller sampling intervals should be
taken to determine spatial dependency of LAI, such as for
LAI measured in April in the P. massoniana–L. glaber for-
est.

Spatial heterogeneity in LAI values was different for for-
est type and measurement season. Our study described spa-
tial variations in LAI value by CV and geostatistical analy-
sis, and the results were largely consistent with each other.
In general, the CVs of LAI values in the three forest types
(in particular C. axillaris forest) were higher for the period
of leaf onset (April) and senescence (October) than for the
period of leaf maturity (July) (Table 1). This reflects changes
in leaves due to plant phenology and is consistent with the
study of Naithani (2013) where LAI became increasingly
homogenous from leaf onset to maturity but became more
heterogeneous from maturity to senescence. As a result, de-
gree of heterogeneity in LAI value for all three forests tended
to dwindle from leaf non-growing season to growing season
(Fig. 2).

The complex hydrothermal environment results in com-
plex vertical and horizontal variation in canopy layer and
formed unique spatial heterogeneity in LAI values. The ef-
fects of stand characters on LAI have been examined and
positive and negative effects have been reported (Tobin et al.,
2006; Bequet et al., 2012; Yao et al., 2015). In our study, re-
sults from GAMs showed that forest types, stand structural
diversity, and stand characters affected spatial heterogeneity
of LAI values significantly in the three forests. This finding
that floristic composition and stand characters affected LAI
values measured in July is consistent with the study of Yao
et al. (2015); LAI values increased with stem number but
when the stem number was larger than 7, LAI values de-
creased with stem number mainly due to the floristic com-
position in these study areas. Because July is the period of
leaf maturity for deciduous species and leaves fully expand
in this season, LAI values tended to increase as ratio of de-
ciduous species increased, but when the ratio was higher than
∼ 0.7, its negative relationship with LAI probably could be
explained by the strong competition among tree species, with
diverse species composition and the canopy overlap among
tree species (Fig. 4). Our results indicated that LAI values
did not exhibit a significant relationship with stand BA, con-
sistent with the findings of Mcdowell (2007); total LAI did
not exhibit a clear pattern in relation to stand BA.

Until now, the non-growing season relationship of LAI
variation with forest type and stand characters has been sel-
dom reported. In this study, forest type, stem number, crown
coverage, proportion of evergreen conifer species to total
stand BA, and proportion of deciduous species to total stand

BA and forest type were the factors significantly affecting
LAI variation in January. As January is mainly the leaf senes-
cence period of deciduous species, LAI values in January
decreased with stem number and decreased with deciduous
species ratio. The relationship between LAI value and the
evergreen species ratio was generally the reverse of that be-
tween LAI and the deciduous species ratio. The fact that LAI
values in January decreased with increasing crown coverage
when crown coverage was larger than ∼ 200 m2 could be ex-
plained by large crown coverage resulting in more defoliation
(in particular for deciduous species) in the forest in January
(Fig. 3). The proportion of deciduous species to total stand
BA significantly affected LAI variations in January and July,
and the relationship between LAI and the deciduous species
proportion was reversed when the ratio was smaller than 0.7
in these two seasons, which is consistent with the growth law
of deciduous species. Thus, deciduous species play an impor-
tant role in LAI variations across seasons. Also, the seasons
have a significant effect on LAI variation by affecting leaf
growth. The partial effects of stem number and crown cover-
age on the LAI values observed in January showed that these
smooth functions were large at both ends of the 95 % confi-
dence interval. This was due to the small sample number in
this range, and most were concentrated in the middle parts,
the same as the partial effects of stem number on the LAI
values observed in January (Figs. 3, 4).

Although the factors selected by regression could explain a
small proportion (4 %) of spatial heterogeneity of LAI mea-
sured in July, the factors selected in January could explain
35 % of the LAI spatial heterogeneity (Table 4). The LAI
heterogeneity also could be affected by several other factors,
such as the topography (Naithani et al., 2012), soil feature
(Choler et al., 2010), soil temperature (Vitasse et al., 2009;
Hardwick et al., 2015), microclimate, human activity, and
other physicochemical properties. However, full leaf expan-
sion of all tree species, which covers up the effect of other
physicochemical properties on LAI, leads to a small differ-
ence in LAI in July. The effects of environmental factors (e.g.
temperate and rainfall) on LAI in the forests at the fine scale
should be taken into account in future studies.

Spatial heterogeneity of LAI in the three forests can yield
some useful information for sampling strategy to accurately
estimate of LAI using indirect measurement. An optimal
sampling strategy should consider appropriate sampling plot
size and the lowest sampling number that, as far as possible,
obtains a high sampling accuracy and a low sampling error
(Bequet et al., 2012). Our study found that strong spatial au-
tocorrelations range were∼ 13–27 m (the minimal range was
13.80 m, and the maximal range was 27.00 m) (Table 3), in-
dicating that the range from 13 to 27 m might serve as the
reference for sampling plot size to estimate LAI in subtrop-
ical forests. In addition, LAI heterogeneity was closely re-
lated to floristic composition and stand characters; thus stand
structural variables (BA or DBH) are important for sampling
strategy to measure LAI in forests (Bequet et al., 2012).
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5 Conclusions

This study measured LAI in three subtropical forests using
a hemispherical photography method over four seasons, and
offered reliable data to analyse spatial and seasonal varia-
tions in LAI. Our results indicated that LAI differed greatly
with forest type and measurement season. Seasonal variation
in LAI across the three forests reflects defoliation due to plant
phenology. LAI values for all three forests exhibited differ-
ent spatial autocorrelation in the four seasons. A clear patch
distribution pattern in LAI value was found during the non-
growing seasons and this pattern gradually dwindled in the
growing seasons. While stem number, crown coverage, pro-
portion of evergreen conifer species to total stand BA, the
proportion of deciduous species to total stand BA, and forest
type significantly affected spatial variations in LAI values in
January, stem number and proportion of deciduous species
to total stand BA significantly affected spatial variations in
LAI values in July. These findings supplement LAI data for
global synthesis and will provide valuable information for
sampling strategies to enable more accurate estimates of LAI
for simulated models of production and hydrological cycles
in subtropical forests.

The Supplement related to this article is available online
at doi:10.5194/bg-13-3819-2016-supplement.
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