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Abstract. In the taiga–tundra ecotone (TTE), site-dependent
forest structure characteristics can influence the subtle and
heterogeneous structural changes that occur across the broad
circumpolar extent. Such changes may be related to ecotone
form, described by the horizontal and vertical patterns of for-
est structure (e.g., tree cover, density, and height) within TTE
forest patches, driven by local site conditions, and linked to
ecotone dynamics. The unique circumstance of subtle, vari-
able, and widespread vegetation change warrants the appli-
cation of spaceborne data including high-resolution (< 5 m)
spaceborne imagery (HRSI) across broad scales for examin-
ing TTE form and predicting dynamics. This study analyzes
forest structure at the patch scale in the TTE to provide a
means to examine both vertical and horizontal components
of ecotone form. We demonstrate the potential of spaceborne
data for integrating forest height and density to assess TTE
form at the scale of forest patches across the circumpolar
biome by (1) mapping forest patches in study sites along
the TTE in northern Siberia with a multi-resolution suite of
spaceborne data and (2) examining the uncertainty of forest
patch height from this suite of data across sites of primarily
diffuse TTE forms. Results demonstrate the opportunities for
improving patch-scale spaceborne estimates of forest height,
the vertical component of TTE form, with HRSI. The distri-
bution of relative maximum height uncertainty based on pre-
diction intervals is centered at ∼ 40 %, constraining the use
of height for discerning differences in forest patches. We dis-
cuss this uncertainty in light of a conceptual model of general
ecotone forms and highlight how the uncertainty of space-
borne estimates of height can contribute to the uncertainty
in identifying TTE forms. A focus on reducing the uncer-

tainty of height estimates in forest patches may improve de-
piction of TTE form, which may help explain variable forest
responses in the TTE to climate change and the vulnerability
of portions of the TTE to forest structure change.

1 Introduction

1.1 TTE vegetation structure and processes

The circumpolar biome boundary between the boreal forest
and Arctic tundra – also known as the tree line, the forest–
tundra ecotone, or the taiga–tundra ecotone (TTE) – is an
ecological transition zone covering > 1.9 million km2 across
North America and Eurasia (Payette et al., 2001; Ranson et
al., 2011). This ecotone is among the fastest warming on
the planet (Bader, 2014). The location, extent, structure, and
pattern of vegetation in the TTE influences interactions be-
tween the biosphere and the atmosphere through changes to
the surface energy balance and distribution of carbon (Bo-
nan, 2008; Callaghan et al., 2002a). These TTE vegetation
characteristics also affect local and regional Arctic and sub-
arctic biodiversity (Hofgaard et al., 2012) and are controlled
by a variety of factors that are scale-dependent (Holtmeier
and Broll, 2005). At local scales the spatial configuration of
trees is determined largely by site-level heterogeneity in hy-
drology, permafrost, disturbance, topography (aspect, slope,
elevation), land use, and the geomorphologic conditions as-
sociated with each (Dalen and Hofgaard, 2005; Danby and
Hik, 2007; Frost et al., 2014; Haugo et al., 2011; Holtmeier
and Broll, 2010; Lloyd et al., 2003).
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North of the Kheta River in central Siberia (e.g., 71.9◦ N,
101.1◦ E), the TTE exhibits a change in forest structure
across a gradient of open-canopy (discontinuous) forest from
south to north. In this region, latitude coarsely controls TTE
forest structure characteristics, which feature a general de-
crease in height and cover from south to north, as well as
a variety of spatial patterns of trees (Holtmeier and Broll,
2010). These structural characteristics influence a range of
TTE biogeophysical and biogeochemical processes in a num-
ber of ways. Forest structure provides clues as to the ex-
tent of sites with high organic matter accumulation and
below-ground carbon pools (Thompson et al., 2016). Recent
work notes that rapid growth changes individual tree forms,
thus altering recruitment dynamics (Dufour-Tremblay et al.,
2012). Height and canopy cover of trees and shrubs affect
site-level radiative cooling, whereby larger canopies increase
nocturnal warming and influence regeneration (D’Odorico et
al., 2012). Such tree height and canopy controls over the
transmission of solar energy have been well documented
(Davis et al., 1997; Hardy et al., 1998; Ni et al., 1997;
Zhang, 2004). The height and configuration of vegetation
also partly influence permafrost by controlling snow supply,
creating heterogenous ground and permafrost temperatures
(Roy-Léveillée et al., 2014). Accounting for vegetation het-
erogeneity in schemes addressing surface radiation dynamics
helps address the effects on rates of snowmelt in the boreal
forest (Ni-Meister and Gao, 2011). Modeling results sup-
port the importance of tree heights on boreal forest albedo,
which is a function of canopy structure, the snow regime,
and the angular distribution of irradiance (Ni and Woodcock,
2000). Better representation of vegetation height and cover is
needed to improve climate prediction and understand vegeta-
tion controls on the snow-albedo feedback in the high north-
ern latitudes (Bonfils et al., 2012; Loranty et al., 2013). Fur-
thermore, the structure of vegetation in the TTE helps reg-
ulate biodiversity, where the arrangement of groups of trees
provides critical habitat for Arctic flora and fauna (Harper et
al., 2011; Hofgaard et al., 2012).

1.2 A conceptual model of the TTE: forest patches,
ecotone form, and the link to structural
vulnerability

The TTE, and other forest ecotones, can be conceptualized
as self-organizing systems because of the feedbacks between
the spatial patterns of groups of trees and associated eco-
logical processes (Bekker, 2005; Malanson et al., 2006). In
this conceptual model groups of trees with similar vertical
and horizontal structural characteristics can be represented
as forest patches. These patches have ecological meaning,
because they reflect similar site history and environmental
factors. At a coarser scale, these patterns and structural char-
acteristics of TTE forest patches have been conceptualized
with a few general and globally recognized ecotone forms
(Harsch and Bader, 2011; Holtmeier and Broll, 2010). In the

TTE, these general ecotone forms (diffuse, abrupt, island,
krummholz) reflect the spatial patterns of forest patches that
are described by the horizontal and vertical structural charac-
teristics of trees (e.g., canopy cover, height, and density) and
have different primary mechanisms controlling tree growth.

The variation in ecotone form may help explain differing
rates of TTE forest change across the circumpolar domain.
These forms tend to vary with site factors, which may partly
control the heterogeneity of change seen across the circum-
polar TTE (Harsch and Bader, 2011; Lloyd et al., 2002).
Further investigation is needed into the link between ob-
served changes in vegetation, their pattern, and local fac-
tors that may control these changes (Virtanen et al., 2010).
Epstein et al. (2004) provide a synthesis of how TTE pat-
terns and dynamics are linked, and explain that a better un-
derstanding of vegetation transitions can improve predictions
of vegetation sensitivity. Their observations provide a basis
for the inference that TTE structure is most susceptible to
temperature-induced changes in its structure where its struc-
ture is temperature-limited. Thus, the structural vulnerability
of the TTE may be broadly defined as the susceptibility of its
vegetation structure to changes that result in shifts in its ge-
ographic position and changes to its spatial pattern of trees.
Vulnerable portions of the TTE are areas most likely to ex-
perience changes in forest structure that alter TTE structural
patterns captured by forest patches and described by ecotone
form.

1.3 Towards identifying TTE form: spaceborne data
integration, scaling, and the uncertainty of TTE
structure

Spaceborne remote-sensing data may facilitate identifying
TTE form and linking it to local site factors and structural
vulnerability (Callaghan et al., 2010, 2002b; Harsch and
Bader, 2011; Kent et al., 1997). The way in which spaceborne
data are integrated and scaled may be a key part of identi-
fying structural patterns and TTE form. Fine-scale data can
resolve individual trees that, when grouped to patches, may
reveal ecotone forms (Danby and Hik, 2007; Hansen-Bristow
and Ives, 1985; Hofgaard et al., 2009, 2012; Holtmeier and
Broll, 2010; Mathisen et al., 2013). Without resolving groups
of individual trees, coarse studies of the land surface may
misrepresent ecotone form, be less frequently corroborated
with ground data, and disguise the structural heterogene-
ity of discontinuous forests. In a TTE landscape this struc-
tural heterogeneity is critical for understanding biodiversity;
biogeochemical and biophysical characteristics such as car-
bon sources, sinks, and fluxes; permafrost dynamics; surface
roughness; albedo; and evapotranspiration (Bonan, 2008).
Furthermore, understanding at a fine scale where the TTE
is likely to change may improve understanding of the poten-
tial effects of changing TTE structure on these regional and
global processes.
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A forest patch approach to the integration of multi-
resolution remote-sensing data may mitigate data scaling is-
sues with regard to forest structure estimates. One example
of mitigation is the misrepresentation of forest structure that
arises with the sole use of coarse data. Medium-resolution
sensors such as Landsat and Advanced Land Observation
Satellite (ALOS) may not be suited for identifying the patch
boundaries at the resolution required to study TTE structure.
However, their spectral or backscatter information may still
have value for predicting patch characteristics when com-
bined with the spatial detail of high-resolution spaceborne
imagery (HRSI) to define patch boundaries. Such an ap-
proach integrates coarser data into an analysis while main-
taining the spatial fidelity of feature boundaries. Further-
more, a patch-level analysis helps attenuate high-frequency
noise in image data. For example, ALOS Phased Array type
L-band Synthetic Aperture Radar (PALSAR) backscatter has
significant pixel-level speckle (Le Toan et al., 2011; Mette
et al., 2004; Shamsoddini and Trinder, 2012) which, when
grouped with coincident HRSI patch boundaries, can be av-
eraged to reduce the noise and quantified further with a vari-
ance estimate.

In particular, data integration and scaling may also help
mitigate the uncertainty of spaceborne estimates of vertical
structure in discontinuous TTE forests. A spaceborne assess-
ment of forest structure from individual active sensors across
a gradient of boreal forest structure shows broad ranges of
uncertainty at plot scales (Montesano et al., 2014a, 2015).
These plot-scale studies provide an indication of the scale at
which TTE structure changes. A spaceborne remote-sensing
approach that identifies forest patch boundaries with HRSI
may provide insight into TTE structural characteristics that
are indicative of general ecotone forms at scales that are dic-
tated by the variation of TTE forest structure itself. As such,
a patch-based approach to capturing forest height and for-
est height uncertainty in the ecotone capitalizes on the added
value that estimates of horizontal structure may provide for
reducing uncertainties in estimates of vertical structure from
remote sensing.

An evaluation of forest structure uncertainty serves the
long-term goal of monitoring change over time and between
sites, as well as distinguishing the portions of the TTE that
are vulnerable to changes in forest height, cover, or density
from those whose structure is more resilient and the rates as-
sociated with these changes (Epstein et al., 2004). The spatial
patterns of this structural vulnerability will help models pre-
dict the consequences of TTE structural change on regional
and global processes.

This work examines the uncertainty of mapped forest
patch heights using a spaceborne remote-sensing data inte-
gration approach. We map forest patches with HRSI data
(< 5 m) to spatially assemble a medium-spatial-resolution (5–
50 m) suite of measurements from multispectral optical and
synthetic aperture radar (SAR) with light detection and rang-
ing (lidar) samples to estimate and model forest height and

its uncertainty by forest patch. We discuss the implication of
this uncertainty for both identifying TTE form and predict-
ing dynamics, with regard to identifying portions of the TTE
whose forest structure is vulnerable to temperature-induced
changes.

2 Methods

2.1 Study area and ground reference data

Our study area encompasses a region of the TTE in north-
ern Siberia in which we identified forest patch mapping sites
and incorporated existing calibration and validation field plot
and stand data. The region is subject to a severe conti-
nental climate, generally exhibits a gradient in tree cover
from discontinuous to sparse; features elevations generally
< 50 m a.s.l.; and is underlain with continuous permafrost
(Bondarev, 1997; Naurzbaev et al., 2004). The forest cover
– exclusively Larix gmelinii across all mapping, calibration
and validation sites – exists at the climatic limit of forest veg-
etation, coinciding closely with the July 10 ◦C isotherm (Os-
awa and Kajimoto, 2009). Tall shrubs – including Alnus sp.,
Betula sp., and Salix sp. – and dwarf shrubs (e.g., Vaccinium
sp.) occur along with sedge-grass, moss, and lichen ground
covers.

The mapping sites are primarily situated on the Kheta–
Khatanga Plain, north of the Kheta River, which is a trib-
utary of the Khatanga River flowing north into the Laptev
Sea. One site, which sits just south of the Novaya River on
the Taymyr Peninsula, includes a portion of Ary-Mas, the
world’s northernmost forest (Bondarev, 1997; Kharuk et al.,
2007; Naurzbaev and Vaganov, 2000). Mapping sites were
chosen based on the presence of cloud-free multispectral and
stereo pair data from HRSI available in the DigitalGlobe
archive, and presence of patches of forest cover (Neigh et
al., 2013). We visually interpreted HRSI to identify sites in
this portion of the TTE where forest cover was discontinuous
and where forest patches exhibited diffuse, abrupt, or island
ecotone patch forms.

Ground reference sites were derived from two sources.
The first consisted of individual tree measurements at circu-
lar plots (15 m radius) coincident with spaceborne lidar foot-
prints, while the second comprised stand-level data specific
to Larix gmelinii across a broader central Siberian region.
The plot data, collected during an August 2008 expedition
to the Kotuykan and Kotuy rivers, were used as either cal-
ibration or validation data in this study (Montesano et al.,
2014b). Measurements were collected of tree diameters at
breast height (DBH, 1.3 m) and tree heights (clinometers for
97 % of trees and tape measurement for 3 %) at plots coin-
cident with spaceborne lidar footprints. The data used for
this study included DBH for all tree stems with DBH > 3 cm
(±0.1 cm) and corresponding tree heights for each tree in
each plot. These plot data, representing a range of discontin-
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Figure 1. The study area in northern Siberia showing the nine forest patch mapping sites (boxes) and the ground reference sites along the
Kotuykan River (circles) at which individual tree height measurements in circular plots coincident with spaceborne lidar footprints were
collected.

uous Larix gmelinii forest conditions found across northern
Siberia excluding prostrate tree forms, were supplemented
with the stand data reported in Bondarev (1997). Shrub struc-
ture was not considered in this study.

The forest mapping and ground reference sites do not spa-
tially coincide. This study examines the TTE on the Kheta–
Khatanga Plain, which exhibits a range of TTE forms, where
the TTE covers a broader area, and where we had access to
both stereo and multispectral HRSI data. While not spatially
coincident, our ground reference sites characterize very sim-
ilar forest conditions to those in the mapping sites. The main
difference is that the ground reference sites feature an eco-
tone that is compressed, covering a smaller area due to to-
pography, relative to the mapping sites. The type and struc-
ture of the Larix gmelinii forests are consistent across the
broader region (Bondarev, 1997). The geographic footprints
of all mapping sites for which forest patches were examined,
as well as the general locations of Kotuykan/Kotuy ground
reference sites, are shown in Fig. 1.

2.2 Spaceborne data acquisition and processing

A suite of spaceborne remote-sensing datasets were used in
this study to delineate forest patch boundaries, assign forest
patches with remote-sensing image pixel values, and predict
forest patch height. Table 1 lists the individual datasets along
with their period of acquisition. These data were collected
within an ∼ 8-year period (2004–2012) across sites during

which, based on visual inspection of HRSI, there were no
signs of disturbance from fires and for which the rate of tree
growth is likely well below that which would be detectable
from spaceborne data in that time interval. The data include
spaceborne lidar data from the Ice, Cloud, and land Eleva-
tion Satellite’s (ICESat) Geoscience Laser Altimeter System
(GLAS) and image data from passive optical Landsat-7 En-
hanced Thematic Mapper (ETM) and Worldview-1 & -2, and
SAR from ALOS PALSAR.

2.2.1 Spaceborne lidar data

The spaceborne lidar data from GLAS featured ground foot-
print samples ∼ 60 m in diameter (the actual footprint is an
ellipse) of binned elevation returns of features within each
footprint. These data provided ground surface elevation sam-
ples as described in a previous study (Montesano et al.,
2014b). The set of GLAS data coincident with the digital
surface model (DSM) of the study sites was filtered in an
effort to remove lidar footprints for which within-footprint
elevation changes precluded capturing heights of trees gen-
erally less than 12 m tall. The GLAS footprints used satisfied
the following conditions; (1) the set of coincident DSM pix-
els had a standard deviation ≤ 5 m, (2) the length of the lidar
waveform was ≤ 20 m, and (3) the difference between the
maximum and minimum DSM values within a 10 m radius
of the GLAS lidar centroid was ≤ 25 m. This radius helped
remove footprints for which there was a broad range of DSM
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Table 1. Summary of spaceborne datasets used to delineate or attribute forest patches.

Dataset Date Attribute value Spatial resolution

Landsat-7:
ETM cloud-free composite;
Vegetation continuous fields

ca. 2013 Top-of-atmosphere reflectance (mean):
SWIR, NIR, red, green;
Percent tree cover (mean)

30 m pixel

HRSI: Worldview-1 & -2 ca. 2012 DSM (mean, min, max, SD);
NDVI (mean),
Panchromatic roughness (mean);
CRM (mean, SD)

∼ 0.5–2 m pixel

ALOS PALSAR composite 2007–2010 Backscatter power (HH, HV) 25 m pixel

ICESat-GLAS lidar 2003–2006 Ground surface elevation, waveform length ∼ 60 m diameter footprint

values near the footprint centroid, indicative of terrain slope
that would likely interfere with forest height estimation.

2.2.2 Spaceborne image data

Spaceborne image data covering the full extent of each study
site were resampled from their original unprojected format
during a reprojection into the Universal Transverse Mer-
cator coordinate system (zone 48). The images were ei-
ther medium (25–30 m pixels) or high (< 5 m pixels) reso-
lution. The medium-resolution spaceborne imagery included
a Landsat-7 ETM multispectral cloud-free composite and
vegetation continuous fields tree cover (VCF) products and
ALOS PALSAR tiled yearly mosaics (2007–2010) (Hansen
et al., 2013; Shimada et al., 2014). The four ALOS PALSAR
yearly mosaics were processed into an average temporal mo-
saic of dual polarization (HH and HV) backscatter power.
The high-resolution data consisted of HRSI multispec-
tral (Worldview-2 satellite) and panchromatic (Worldview-1
satellite) data acquired from the National Geospatial Intelli-
gence Agency via the NextView License agreement between
Digital Globe and the US government (Neigh et al., 2013).

This HRSI was processed in accordance with Montesano
et al. (2014b) to generate a DSM of elevations for each study
site using the NASA Ames Stereo Pipeline software (Moratto
et al., 2010; Montesano et al., 2014b). In addition to DSM
generation, the HRSI data were processed to compute three
additional image layers that were used to delineate and assign
forest patches with the mean and variance of corresponding
image pixel values. The steps below describe the processing
of the three additional layers:

NDVI image: we computed a normalized difference veg-
etation index (NDVI) layer to create a mask separating ar-
eas of vegetation from non-vegetation within each mapping
site. This widely used algorithm was based on the near-
infrared (NIR) and red channels of the multispectral HRSI
((NIR− red)/(NIR + red)). This NDVI calculation, based
on uncalibrated digital number values of image pixels, sup-
ported the objective of classifying forest structure patterns

rather than maintaining the fidelity of reflectance character-
istics.

Panchromatic image roughness: these roughness data were
based on the textural characteristics of each site’s panchro-
matic HRSI. Image roughness/texture information is useful
for examining horizontal forest structure, a component of
which is tree density (e.g., Wood et al., 2012, 2013). We
computed image roughness using the output layers from the
bright and dark edge detection (described in steps 10–12 of
Table 2 in Johansen et al.) (Johansen et al., 2014). This im-
age roughness derivation is resolution independent in that
feature roughness can be captured as long as those features
are resolved in the imagery. Here, we use ∼ 60 cm data to
quantify a signal from groups of Larix gmelinii trees. The
output from this roughness computation was a single image
layer showing increased brightness values corresponding to
increasingly textured surface features that is a result of the
arrangement of trees across the landscape.

Canopy roughness model: the second of two image rough-
ness layers, a canopy roughness model (CRM), was calcu-
lated from each DSM. A low-pass (averaging) filter (kernel
size = 25× 25) was applied to a version of the DSM that
was resampled to decrease the spatial resolution by a fac-
tor of 8. The filtering generated a smoothed terrain eleva-
tion (elevterrain) layer that removed the elevation spikes from
the discontinuous tree cover that is evident in the DSM. This
elevterrain layer was then resampled to the original spatial res-
olution. Surface feature roughness was computed as the dif-
ference between the DSM and elevterrain, and was represented
as heights above elevterrain.

2.3 Forest masking, patch delineation, and value
assignment

We analyzed forest structure at the study sites by masking
forest area, delineating forest patch boundaries, and assign-
ing these patches with remotely sensed data values in or-
der to model forest patch height. This delineation and value
assignment framework used the segmentation algorithms in
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Definiens Developer 8.7 (Benz et al., 2004). This framework
modifies the multi-step, iterative segmentation and classifica-
tion procedure discussed in previous work (Montesano et al.,
2013). The central difference is that this approach uses ex-
clusively data from HRSI to identify a vegetation mask and
refine it to create a forest mask. We applied a segmentation to
this forest mask to separate distinct forest patches and then
assigned those patches the mean and standard deviation of
pixel values from all coincident data.

Creating the forest mask was an iterative process that in-
cluded segmentation and thresholding of the NDVI and two
roughness layers. The thresholds used to classify forest were
based on preliminary interpretation of the Larix gmelinii for-
est and non-forest areas in imagery across all forest patch
mapping sites. The goal of this preliminary exploratory work
was to understand the range of roughness and NDVI values
associated with forest identified with visual interpretation of
the particular set of imagery used. This exploratory work
identified thresholds that were image independent and could
be used in an automated patch classification protocol across
all sites. However, these thresholds are sensitive to the sea-
sonality of vegetation and, likely, the sun-sensor-target ge-
ometry at which the imagery was acquired. A detailed ex-
amination of the trade-offs associated with threshold choices
and forest mask results was not part of this work.

The preliminary vegetation mask, generated from the ini-
tial separation of vegetation and non-vegetation within map-
ping sites, was based on an unsupervised contrast-based seg-
mentation of the NDVI layer. This first masking step was fur-
ther modified with NDVI and image roughness thresholding
steps to compile a final forest mask. Next, we used both the
panchromatic-derived roughness layer and the DSM-derived
CRM to capture vegetation roughness and modify the prelim-
inary vegetation mask. Thresholds were applied to these two
roughness layers to create a forest mask sub-category. First,
forest was separated from non-forest based on a panchro-
matic HRSI roughness threshold value = 5.5, where higher
values represented rougher vegetation and were classified as
forest. Second, the forest mask was refined with information
from the CRM. A CRM threshold value = 1 was used to
reclassify existing non-forest regions into the forest class. In
the final step of this iterative forest-masking process, remain-
ing non-forest areas with a mean roughness > 3 and mean
NDVI < 0.25 were classified as forest. This helped classify
remaining vegetation whose roughness value suggested for-
est vegetation but whose NDVI value had initially excluded
them from this class.

The forest mask provided the extent for which a two-step
procedure separated distinct forest patches before assigning
patches with image values. First, this forest mask was divided
to separate portions of forest whose roughness values were
> 2 standard deviations above the median roughness value.
Next, patches were broken apart according to surface eleva-
tion values provided from each site’s DSM. Patches were as-
signed with the mean and standard deviation of image pixel

values within the boundary of each patch. Patch area was cal-
culated to exclude patches below the minimum mapping unit
of 0.5 ha. The remaining patches coincident with lidar foot-
print samples were assigned forest patch height values via
the direct height estimation approach discussed below.

2.4 Predicting forest patch height directly at lidar
footprints

GLAS lidar sampling of forest canopy height provided a
means to estimate average patch canopy height through di-
rect spaceborne height measurements. Where forest patches
coincided with lidar footprints from GLAS, the canopy sur-
face elevation from the DSMs and the ground elevation
from either the DSMs or GLAS within a GLAS lidar foot-
print provided a sampling of forest height within the patch.
First, we applied the methodology presented in Montesano
et al. (2014b) to compile spaceborne-derived canopy height
within GLAS lidar footprints and convert those heights to
plot-scale maximum canopy height with a linear model
(Montesano et al., 2014b). Finally, these plot-scale canopy
height predictions from all GLAS lidar footprints within a
given patch were used to directly determine the mean pre-
dicted forest patch height and the mean height error from the
prediction interval of the canopy height linear model.

2.5 Modeling forest patch height indirectly

Canopy height predictions were made indirectly for forest
patches without direct spaceborne sampling of forest canopy
height. This indirect method, used for the vast majority
(∼ 90 %) of forest patches > 0.5 ha across the study sites, in-
volved (1) building a model from the set of forest patches
with GLAS lidar samples relating the predicted forest patch
canopy height (response variable) to patch values from the
spaceborne image data summarized in Table 1 (predictor
variables) and (2) applying that model to predict forest patch
canopy height for those patches with no direct spaceborne
height samples. These methods, described in Montesano et
al. (2013) and Kellndorfer et al. (2010), use the random for-
est regression tree approach for prediction (Breiman, 2001;
Kellndorfer et al., 2010; Montesano et al., 2013). This ap-
proach includes specifying both the number of decision trees
that are averaged to produce the random forest prediction and
the number of randomly selected predictor variables used to
determine each split in each regression tree. The result is a
prediction model that is valid for the range of predictions on
which the model was built and reduces overfitting, or the de-
gree to which the prediction model is applicable to only the
specific set of input data.
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Figure 2. A representative example of forest patches showing a
diffuse forest structure gradient of Larix gmelinii across an up-
land site delineated from HRSI. The top image shows a subset of
a Worldview-1 panchromatic image from 21 August 2012 in one of
the forest patch mapping sites. The bottom image shows the same
subset with forest patches overlaid (green).

3 Results

3.1 Forest patch delineation and direct sample density

The forest patch was the fundamental unit of analysis in this
study for which forest height was assigned either directly
from spaceborne data at GLAS lidar footprints or indirectly
from spaceborne data by means of empirical modeling with
random forest. A representative example of a group of forest
patches characteristic of a diffuse forest structure gradient
delineated within the study area is shown in Fig. 2. Across
the nine study sites, 3931 forest patches > 0.5 ha were delin-
eated based on NDVI, image roughness, and DSMs all from
the HRSI data. Of this total, 364 patches (9 %) coincided
with at least one GLAS lidar footprint at which a height sam-
ple was computed and used in the direct estimation of patch
canopy height (Fig. 3a). The bimodal distribution that fea-
tures a peak in the number of forest patches ∼ 1 ha in size is
evidence of the heterogeneous nature of forest cover in this
region. The plots in Fig. 3b group forest patches, for which
direct height estimates were made, into categories based on
patch area. They show the general distribution of sampling
density of direct height estimates within these patches. All
patches with direct height samples featured a sampling den-
sity of < 3 samples ha−1. The majority (94 %) of sampled
patches had sampling densities < 0.5 samples ha−1, of which
most had patch areas > 10 ha. Larger patches have lower sam-
pling densities in part because of the irregular arrangement of
GLAS lidar tracks across the landscape.

Figure 3. (a) The distributions of forest patch size in hectares ac-
cording to height attribution method. (b) The distribution of direct
height sample density (shown as violin plots) for each forest patch
size group, overlain with dots representing individual patches (red).

3.2 Forest height calibration and validation

Forest height calibration and validation data were used to
build and assess the empirical model for direct spaceborne
estimates of height. Figure 4a shows sites for which ground
reference calibration and validation data were collected. In
Fig. 4b, the corresponding distributions of mean plot or stand
height are shown for these sites. Measurements were col-
lected in plots along the Kotuykan River for this study (n=
69) and those from regionally coincident stands (n= 40) at
six sites across northern Siberia from Bondarev (1997).

A portion of the Kotuykan/Kotuy River plots were used
to calibrate (n= 33) the model used to estimate spaceborne
canopy height at plot scales after Montesano et al. (2014b),
which was applied in the direct spaceborne estimation of
forest patch height (Montesano et al., 2014b). The remain-
ing portion of the Kotuykan/Kotuy River plots (n= 36) and
stands from Bondarev (1997) (n= 40) served as independent
validation of the distribution of forest patch heights derived
from direct spaceborne height estimation (Bondarev, 1997).
Mean heights of forest patches, plots, and stands were used to
compare distributions of calibration and validation data be-
cause this was the height metric that was consistently avail-
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Figure 4. (a) Map of locations of calibration (green) and validation (grey) sites in northern Siberia with the number of stands or plots
associated with each site. The circles representing general site locations are sized according to the number of stands. (b) Histogram of mean
plot and stand heights from calibration and validation data. (c) Comparison of the distribution of mean height of calibration and validation
plots and stands with that of forest patches heights from direct estimates. Notched boxplots showing the 25th, 50th, and 75th percentiles of
mean height as horizontal lines and 1.5 times the interquartile range as vertical lines. Notches roughly indicate the 95 % confidence interval
for the median.

able across the set of forest patches, the calibration plots, and
the validation plots and stands. The distributions in Fig. 4c
show the proportion of forest patch heights for which di-
rect spaceborne estimates of height were made. This distri-
bution of direct spaceborne estimates of forest patch heights
is shown alongside the distributions of individual tree mea-
surements averaged across plots or stands from (1) the cali-
bration plots in Montesano et al. (2014b), (2) the remaining
Kotuykan/Kotuy River validation plots, and (3) the validation
stands from Bondarev (1997).

3.3 Indirect forest patch height estimates

Indirect spaceborne estimates of forest patch heights were
made for the majority of patches examined. Maximum and
mean forest heights were predicted for 91 % of forest patches
across the study sites. Random forest regression tree mod-
els for five sets of spaceborne data predictor variables were
used to estimate maximum and mean patch height indirectly
for patches with no coincident direct spaceborne height es-
timates. Figure 5 shows the residual standard error (RSE)
and R2 of the best-performing model (based on R2) for each
spaceborne data predictor set (a particular combination of
spaceborne data). The predictor set “all” that included all
spaceborne image data layers identified in Table 1 explained
> 60 % of overall variation in modeled patch height. This

“all-data” model shows only incremental improvement over
the model using only HRSI-derived predictors. The Landsat
and ALOS spaceborne variables explain < 40 % of variation
within the modeled relationship between spaceborne predic-
tors and patch height.

3.4 Uncertainty of forest patch height estimates

We assessed the best-performing random forest model for in-
directly estimating maximum and mean forest patch heights.
The best-performing models were those from the all-data
predictor sets, described above, where the number of predic-
tor variables was 14 and 15, for maximum and mean forest
patch height, respectively. Assessments were based on model
R2 and root mean square error (RMSE) for the maximum
and mean patch height models, where 50 % of patches with
direct height estimates from which the indirect models were
built were used for model training and 50 % were used for
model testing. The results of a bootstrapping procedure to
examine the distribution of R2 and RMSE from the random
forest models applied to the set of testing data are shown
in Fig. 6a and b. The plots show the bootstrapped distribu-
tions of best-performing model R2 and RMSE, and are over-
lain with boxplots. The random forest models for maximum
and mean patch height explain 61 % (±14 % at 2σ ) and 59 %
(±14 % at 2σ) of the variation with errors of 1.6 m (±0.2 m
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Figure 5. Results from random forest indirect forest patch height estimation for five spaceborne data predictor sets.

at 2σ) and 1.3 (±0.2 m at 2σ), respectively, where 2σ repre-
sents the 95 % confidence interval.

We computed 95 % prediction intervals for patches receiv-
ing both direct and indirect height estimates. These predic-
tion intervals show the uncertainty associated with patch-
level estimates of both maximum and mean patch heights.
Figure 7a shows these height estimates and prediction in-
tervals for all patches in this study across the continuum
of patch sizes. Figure 7b shows the relative prediction er-
ror, which was computed as the difference between the upper
and lower prediction interval range divided by the predicted
height value.

4 Discussion

Recent work suggests that TTE form may reflect which por-
tions of the TTE have forest structure that is controlled pri-
marily by temperature. With spaceborne remote sensing, var-
ious TTE forms across broad extents can be identified by
characterizing the horizontal and vertical structure of trees.
By identifying these forms, the controls of TTE forest struc-
ture may be inferred. The ability to characterize horizontal
and vertical structure is a precursor both to (1) distinguishing
one TTE form from another and (2) identifying areas where
TTE form suggests tree growth is temperature limited. The
intersection of such temperature-limited TTE forms with re-
gional warming trends may point to areas where TTE forests
are vulnerable to changes in its structure. Our work demon-
strates the potential from spaceborne remote sensing for de-
picting a key structural characteristic of TTE form (height)
and suggests where improvements are needed in order to
identify portions of the TTE vulnerable to warming-induced
structural changes.

This study’s site-scale approach to examining forest struc-
ture is an example of a way to quantify the potential for
change in forest structure and its effects on broader TTE dy-

namics. Such detailed monitoring is needed to resolve both
the variability in TTE forest structure at fine spatial scales
and the variability in structural responses to changes in en-
vironmental drivers that are observed across the TTE. The
high-resolution delineation of forest patches at our study sites
in the TTE of northern Siberia demonstrates the detailed
monitoring that is possible for examining spatial patterns of
forest structure across the circumpolar domain, because of
the use of spaceborne data. The forest patch height predic-
tion intervals are estimates of the measurement error at the
forest patch scale that explain existing constraints for dis-
cerning TTE form linked to changes in TTE forest structure.

We discuss the utility of the patch-based analysis, review
the patch-level estimates of uncertainty, and then examine
them in the context of a conceptual biogeographic model of
TTE forest structure presented in the recent literature. Such
a model helps clarify and focus spaceborne approaches to
examining characteristics of TTE forest structure and its vul-
nerability to structural change.

4.1 Patch-based TTE forest structure analysis

The patch-based approach of remotely measuring TTE forest
structure addresses the imperative for site-scale detail of TTE
vegetation, whereby individual trees can be resolved, while
acknowledging the influence of clusters of trees (patches)
and their density on TTE attributes and dynamics. This ap-
proach coarsens the data, reducing spatial detail. However,
from a biogeographic perspective, this reduction in detail is
not arbitrary as are image pixel reductions when images are
coarsened by means of down-sampling. Rather, image fea-
tures and ancillary datasets inform the coarsening procedure,
creating patch boundaries that are based on spectral and tex-
tural characteristics of images as well as other landscape in-
formation. Polygonal patches, particularly when vegetation
patterns and heterogeneity are key landscape features, may

www.biogeosciences.net/13/3847/2016/ Biogeosciences, 13, 3847–3861, 2016



3856 P. M. Montesano et al.: Spaceborne potential for examining taiga–tundra ecotone form and vulnerability

Figure 6. The bootstrap-derived distributions (shown as violin plots, blue) of the random forest model’s (a) R2 and (b) RMSE for the indirect
forest patch height prediction method whereby all spaceborne variables were used to predict maximum and mean forest patch height. Box
plots (white) show the 25th and 75th percentiles (lower and upper lines), median (dark line), and 1.5 × the interquartile range (whiskers).
Data beyond the whiskers are shown as points.

Figure 7. (a) Patch height and 95 % prediction intervals (grey lines) for patches from direct prediction and indirect prediction shown across
the continuum of patch sizes. (b) Distributions of relative prediction error (95 % prediction interval) for patch height predictions.

be more informative than pixels, particularly for studies at
fine scales. Furthermore, patches provide a means to inte-
grate remote-sensing data across an area and extend sam-
ple measurements (Kellndorfer et al., 2010; Lefsky, 2010;
Montesano et al., 2013; van Aardt et al., 2006; Wulder and
Seemann, 2003; Wulder et al., 2007). We note that shrub
structure was not accounted for in our field data and not di-
rectly addressed with our patch height analysis. However, it
is likely that signals from shrubs persisted in the forest mask
used to estimate patch structure and, thus, may be incorpo-
rated into estimates of patch height and uncertainty.

4.2 Forest patch height uncertainty

There are four central results regarding the uncertainty of for-
est patch height across the study area. The first two involve
the sampling of canopy height within forest patches, while

the last two focus on its modeling. These local-scale results
for the TTE are then contrasted with existing global-scale es-
timates of forest height.

The way in which forest patch heights are sampled affects
estimates. First, direct forest patch height estimates from a
combination of coincident GLAS lidar ground surface and
HRSI DSM-derived canopy elevations were made for ∼ 9 %
of forest patches in the study area. Second, the sampling
density of these direct height estimates, driven by the sam-
pling scheme of the spaceborne lidar, is < 0.5 samples ha−1

for 94 % of sampled patches. This sampling density is well
below the critical density of 16 sample ha−1 recommended
for sampling forest biomass at the 1 ha plot scale (Huang
et al., 2013). These results suggest that the cost of increas-
ing forest patch sizes is a decrease in the density of direct
height measurements. This is likely an artifact of the GLAS
sampling scheme, whose sampling is regular in the along-
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track direction (1 sample every ∼ 170 m), but whose cov-
erage of ground tracks was highly irregular across forested
areas. Such a sampling scheme likely increases patch height
uncertainty, thus limiting the ability to discern ecotone form.

The modeling of forest patch height provided some insight
into what drives the prediction of height and the associated
uncertainty of predictions. First, the model that explained the
most variation included all remote-sensing image data lay-
ers. However, this all-data model showed little improvement
on that built from HRSI predictors. Furthermore, in the for-
mer, the most important variables were from HRSI. These
variables, NDVI and the standard deviation of the canopy
surface roughness, are indications of vegetation and its den-
sity within forest patches. This suggests that the medium-
resolution data from ALOS and Landsat products are not
strong predictors of vertical structure characteristics across
the range of forest patch sizes identified in the study area,
and that without HRSI inputs the heterogeneity of TTE for-
est structure at the scale of its change across the ecological
transition zone from forest to tundra is lost.

Second, the errors reported for the “all-inputs” models pre-
dicting maximum and mean forest patch height show forest
patch height errors, including error uncertainty at < 2 m σ

(95 % confidence interval). However, the prediction intervals
for these vertical structure metrics show the uncertainty in the
predictions at the patch level of ∼ 40 %. These patch-level
prediction intervals translate to a maximum patch height er-
ror of ±4 m for patches with maximum heights of 10 m.
These errors indicate that patches with maximum heights of
5 and 10 m would be statistically indistinguishable on the ba-
sis of height. This is a problem for identifying diffuse TTE
forms, for which forest patch and tree height is a key at-
tribute, because these forms generally features a gradual de-
crease in tree height and cover across portions of the ecotone
where present. Diffuse forms are the most likely type of gen-
eral form to demonstrate tree line advance, where 80 % of
diffuse ecotone sites examined in a meta-analysis show such
tree line advance (Harsch et al., 2009).

These local-scale uncertainties improve upon recent
global-scale spaceborne maps of vegetation height. These
maps feature height uncertainties (RMSE) of ∼ 6 m, which
are expected given that coarse-scale (> 500 m) global maps
of forest height aggregate many of these height measurement
samples across broad spatial extents (Lefsky, 2010; Simard
et al., 2011). This uncertainty can be the difference between
the presence or absence of a forest patch in the TTE and is
therefore not suited for evaluating the link between TTE for-
est structure and heterogeneous local-scale site factors. The
height uncertainty of forest patches, ∼ 90 % of which have
prediction intervals less than < 50 % of the predicted heights,
improves the uncertainty and spatial resolution of TTE forest
height measurements. However, this study’s primary benefit
is in the fidelity of the spatial extent of TTE forest patches.
The scale of these patches are more appropriate than coarse-,
global-scale estimates of forest structure for reporting site-

specific forest structure estimates that are critical for under-
standing forest characteristics at this biome boundary in flux.

4.3 Improving the estimates of forest patch height

Estimates of forest patch height need to be improved to dis-
tinguish important patch characteristics. A potentially large
source of uncertainty of patch height estimates may be at-
tributed to the limitation of the approach of using direct
height estimates for calibration of the indirect patch height
prediction method. This approach for direct sampling of
patch height, from differencing canopy and ground surface
elevations within lidar footprints, involves sampling a very
small portion of the overall patch. The assumption associ-
ated with delineating forest patches is that each patch itself
is a homogenous unit with similar tree structure characteris-
tics throughout. However, the extent to which this assump-
tion holds was not examined. For patches with a high de-
gree of tree structure heterogeneity, a single direct sample of
height may not be sufficient to represent either maximum or
mean patch heights. These data, when used to train a ran-
dom forest model, will degrade the modeled relationship of
mean patch-level image characteristics to patch height, be-
cause the sample used to determine patch height might not
be representative of actual patch height.

There are two ways to address this source of uncertainty.
The first is to accumulate more direct samples of forest
heights within a patch. This can be accomplished by col-
lecting more ground surface elevation estimates within for-
est patches. One way of doing this is with more lidar sam-
ples. The lidar data collected after the launch of ICESat-2
should add to the existing set of GLAS samples, contributing
significantly to increasing ground surface elevation estimates
in forested areas and adding enormous value to approaches
that involve data integration from a variety of sensors. More
ground surface elevation estimates can also be made by im-
proving the way in which they are derived from HRSI DSMs.
These improvements are needed because of higher errors as-
sociated with HRSI DSM ground surface elevation estimates
within forested areas (Montesano et al., 2014b). Second, the
homogeneity of forest patches can be improved by refining
algorithms associated with delineating forest patches. This
could include decreasing patch size, improving the canopy
surface roughness algorithm (e.g., with tree-shadow fraction
estimates), and including multi-temporal HRSI to help sepa-
rate surface features whose reflectance characteristics differ
throughout the growing season. These refinements may im-
prove the modeling of forest patch height and ultimately the
ability to discern diffuse TTE forms.

4.4 Spaceborne depiction of TTE form

The conceptual model of ecotone forms presented by Harsch
and Bader (2011) describes form as a result of the relative
dominance of different controlling mechanisms (Harsch and
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Bader, 2011). Only some of these mechanisms are primarily
driven by climate. For the diffuse TTE form, the primary con-
trolling mechanism of this conceptual pattern is the growth
limitation of trees, whereby tree growth is driven by warm-
ing of summer or winter temperatures. This study featured
two key approaches for depicting diffuse TTE forms that may
improve insight into the vulnerability to climate warming of
current TTE structure.

One key approach of this study involved integrating spa-
tially detailed spaceborne observations. This integration pro-
vided a means to simultaneously account for the horizon-
tal and vertical components of the spatial patterns of forest
structure in the TTE that may help improve depictions of the
diffuse TTE form. The recent literature on the patterns of
trees in the TTE explains how tree density and height cre-
ate varying forest patterns across the ecotone, that these pat-
terns are important because they may provide clues as to the
dynamics of TTE forest structure, and that they should be
explored with detailed remote sensing (Bader et al., 2007;
Harsch and Bader, 2011; Holtmeier and Broll, 2007).

A second key approach aggregates the spaceborne esti-
mates of horizontal and vertical structure at the scale of for-
est patches. These patches provide a means to analyze the
spatial pattern of forest structure. This scaling is critical, be-
cause it facilitates a standardized approach to TTE structure
mapping that is appropriate for the broad spatial domain of
the TTE while adhering to requirements of site-specific for-
est structure detail. This helps to explore the biogeography
of TTE forest structure in the context of a conceptual model
that highlights the importance of both TTE tree density and
height.

In this study, tree density is accounted for in an indirect
manner with the delineation of forest patches that use the hor-
izontal structure captured with HRSI. This horizontal struc-
ture manifests itself as image texture or the frequency of veg-
etation across a spatial extent; it may also be related to sur-
face roughness, canopy cover, or stem density, but a close
examination of this relationship was not part of this study.
The patch-based approach for aggregating height informa-
tion was a means to break apart the forested portions of each
site by reducing the heterogeneity in horizontal structure. Es-
sentially, the use of the roughness information derived from
HRSI helped establish a basis for the analysis of height by
using it as a proxy for vegetation density and by expressing
it as a contiguous patch that served as the fundamental unit
by which height was aggregated. This data integration should
provide more information for discerning diffuse TTE forms
than individual assessments of either tree height or tree den-
sity.

The site-scale, patch-based treatment of the landscape is
driven by two central needs. The first is the need for site-
level understanding of TTE vegetation structure characteris-
tics. The second is the need to understand the spatial patterns
of trees across the landscape, because of the link between
vegetation patterns and ecological processes. This analytical

approach should be developed to more deeply explore the
TTE vegetation patterns that variations in height and density
reveal, such as patch size, shape, landscape position, connec-
tivity, and spatial autocorrelation of varying types of forest
patches across the TTE as well as the association of such
patterns with permafrost and carbon flux dynamics.

4.5 Implications for understanding TTE structure
vulnerability

Understanding the vulnerability of TTE structure is a key ob-
jective of research into expected changes in the high north-
ern latitudes (Callaghan et al., 2002a). Multiple lines of ev-
idence indicate that vegetation changes are occurring in the
TTE and that these changes are heterogeneous across the cir-
cumpolar domain. The most rapid TTE vegetation responses
to climate change will occur where climate is the main fac-
tor controlling TTE vegetation (Epstein et al., 2004). This
suggests that TTE structure is most vulnerable at sites both
controlled by and undergoing changes in climate. Currently,
the reported patch-level forest height uncertainty constrains
the identification of the portions of the TTE that are most vul-
nerable to forest structure change. However, this spaceborne
approach framed by the conceptual model of TTE form pro-
vides a clear directive for near-term work of examining the
biogeography of forest structure in the TTE, and understand-
ing and forecasting vegetation responses in the TTE based
on the susceptibility to structural changes (i.e., vulnerability)
that these general patterns of forest structure suggest.

It is unlikely to derive the dominant mechanisms con-
trolling TTE forest structure directly from remote sensing.
However, these mechanisms may be inferred from remotely
sensed TTE form. Depictions of diffuse TTE forms, resolved
with improved maps of TTE patterns that incorporate for-
est patch height estimates, may provide evidence as to the
general mechanisms that give rise to these diffuse forms
(e.g., temperature-limited growth). Mapped TTE patterns,
i.e., TTE form, would be useful for examining ecosystem
dynamics in the high northern latitudes. These maps could
be integrated with topographic, hydrologic, permafrost, and
other climate data to suggest a gradient of TTE structure vul-
nerability. They would (1) provide information on the pat-
terns of environmental variables that are the dominant drivers
of tree growth; (2) provide insight into the influence of TTE
structural changes on biodiversity (Hofgaard et al., 2012);
and (3) inform plant community and forest gap models that
combine temperature, soil, and disturbance data to examine
the drivers of vegetation structure and forecast its potential
for change in the TTE (Epstein et al., 2000; Xiaodong and
Shugart, 2005). For example, understanding TTE form in ar-
eas where vegetation structural changes have been noted may
help explain the variability of structure change. Furthermore,
these depictions could also contribute to spatially explicit site
index information in ecosystem process models to help ac-
count for the variability in predictions of TTE forest struc-
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ture dynamics across the circumpolar domain. This will aid
long-term forecasting by suggesting the most likely sites, at
fine scales, for changes to vegetation-disturbance feedbacks
and the extent to which biogeophysical interactions may shift
(e.g., vegetation effects on surface albedo). The vulnerability
of TTE structure to temperature-induced change is one of
many factors that may alter ecological processes in the high
northern latitudes.

5 Conclusions

The vertical component of TTE form, maximum and mean
forest patch height, as derived from a specific suite of space-
borne sensors at sites in northern Siberia, has an uncertainty
of ∼ 40 %. With this uncertainty, forest patches with max-
imum heights of 5 and 10 m are statistically indistinguish-
able on the basis of height. Height is a key attribute of the
diffuse TTE forms, which generally feature a gradual de-
crease of height and tree density across the ecotone and are
the most likely form to demonstrate tree line advance. Dif-
ferences in the heights of forest patches are a central feature
of the diffuse TTE form where significant structural changes
have been observed. These differences suggests that improv-
ing the remote sensing of patch height will provide a key
variable needed for examining TTE forest structure. The con-
ceptual model of TTE form should continue to guide the ap-
plication of a patch-based, multi-sensor spaceborne data ap-
proach because of its potential for aggregating and scaling
information provided by the structural patterns of groups of
forest patches across the full TTE domain. Such patterns may
help infer which portions of the TTE are most vulnerable to
temperature-induced structural changes.

6 Data availability

Research data included a number of satellite data
products, some of which are available to the pub-
lic. The Landsat products are available through a part-
nership between the University of Maryland, College
Park’s Department of Geographical Sciences and Google
Earth Engine at https://earthenginepartners.appspot.com/
science-2013-global-forest; ALOS PALSAR data are ac-
cessible through the University of Alaska Fairbanks’
Alaska Satellite Facility at https://www.asf.alaska.edu/
sar-data/palsar; and ICESat-GLAS data are available through
the National Snow and Ice Data Center at https://nsidc.org/
data/GLA14/versions/34. Worldview-1 & -2 data are avail-
able to the US federal government from the US National
Geospatial-Intelligence Agency pursuant to NextView li-
cense agreement with DigitalGlobe.
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