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Abstract. The scattering properties of aquatic suspended
particles have many optical applications. Several data inver-
sion methods have been proposed to estimate important fea-
tures of particles, such as their size distribution or their re-
fractive index. Most of the proposed methods are based on
the Lorenz–Mie theory to solve Maxwell’s equations, where
particles are considered homogeneous spheres. A generaliza-
tion that allows consideration of more complex-shaped parti-
cles is the T -matrix method. Although this approach imposes
some geometrical restrictions (particles must be rotationally
symmetrical) it is applicable to many life forms of phyto-
plankton. In this paper, three different scenarios are consid-
ered in order to compare the performance of several inversion
methods for retrieving refractive indices. The error associ-
ated with each method is discussed and analyzed. The results
suggest that inverse methods using the T -matrix approach
are useful to accurately retrieve the refractive indices of par-
ticles with complex shapes, such as for many phytoplankton
organisms.

1 Introduction

Light particle interactions, usually wavelength dependent,
cause observable optical phenomena (e.g., changes on the
ocean color or light extinction with depth) that allow as-
sessing the composition of small particles (e.g., phytoplank-
ton, sediment, or microplastics) in the water column (Mob-
ley, 1994; Kirk, 1994). Understanding the interaction of light
with particles is the central topic of many bio-optical studies
where the water particle composition is inferred from in situ

or remote-sensing optical observations (Gordon and Morel,
2012, and references therein).

Maxwell’s equations are the basis of theoretical and com-
putational methods describing light interaction with parti-
cles. However, exact solutions to Maxwell’s equations are
only known for selected geometries. Scattering from any ho-
mogeneous spherical particle of arbitrary size is explained
analytically by the Lorenz–Mie (also known as Mie) the-
ory (Lorenz, 1898; Mie, 1908). Although bio-optical models
usually assume that particles are spheres, most particles that
contribute significantly to light interactions are indeed non-
spherical, with aspect ratios (ratio of the principal axes of a
particle) spanning between 0.4 and 72 (Clavano et al., 2007,
and references therein). For more complex-shaped particles,
scattering can be computed using the T -Matrix theory (Wa-
terman, 1965), currently the fastest exact technique for the
computation of nonspherical scattering based on a direct so-
lution of Maxwell’s equations (Mischenko et al., 1996). The
T -matrix method has some geometrical restrictions, such as
axial symmetry, but it is applicable to many life forms of phy-
toplankton and suspended mineral particles (Quirantes and
Bernard, 2004; Sun et al., 2016), as shown in Fig. 1.

Both the Lorenz–Mie and T -Matrix strategies to solve
Maxwell’s equations share one important requirement: the
complex refractive index of the particles must be known.
There are classical methods to measure the refractive index,
such as the emergence of particles in oils of a different refrac-
tive index to find the one in which minimal scattering occurs,
or new techniques, such as tomographic phase microscopy
(Choi et al., 2007). However, measuring absorption and do-
ing modeling is one of the most used methods to estimate the
imaginary part of the refractive index (Aas, 1996).
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Figure 1. (a) The Lorenz–Mie method only describes the scattering
of an electromagnetic plane wave by a homogeneous sphere, while
(b) the T -Matrix method also characterizes the scattering by non-
spherical particles such as spheroids, cylinders, or Chebyshev par-
ticles. Both can be used on actual phytoplankton particles by using
a suitable shape.

Several inverse models to retrieve the refractive index from
optical measurements can be found in the literature. For in-
stance, a single equation based on the Lorenz–Mie theory
was used by Twardowski et al. (2001) to estimate the real
part of the refractive index of a bulk oceanic distribution. It is
indeed a fast method if optical backscattering measurements
are available. Stramski et al. (1988) presented an extension
of a model from Bricaud and Morel (1986), designed for iso-
lated phytoplankton cultures (or dominated by one particular
phytoplankton species). It is based on the anomalous diffrac-
tion approximation (ADA), which allows computing the real
and imaginary parts of the complex refractive index as sepa-
rate variables, using only the absorption and attenuation effi-
ciency factors and the concurrent measurement of the particle
size distribution (PSD). Bernard et al. (2001) simplified this
model by replacing the Lorentzian oscillators with a simple
Hilbert transform. All these methods share one thing in com-
mon: they approximate the shape of the particles by homo-
geneous spheres. First Meyer (1979) and later Bernard et al.
(2009) suggested that two-layered spherical geometry mod-
els reproduce the measured algal angular scattering proper-
ties more accurately. Finally, a combination of a genetic al-
gorithm with the Lorenz–Mie and T -Matrix approaches was
used by Sánchez et al. (2014), thereby allowing the study of
more complex structures than simple homogeneous or coated
spheres. A genetic algorithm is a method to solve problems
simulating the process of natural selection using inheritance,
mutation, selection, and crossover between different possible
solutions. This method only requires the measured attenua-
tion and scattering coefficients, together with the PSD, to find

the complex refractive index. It is much slower than the pre-
vious ones (in particular, for nonspherical particles), but it
can provide very accurate estimations.

In this paper, the above refractive index retrieval mod-
els are reviewed and tested against simulated data in order
to analyze their accuracy when modeling real (and usually
complex-shaped) particles suspended in water, such as phy-
toplankton. The comparison has been done following the
three steps presented in Fig. 2. First, the forward models
(basically, Lorenz–Mie and T -Matrix methods) are used to
obtain the inherent optical properties (IOPs) of a selected
configuration using as inputs the postulated wavelength-
dependent refractive index, m(λ), the PSD, and the particle
shape. Second, the above inverse models are used to estimate
the refractive index from the IOPs along with the PSD and
the particle shape. Finally, the estimated refractive index is
compared with the postulated one in order to assess the ac-
curacy of the inverse model.

The simulated examples are implemented using complex
refractive indices and PSDs similar to those found in nature
for phytoplankton species. Since phytoplankton particles ex-
hibit a wide variety of shapes, each example has been pro-
vided with a different outline accounting for a homogeneous
sphere, a coated sphere, and a homogeneous cylinder. None
of these idealized shapes is an exact representation of real al-
gae presenting cell walls, chloroplasts, vacuoles, nuclei, and
other internal organelles, each one with its own optical prop-
erties. However, they can be considered as a first approxima-
tion suitable for the purposes of the tests presented in this
contribution.

It must also be noted that the models are fundamentally
different. The model developed by Twardowski et al. (2001)
is intended to be used for entire particle populations that are
assumed to follow a power-law size distribution, whereas the
other models are developed for single phytoplankton cultures
(or dominated by one particular phytoplankton species) and
require the concurrent measurement of the size distribution.
These bio-optical models are also compared with a numer-
ical method (i.e., the genetic algorithm) in the same condi-
tions. On the other hand, our approach allows an objective
comparison of the results from the different methods in those
occasions when no single optimum methodology is clearly
identifiable, a tool of potentially high interest for the ocean
optics community.

In order to establish the foundations of the work here pre-
sented, Sect. 2 reviews the formulation used to obtain the
IOPs from the Lorenz–Mie and T -Matrix characterizations
(which perform the forward calculations) for polydispersed
algal assemblages. In Sect. 3, a review of the different in-
verse approximations to retrieve the refractive index is car-
ried out. In Sect. 4, all the models are used to retrieve the
refractive index of particles, with three different proposed
shapes, in polydisperse assemblages. Section 5 discusses the
results and, finally, the conclusions are drawn in Sect. 6.
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Figure 2. Procedure used to analyze the accuracy of the inverse models.

2 Model theory

2.1 Size distributions and polydispersions

Algal assemblages are typically polydispersed with regard to
size, and can be described by a PSD F(D), where D is the
particle diameter, and F(D)d(D) is the number of particles
per unit volume in the size range D±1/2d(D) (Bricaud and
Morel, 1986). Using absorption as an example (analogous
expressions may be used for other IOPs, i.e., those related
to light extinction and scattering), the absorption efficiency
factor representing the mean of a size distribution can be de-
scribed by (Bricaud and Morel, 1986):

Qa(λ)=

∫
∞

0 Qa(λ,D)F (D)D
2d(D)∫

∞

0 F(D)D
2d(D)

, (1)

where λ is the wavelength. The total absorbed power per unit
incident irradiance and unit volume of water, i.e., the absorp-
tion coefficient, is then either given by

a(λ)=
π

4

∞∫
0

Qa(λ,D)F (D)D
2d(D)

[
m−1

]
, (2)

or, using the result of Eq. (1), by

a(λ)=
π

4
Qa(λ)

∞∫
0

F(D)D2d(D)
[
m−1

]
. (3)

2.2 Inherent optical properties

Lorenz–Mie and T -Matrix theories are powerful methods to
formulate an analytical solution to electromagnetic scatter-
ing by spherical and nonspherical particles. Both rely on the
expansion of the incoming light into spherical harmonics and

use an intensive formulation to compute the coefficients that
link the incident field with the scattered and transmitted ones.
The complete Lorenz–Mie derivation is reviewed by Bohren
and Huffman (1998), and the T -Matrix approach is described
by Mischenko et al. (1996). Both theories provide the par-
ticle specific optical properties, i.e., the extinction, scatter-
ing, and absorption cross sections that describe the fraction
of the incident beam intensity converted to extinct, scattered,
or absorbed light,Ce,Cs , andCa , respectively, in terms of ef-
fective area. The relationship between wavelength-dependent
efficiency factors and cross sections is

Qx(λ)=
Cx(λ)

〈G〉
, (4)

with x being any of the subindices e, s, or a to denote ex-
tinction, scattering, or absorption, and G the geometric cross
section of the particle (in the case of nonspherical particles,
〈G〉 is the averaged cross-sectional area over all orientations).
The cross sections obtained from the Lorenz–Mie and T -
Matrix approaches (size averaged in polydisperse concentra-
tions as described above) can also be used to compute the
extinction, scattering, and absorption coefficients (c(λ), b(λ),
and a(λ), respectively) (Quirantes and Bernard, 2006) as

c(λ)=N · 〈Ce(λ)〉
[
m−1

]
, (5)

b(λ)=N · 〈Cs(λ)〉
[
m−1

]
, (6)

a(λ)=N · 〈Ca(λ)〉
[
m−1

]
, (7)

where N denotes the number of particles per unit volume.
The relationship between the three parameters is

c(λ)= a(λ)+ b(λ)
[
m−1

]
. (8)
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Scattering can be further characterized in terms of the an-
gular distribution of the scattered light using the volume scat-
tering function (β) (Mobley, 1994) as

β(9,λ)= β̃(9,λ) · b(λ)
[
m−1m−1

]
, (9)

where 9 is the scattering angle, i.e., the angle between the
incident and scattered beams, and β̃(9,λ) is the scattering
phase function and the (1,1) element of the Stokes scatter-
ing matrix (or Mueller matrix). This matrix, obtained with
the Lorenz–Mie and T -Matrix formulation when the physi-
cal characteristics of the particles are known, transforms the
Stokes parameters of the incident light into those of the scat-
tered light. By integrating the volume scattering function in
all directions, assuming azimuthal symmetry, the total scat-
tering coefficient b is obtained as

b(λ)= 2π

π∫
0

β(9,λ)sin(9)d9
[
m−1

]
, (10)

which can be partitioned into its forward and backward com-
ponents (respectively, bf and bb) by limiting the integration
limits from 0 to π/2 and from π/2 to π , respectively. The
backscatter fraction, defined by

Bb(λ)=
bb(λ)

b(λ)
, (11)

gives the fraction of scattered light that is deflected through
the scattering angles above π/2. Given Eqs. (9) and (10),
the normalization condition for the volume scattering phase
function is

2π

π∫
0

β̃(9,λ)sin(9)d9 = 1. (12)

This normalization implies that the backscatter fraction
can be computed using the volume scattering phase function
as

Bb(9,λ)= 2π

π∫
π
2

β̃(9,λ)sin(9)d9. (13)

The 2π factor used in Eqs. (10), (12), and (13) arises natu-
rally after integration with respect to the azimuth angle. No-
tice that the same 2π factor is also used by Twardowski et al.
(2001), Bohren and Huffman (1998), and in most of the lit-
erature on ocean optics (Mobley, 1994), but differs from the
one-half factor used by Mischenko et al. (1996), Mischenko
and Travis (1998), Wiscombe and Grams (1976), and Mug-
nai and Wiscombe (1986), where the integration of phase
function is normalized to 4π , representing the total solid an-
gle over the whole sphere.

3 Review of refractive index retrieval models

In this section, a review of the different approximations to re-
trieve the refractive index (inverse models) is presented. Each
model is named after the lead author of the publication. The
complex refractive index m(λ) is defined as

m(λ)= n(λ)+ ik (λ), (14)

where the real part n(λ) determines the phase velocity of the
propagating wave, and the imaginary part k (λ) determines
the flux decay. The sign of the complex part is a matter of
convention as it may also be defined with a negative sign.
The above notation corresponds to waves with time evolu-
tion given by e−iωt . Notice that, throughout this paper, the
effective refractive indices are computed relative to seawater,
which has a constant value ofmwater = 1.334+ i0 (this value
varies with wavelength, salinity, temperature, and pressure,
Hale and Querry, 1973). Thus, values relative to free vacuum
can be obtained by ma =m×mwater.

3.1 The Twardowski model

The Twardowski model (Twardowski et al., 2001) is based
on Volz (1954) as cited in van de Hulst (1957). It is derived
using the Lorenz–Mie theory and the relationship between
the particulate spectral attenuation (cP (λ)) and the size dis-
tribution to retrieve the bulk particulate refractive index from
in situ optical measurements. In particular, it assumes that
γ = ξ − 3 (γ is the hyperbolic slope of the attenuation co-
efficient and ξ is the power-law slope of the PSD). It only
considers power-law distributions that fulfill the conditions
2.5≤ ξ ≤ 4.5 and 0≤ Bb ≤ 0.03. The bulk refractive index
is obtained from a polynomial fit to the Lorenz–Mie calcula-
tions:

n̂ (Bb,γ )= 1+B0.5377+0.4867γ 2

b(
1.4676+ 2.2950γ 2

+ 2.3113γ 4
)
. (15)

The link between γ and ξ is only exact for homoge-
neous sphere particles with sizes from 0 to infinity, having
wavelength-independent constant absorption (k is held con-
stant at 0.005). It was first tested by Boss et al. (2001a) and
refined in Boss et al. (2001b). It should be noted that the cal-
culations took into account the acceptance angle of the AC9,
a WET Labs instrument used for the measurement of the ex-
tinction coefficient, which is 0.93◦. The total scattering coef-
ficient value from the in situ measurements was derived by
subtracting the measured absorption from the measured ex-
tinction, so the model was formulated to be consistent with
the measurements (with b serving as an integrated scattering
from 0.93 to 180◦ instead of from 0 to 180◦). Even though
this was not considered by Twardowski et al. (2001), it was
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later taken into account by Boss et al. (2004), but without re-
computing the regression. This means that some inaccuracies
can be expected when using ideal models.

3.2 The Stramski model

This model is based on the methods presented by Stramski
et al. (1988), which are an extension of those developed by
Bricaud and Morel (1986). It is based on the ADA, first de-
scribed in van de Hulst (1957). The ADA offers approxima-
tions to the absorption and attenuation optical efficiency fac-
tors using relatively simple algebraic formulae, based on the
assumptions that the particle is large relative to the wave-
length (α = πD

λ
� 1) and that the refractive index is small

(n− 1� 1 and k� 1). This method allows decoupling the
effects of the real and imaginary refractive indices on absorp-
tion and scattering. Assuming a homogeneous geometry, the
ADA expression for the absorption efficiency factor is given
by

Qa

(
ρ′
)
= 1+

2e−ρ
′

ρ′
+ 2

e−ρ
′

− 1

ρ′2
, (16)

where ρ′ = 4αk is the absorption optical thickness. Equa-
tions (3) and (16) are then used iteratively to determine the
homogeneous imaginary part of the refractive index (k(λ)) in
conjunction with measured algal absorption and PSD data.
According to the Ketteler–Helmholtz theory of anomalous
dispersion (van de Hulst, 1957), a variation in k induces vari-
ations in n, quantified with a series of oscillators (represent-
ing discrete absorption bands) based on the Lorentz–Lorenz
equations (Stramski et al., 1988; Bricaud and Morel, 1986).
These spectral variations (denoted as 1n(λ)) vary around a
central value of the real refractive index, 1+ ε. Thus,

n(λ)= 1+ ε+1n(λ). (17)

The central value 1+ε is estimated by computing the non-
absorbent equivalent population attenuation efficiency factor
(Q

NAE
c ) at those wavelengths where 1n(λε)= 0. Consider-

ing polydispersion, this is done according to

Q
NAE
c (ρ)=

∫
∞

0 Qc(ρ)F (ρ)ρ
2d(ρ)∫

∞

0 F(ρ)ρ
2d(ρ)

, (18)

where ρ = 2α(n− 1), and F(ρ) is obtained from the exper-
imental size distribution by replacing D by ρ, and calculat-
ing Qc (ρ) with the van de Hulst’s formula assuming ξ = 0
(van de Hulst, 1957):

Qc (ρ)= 2−
4
ρ

sinρ+
4
ρ2 (1− cosρ). (19)

The exact value of ε is indicated by a value of Q
NAE
c (ρ)

that is equal to Qc (λε).
This methodology was subsequently simplified by Bernard

et al. (2001, 2009) using the Kramers–Kronig relations, in-
stead of employing the Lorentzian oscillators, to compute the
spectral variations in the real part of the refractive index on
the basis of the imaginary part. The Kramers–Kronig rela-
tions describe the mutual dependence of the real and imagi-
nary parts of the refractive index through dispersion, as does
the Ketteler–Helmholtz theory, but they are simpler than the
tedious and sometimes inaccurate use of summed oscillators
(the real part is the Hilbert transform of the imaginary part;
van de Hulst, 1957).

3.3 The Bernard model

Meyer (1979) and Bernard et al. (2009) suggested that
two-layered spherical geometry models reproduce the mea-
sured algal angular scattering properties more accurately. For
Bernard et al. (2009), the outer layer accounts for the chloro-
plast and the inner layer for the cytoplasm. Refractive index
values are assumed for the cytoplasm, with a spectral imagi-
nary part modeled as

kcyto(λ)= kcyto(400)e[−0.01(λ−400)], (20)

where kcyto(400)= 0.0005. The real refractive index spec-
tra for the cytoplasm, ncyto(λ), are obtained using the Hilbert
transform (absorption has an influence on scattering and at-
tenuation, expressed through the Kramers–Kronig relations)
and Eq. (17) with 1+ε = 1.02. Using kcyto(λ) from Eq. (20),
the volume equivalent values of kchlor(λ) is determined using
the Gladstone–Dale formulation:

kchlor(λ)=
kh(λ)− kcyto(λ)VV

1−VV
, (21)

where kh(λ) is the imaginary part of the refractive index con-
sidering homogeneous cells and obtained using Eq. (16), and
VV is the relative chloroplast volume. According to Bernard
et al. (2009), a VV value of 20 % can be considered as a
first approximation for a spherical algal geometry, although
higher values should be considered for the large-celled di-
noflagellate and cryptophyte samples. Other studies have
employed relative chloroplast volumes of VV = 41 % (Zan-
eveld and Kitchen, 1995), VV = 58 % (Latimer, 1984), and
VV = 27 to 66 % (Bricaud et al., 1992). The real refractive
index spectra for the chloroplast nchlor(λ) is then generated
by a Hilbert transform and using Eq. (17) with 1+ ε values
between 1.044 and 1.14, depending on the sample.

3.4 The genetic algorithm model

The model presented by Sánchez et al. (2014) uses a genetic
algorithm to find the refractive index that produces the de-
sired scattering and absorption coefficients (a(λ) and b(λ)),
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when using the Lorenz–Mie or T -Matrix approaches with
the measured PSD. The methodology of the algorithm may
be summarized as follows (Fig. 3). First, a random vector
of solutions is generated for a specific wavelength ([m1(λi),
m2(λi), . . ., mn(λi)], where λi denotes the selected wave-
length and m1,m2, . . .,mn the complex refractive indices); if
possible, the search space is bound in order to maximize the
algorithm success. Next, the complete vector is evaluated by
the fitness function. This is done by computing the a(λ) and
b(λ) coefficients corresponding to each refractive index (us-
ing the Lorenz–Mie or T -Matrix formulation and Eqs. 6–7)
and evaluating the weighted Euclidean distance between the
calculated and desired coefficients. This can be done, for in-
stance, as

ea(λi)= |20log(âk(λi))− 20log(am(λi))|, (22)

where ak is the calculated absorption coefficient of the nk
refractive index, am is the desired (or measured) attenuation
coefficient, and ea is the error in the absorption coefficient.
The use of logarithmic weighting improves the performance
when dealing with small errors over small coefficients. The
same equation can be applied for the scattering coefficient.
Both results are finally combined using a quadratic mean,
thus obtaining a single evaluation value that is minimized by
the algorithm.

After the evaluation, the algorithm stops if a satisfactory
fitness level or a maximum number of generations is reached
(each generation is a new vector of solutions). If the con-
vergence condition is not fulfilled, the best solutions are se-
lected and taken apart. Part of this elite is then recombined
(crossover) and randomly mutated to provide genetic diver-
sity and broaden the search space (crossover and mutation
introduce the diversity needed to ensure that the entire sam-
ple space is reachable and suboptimal solutions are avoided;
Greenhalgh and Marshall, 2000). The new set of solutions
is re-evaluated and inserted again into the solutions’ vector,
which completes the cycle. After converging, the algorithm
presents the best possible solution.

Since the Lorenz–Mie and T -Matrix algorithms can only
be executed for single wavelengths and the refractive index
is also wavelength dependent, with different values at differ-
ent wavelengths, the genetic algorithm completes the search
procedure at a single wavelength each time. After each con-
vergence, the process starts over with the next wavelength-
dependent value, eventually obtaining the complete complex
refractive index signature.

The main advantage of this method is that it can be easily
adapted to different Lorenz–Mie or T -Matrix codes, for in-
stance, as those developed for homogeneous spheres, coated
spheres, and cylinders. Besides, it can also be easily com-
bined with other models to improve the results. However, it
should be noted that some inversions may be ill posed. A
constrained optimization problem is considered to be well
posed (in the sense of Hadamard) if (a) a solution exists,

(b) the solution is unique, and (c) the solution is well be-
haved, i.e., varies continuously with the problem parameters.
An ill-posed problem fails to satisfy one or more of these cri-
teria (Bhandarkar et al., 1994); in this case, techniques such
as regularization methods can be applied to improve the re-
sults (Mera et al., 2004).

3.5 Summary of the refractive index retrieval models

This section has been summarized in Table 1, showing, for
each model, its inputs and outputs, type of particles, as well
as the assumptions of the model and the equations used.

4 Simulations

The models described in the previous section are used here to
retrieve the refractive index of well-known particles in order
to determine their accuracy by means of the averaged relative
error defined as

erx (%)=
1
N

N∑
n=1

∣∣∣∣x′(λn)x(λn)
− 1

∣∣∣∣× 100, (23)

where x′ is either the real part of the refractive index, esti-
mated as n′(λ)− 1 (the unity is subtracted to only consider
the decimals), or the estimated imaginary part of the refrac-
tive index, k′(λ), and x accounts for the postulated real part
of the refractive index, n(λ)− 1, or the postulated imaginary
part of the refractive index, k(λ). For the volume scattering
function, the error is also averaged with respect to its angular
contribution as

erVSF (%)=
1

N ·M

N∑
n=1

M∑
m=1

∣∣∣∣V SF ′(λn,θm)V SF(λn,θm)
− 1

∣∣∣∣× 100. (24)

First, Sect. 4.1 presents the results of the Twardowski,
Stramski, and genetic algorithm models applied to a sim-
ple spherical and homogeneous particle. Such particles, how-
ever, are not a good representation of phytoplankton parti-
cles. This is both because eukaryotic phytoplankton cells are
heterogeneous particles, with membrane systems and intra-
cellular organelles, and because most of the phytoplankton
species are not spherical. As stated by Bernard et al. (2009),
the spherical structure fails mainly at describing the back-
ward scattering, which suggests that a two-layered spheri-
cal geometry is the simplest possible heterogeneous structure
capable of properly reproducing the measured algal angular
scattering properties. Therefore, Sect. 4.2 simulates the par-
ticle with a coated sphere and presents the estimated refrac-
tive indices provided by the genetic algorithm and Bernard
models, and a combination of both. Finally, Sect. 4.3 uses
a cylindrical-shaped particle with a homogeneous refractive
index. This shape was selected because it is substantially dif-
ferent from a sphere and similar to that of some species of
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Figure 3. Flow chart for the genetic algorithm.

Table 1. Summary of the refractive index retrieval models.

Inverse models Inputs Outputs Type of particles Assumptions Equations

Twardowski
model

Bb, ξ n Homogeneous spheres k = 0.005, power-law PSD,
γ = ξ − 3

(9), (15)

Stramski model PSD, a, and
c (or Qa
and Qc)

n, k Homogeneous spheres α� 1, n− 1� 1, k� 1 (13), (16), (17),
(18), (19)

Bernard model a, PSD nchlor,
kchlor

Coated spheres ncyto, kcyto, relative chloroplast
volume (VV ), 1+ ε

(16), (17), (20),
(21)

Genetic algo-
rithm model

a, c, PSD n, k Homogeneous and coated
spheres, spheroids, cylin-
ders, and Chebyshev parti-
cles

Particles with axial symmetry (2), (3), (22)

phytoplankton, e.g., the diatom Thalassiosira pseudonana.
Although this particle design does not exactly lead to the
same optical behavior as the actual phytoplankton particle
(the micro details of the cells are neglected) it can serve as a
first approximation. The refractive indices are estimated from
the combination of the genetic algorithm with the Bernard
model for coated spheres and from the genetic algorithm
alone.

4.1 Spherical-shaped homogeneous particles

A concentration of 100 spherical particles per cubic millime-
ter, with the PSD shown in Fig. 4a and the complex refrac-
tive index of Fig. 4b), was simulated using the Lorenz–Mie
scattering theory (Bohren and Huffman, 1998). This PSD
is based on a power-law distribution (or Junge type) with
51 points, Rmin = 0.7 µm, Rmax = 12.1 µm, a slope parame-
ter ξ = 3, effective radius reff = 4 µm, and effective variance
veff = 0.6. In particular, the BHMIE code, originally from
Bohren and Huffman (Bohren and Huffman, 1998) and mod-
ified by B.T. Draine, was used as a forward model (additional
features were added, such as polydispersion and the compu-
tation of the Stokes scattering matrix). The computed IOPs
from this forward model, i.e., the a(λ), b(λ), and c(λ) coef-
ficients, are shown in Fig. 5a. As may be observed, the con-
centration was selected in order to obtain IOP coefficients
similar to those measured by Twardowski et al. (2001) and

Stramski et al. (2001). The power-law distribution is used in
our calculations for two main reasons. First, even though it is
not a realistic distribution for single-phytoplankton species,
it is a fairly good approximation to natural water composi-
tion even for anomalous conditions such as phytoplankton
blooms, as there is always a strong background contribution
to the PSD (Twardowski et al., 2001); and second, because
it is the only distribution that can be used in the Twardowski
model.

The complex refractive index in Fig. 4b was syntheti-
cally generated using imaginary values similar to those pre-
sented in Bernard et al. (2009) for phytoplankton species,
derived from sample algal assemblages and considering ho-
mogeneous spheres. The dependence of the real part of
the refractive index on the imaginary part can be found in
the Kramers–Kronig relations (Bernard et al., 2001, 2009;
Bricaud and Morel, 1986; van de Hulst, 1957), which allow
the spectral variations in the real part of the refractive in-
dex to be calculated as the Hilbert transform of its imaginary
part. The central part of the real refractive index was set to
1+ ε = 1.05; for phytoplankton, this index typically ranges
from 1.02 to 1.15, relative to water, as stated in Morel (1973),
Carder et al. (1974), Aas (1996), and Bernard et al. (2001).
The effects due to normal dispersion, as described in Aas
(1996), were not considered. The imaginary part presents
peak values at 440, 500, and 680 nm, corresponding to the
absorption wavelengths of the three chlorophyll (a, b, and c)
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and accessory pigments; as expected, a similar shape is prop-
agated to the absorption coefficient spectra, a(λ) (Fig. 5a).
The volume scattering function is shown in Fig. 5b. As par-
ticles are relatively large relative to the wavelength, the scat-
tering is mainly focused in the forward direction (between 0
and 10◦) and smoothly decreases in the backward direction.

4.1.1 The Twardowski model

The spherical-shaped particle idealization was first examined
with the Twardowski model. The use of Eq. (15) led to the re-
sults shown in Fig. 6a; γ is set to 0, as the slope parameter of
the PSD, ξ = 3, and the backscatter fraction were computed
with Eq. (13) using the volume scattering phase function val-
ues given by the modified BHMIE code. For the real part, the
model leads to a curve similar to the postulated complex re-
fractive index, but with a slight negative offset, presenting an
averaged relative error of 42 %. Since this model assumes a
constant imaginary refractive index value of 0.005 (used for
the development of the model), it has been considered as an
output and compared with the postulated imaginary part of
the refractive index, obtaining that the averaged relative error
is 44 %. It should be noted that the Twardowski model was
designed for a rather different scenario: a bulk oceanic dis-
tribution presenting different physical properties than those
of isolated species of phytoplankton, e.g., index of refraction
and shape.

4.1.2 The Stramski model

This model overestimates both the real and imaginary parts
for all analyzed spectra (Fig. 6b), showing an averaged rela-
tive error of 0.4 % for the real part and a 15 % for the imagi-
nary part. It should be remembered that the imaginary part of
the refractive index, kh, is calculated with the ADA, known
to give errors of about 10 % when compared with results
from the Lorenz–Mie theory (Bernard et al., 2009). Some
discrepancies can therefore be expected between the ADA
and Aden–Kerker-derived values (Aden and Kerker, 1951).

4.1.3 The genetic algorithm model

In order to implement the genetic algorithm described in
Sect. 3.4, the tools provided by the DEAP (Distributed Evo-
lutionary Algorithms in Python) and SCOOP (Scalable COn-
current Operations in Python) frameworks were used, re-
spectively aimed at developing evolutionary algorithms and
parallel task distribution (Fortin et al., 2012; Hold-Geoffroy
et al., 2014). The fitness function was implemented using
the fast subroutines of BHMIE to compute the absorption
and scattering properties of homogeneous spheres. The co-
efficients a(λ) and b(λ) of Fig. 5a were used as inputs to
the genetic algorithm model in order to obtain the postulated
complex refractive index, and limiting conditions were ap-
plied to facilitate the convergence (typical values for the real
part of the phytoplankton refractive indices fall between 1.02

and 1.15 relative to water, and the bulk value of the imagi-
nary part is always below 0.02). The genetic algorithm was
configured with a vector of 2000 solutions over 10 genera-
tions and 50 and 20 % of probability of crossover and muta-
tion, respectively, leading to the values shown in Fig. 7a. The
good agreement between the postulated complex refractive
index values and the estimated ones shows that it is possi-
ble to perform accurate estimations with a genetic algorithm
(averaged relative errors of 0.0 % for the real part and 0.2 %
for the imaginary part represent the best results for spherical
homogeneous particles). It should be noted that the number
of generations necessary for a suitable convergence strongly
depends on the length of the initial solution vector and the
crossover and mutation percentages, among other parameters
of the genetic algorithm. Adopting the previously described
parameters, no significant improvement is generally found
beyond the 10th generation.

One disadvantage of the genetic algorithms is that they are
relatively slow and require more computation time than other
optimization algorithms, as they compute the fitness func-
tion many more times. Other optimization algorithms were
also applied to determine whether similar results can be ob-
tained with a significant reduction of the computation time.
However, since none of them led to any meaningful improve-
ment, no further description is provided. As a single exam-
ple, Fig. 7b shows the results obtained with the much faster
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm (an
iterative method for solving unconstrained nonlinear opti-
mization problems (Zhu et al., 1997)), executed using the
same bounding conditions as in the genetic algorithm case.
In this case, only 4 min were needed instead of 97 min
when using the genetic algorithm. Both computations where
performed using a PC with an Intel Core i7 processor at
3.2 GHz, with 16 GB of RAM. Although the BFGS results
are generally satisfactory, some of the wavelengths present
a significant error in the real part (mainly between 550 and
600 nm, and above 680 nm). The averaged relative error is
0.0 % for the real part and 0.7 % for the imaginary part.
Other optimization algorithms, such as the conjugated gradi-
ent algorithm (Nocedal and Wright, 1999), were also tested.
The results (not shown) exhibited worse accuracy than the
BFGS, indicating that the genetic algorithm is probably the
best method to solve this problem (in terms of accuracy but
not in terms of executing time).

4.2 Spherical-shaped coated particles

In order to use the IOPs of a two-layered spherical parti-
cle that emulates actual phytoplankton organisms, its com-
plex refractive index was generated using the description pre-
sented in Bernard et al. (2009). The imaginary refractive in-
dex of the inner cytoplasm was obtained using Eq. (20) and
its real one using the Hilbert transform (Hahn, 1996) and
Eq. (17) with 1+ ε = 1.02. The imaginary refractive index
of the outer chloroplast was obtained using Eq. (21), with
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Figure 4. (a) PSD for the test run with spherical-shaped homogeneous particles. (b) Complex refractive index signature postulated for
spherical-shaped homogeneous particles.

Figure 5. (a) Absorption (a(λ)), scattering (b(λ)), and extinction (c(λ)) coefficients and (b) the volume scattering function for spherical-
shaped homogeneous particles (three wavelengths: 300, 500, and 700 nm, are plotted using intense colors, whereas the other wavelengths
between 300 and 700 nm are plotted in light gray).

VV = 30 %, a value that lies between those previously used
by Bernard et al. (2009) and other authors, and the real re-
fractive index was calculated using the Hilbert transform and
Eq. (17) with 1+ ε = 1.1. Figure 8a and b show the results
for the real and imaginary parts, respectively (postulated val-
ues). In this example, instead of using a PSD describing a
power-law function as in Fig. 4a, the PSD of an isolated cul-
ture was simulated with a concentration of 40 particles per
cubic millimeter (Rmin = 0.7 µm, Rmax = 12.1 µm, and us-
ing 31 points), as seen in Fig. 9. Notice that the PSD denotes
the external radius while the inner one can be calculated us-
ing the VV value. The absorption, scattering, and extinction
coefficients (Fig. 10a) and the volume scattering function
(Fig. 10b) were obtained introducing these PSD and refrac-
tive indices in the BART code of Quirantes (a forward model
based on the Aden–Kerker theory to calculate light-scattering
properties for coated spherical particles, Quirantes, 2005).

The above set of IOPs can now be used to estimate the
corresponding complex refractive indices. First, the genetic
algorithm is used in order to see whether a basic shape,
such as a homogeneous sphere, is useful when modeling
more complex particles. If coated particle models do bet-

ter at characterizing the optical properties of general phyto-
plankton species, as stated in Bernard et al. (2009), this can
be used to estimate the error associated with using homoge-
neous spheres. Next, the inner and outer complex refractive
indices of the original particle are retrieved using the Bernard
model for coated particles. Finally, a combination of the ge-
netic algorithm and the Bernard model is applied to improve
the previous results. Notice that the Twardowski model is not
applied in order to avoid an inconsistent comparison with
the other methods, as it was originally designed to be used
with entire particle populations that are assumed to follow a
power-law size distribution.

4.2.1 The genetic algorithm model

The genetic algorithm model, previously employed to re-
trieve the refractive index of spherical-shaped homogeneous
particles, was used for the spherical-shaped coated particles.
The same configuration was used, i.e., an initial vector of
2000 solutions over 10 generations and 50 and 20 % of prob-
abilities for crossovers and mutations, respectively. The real
part of the homogeneous case lies between the real values
for the inner and outer regions in the coated case (Fig. 8a),
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Figure 6. Postulated and estimated refractive indices using (a) the Twardowski and (b) the Stramski models.

Figure 7. (a) Postulated and estimated refractive indices using the genetic algorithm; notice that the postulated and estimated values lie on
top of each other. (b) Postulated and estimated refractive indices using the BFGS algorithm.

and similarly for the imaginary values (Fig. 8b). The volume
scattering function for the homogeneous particles (Fig. 11) is
obtained by means of the Lorenz–Mie (forward model), us-
ing as inputs the estimated complex refractive index and the
PSD (Fig. 9). This model presents similar values in the for-
ward scattering but completely underestimates the backscat-
tering, with values far below those in Fig. 10b. This example
demonstrates that the common characterization using homo-
geneous spheres is not a suitable methodology when deal-
ing with complex particles. This is not a surprising result,
as it has been discussed by Bohren and Huffman (1998), in
the atmospheric context, and by Stramski et al. (2004), Cla-
vano et al. (2007), Dall’Olmo et al. (2009), and Bernard et al.
(2009), in the oceanic one, but the comparison between the
two volume scattering functions highlights that the backscat-
tering can exhibit errors of up to 1 order of magnitude.

4.2.2 The Bernard model

The Bernard model, described in Sect. 3.3, was used to es-
timate the complex refractive index of the two-layered par-
ticles. Figure 12a shows the postulated and estimated real
part of the inner and outer layers and Fig. 12b shows the re-
spective postulated and estimated imaginary parts. The in-
ner refractive index is well estimated, an expected result as

the same equation is used for both generation and retrieval,
but the outer refractive index is not in accurate agreement. In
particular, the imaginary part is significantly underestimated,
with an averaged relative error of 51 %. On the other hand,
the simulation for the estimated refractive indices in coated
spheres gives a volume scattering function that fits the pos-
tulated values (Fig. 10b) better than the one produced by the
homogeneous spherical particle (the volume scattering func-
tion figure is not presented as the errors do not show up in
the graph; a more detailed analysis is performed in Sect. 5
for this case).

4.2.3 The Bernard model combined with the genetic
algorithm model

One possible modeling improvement would be to couple the
genetic algorithm, which showed a reasonable performance
when applied to homogeneous spherical particles, with the
BART code (instead of the BHMIE code) in order to esti-
mate the two complex refractive indices. However, the results
would hardly be constrained as the solution has more degrees
of freedom (the two refractive indices with their real and
imaginary parts give 4 degrees of freedom) than the available
data (2 degrees of freedom, corresponding to the attenuation
and scattering coefficients), i.e., this is an unconstrained (ill-
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Figure 8. Postulated (a) real and (b) imaginary refractive index signatures for the inner and outer layers of spherical-shaped particles, together
with the estimated (a) real and (b) imaginary refractive index signature calculated using the genetic algorithm model.
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Figure 9. PSD simulating an isolated culture.

posed) problem. Alternatively, the Bernard model could be
combined with the genetic algorithm to increase the prob-
ability of convergence. In this case, the inner refractive in-
dex is again estimated using the Bernard model and the outer
refractive index is then obtained with the genetic algorithm
(coupled to the BART code). In this case, the genetic algo-
rithm only has to find a solution with 2 degrees of freedom
(the real and imaginary parts of the outer refractive index).

This method was applied to the coated particle example
using the coefficients of Fig. 10a as input data and config-
ured using an initial vector of 2000 solutions, 10 generations,
50 % of probability for crossovers, and 20 % for mutations.
The postulated and estimated real parts of the inner and outer
layers are shown in Fig. 13a and the corresponding postu-
lated and estimated imaginary parts are presented in Fig. 13b.
Accurate results were obtained, certainly improving the re-
fractive index estimate for the outer sphere. In this particular
case, average relative errors of 0.0 and 0.1 % were, respec-
tively, obtained for the real and imaginary parts.

4.3 Cylindrical-shaped particles

As a final example, a cylindrical-shaped particle has been
chosen. As commented above, phytoplankton species usu-

ally present complex shapes, far from perfect homogeneous
or coated spheres. This is the case, for example, of the cen-
tric diatom with cylindrical shapes (to name a few genera:
Thalassiosira, Aulacoseira, Skeletonema, Melosira, etc.). In
order to find out the most accurate model for the charac-
terization of such complex shapes, we considered an ex-
ample consisting of 100 prolate cylinders per cubic mil-
limeter with a diameter-to-length ratio equivalent to 0.8 and
the PSD of Fig. 14 (showing the radius of an equivalent-
volume sphere with slope parameter ξ = 3, effective radius
reff = 3.2 µm, and effective variance veff = 0.005, resulting
in Rmin = 0.8 µm to Rmax = 3.6 µm). The postulated refrac-
tive index of Fig. 4b was simulated using the T -Matrix algo-
rithm from M. Mischenko (Mischenko and Travis, 1998) for
randomly oriented, rotationally symmetric scatterers (cylin-
ders, spheroids, and Chebyshev particles). The PSD presents
a small effective variance for convergence limitations of the
code. The postulated a(λ), b(λ), and c(λ) coefficients are
shown in Fig. 15a, and the volume scattering function at each
wavelength is shown in Fig. 15b.

4.3.1 The Bernard model combined with the genetic
algorithm model

As previously discussed, the simulated cylindrical particles
are not exact duplicates of the actual phytoplankton organ-
isms, so it is useful to compare the results using this and
the coated sphere design (usually used on all kind of phy-
toplankton shapes). As in previous examples, the postulated
value of VV for the coated sphere was 30 %, which is an aver-
age value between that assumed by Bernard et al. (2009), and
previous works. Figure 16a shows the estimated real part of
the refractive index of the inner and outer layers and Fig. 16b
shows their corresponding estimated imaginary parts. How-
ever, these results cannot be directly compared with the pos-
tulated individual refractive index for the cylindrical particle.
Instead, the IOPs obtained from the estimated refractive in-
dices is computed using the forward model in order to an-
alyze if the two designs, coated spheres and homogeneous
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Figure 10. (a) Absorption (a(λ)), scattering (b(λ)), and extinction (c(λ)) coefficients and (b) volume scattering function for spherical-shaped
coated particles.
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Figure 11. Volume scattering function using the estimated refrac-
tive index for spherical-shaped coated particles.

cylinders, are comparable. The volume scattering function is
obtained (Fig. 17) by means of the estimated complex re-
fractive indices and the PSD of Fig. 14 in a T -Matrix for-
ward model. The error in this last figure is large, especially
at long wavelengths, reaching an averaged relative error of
77 %. It should be noted that these differences may decrease
when using real phytoplankton, since backscattering of het-
erogeneous particles is different from that of homogeneous
particles.

4.3.2 The genetic algorithm model

The genetic algorithm can be combined with the T -
matrix code in order to consider cylindrical-shaped particles
when estimating the inner complex refractive index. How-
ever, when using the Mischenko code, one simulation of
cylindrical-shaped particles needs about 67 min in a com-
puter with an i7 processor at 3.20 GHz. This prevents us-
ing the genetic algorithm, as an accurate estimate the com-
plex refractive index would require executing this simula-
tion several hundreds of times at each wavelength, or several
months for the entire refractive index spectra. An alternative
approach for obtaining fast estimates is to use spherical ho-

mogeneous particles with the same volume as the cylinders.
This allows using the Lorenz–Mie theory rather than the T -
matrix approach, dramatically reducing the simulation time.
The refractive index estimated using the equal-volume ho-
mogeneous spheres may then be applied for homogeneous
cylinders in order to obtain their IOP, since the volume scat-
tering function values are case sensitive to the particle shape.
Although this calculation uses the slow T -matrix approach, it
has to be executed only once. Certainly, much better comput-
ing resources (such as a computer cluster) would remove the
above computing limitation and the genetic algorithm could
be used with its complete potential.

The above methodology was applied using the same PSD
as in Fig. 12. The estimated complex refractive index is
shown in Fig. 18a. The averaged relative error is 8 % for
the real part and 3 % for the imaginary part. Since the ab-
sorption is proportional to the volume, the inverted imagi-
nary part of the refractive index agrees well with the pos-
tulated values (using equal-volume spheres). However, since
scattering depends largely on the shape of the particles, the
inverted real part of the refractive index deviates from the
postulated values. The major differences are obtained at the
lowest wavelengths, also noticeable in the volume scatter-
ing function (Fig. 18b) with some artifacts in those wave-
lengths where the real part of the refractive index changes
abruptly (330 and 350 nm). However, the average relative er-
ror is 16 %, much less than the 77 % error for the Bernard
method combined with the genetic algorithm. If the IOP is
obtained using homogeneous spheres instead of cylinders,
the averaged relative error increases to 22 %, which demon-
strates that choosing a suitable shape improves the results.

5 Discussion

The average relative errors of the real and imaginary parts of
the estimated refractive indices, together with their respec-
tive volume scattering functions, are shown for each method
applied to the three case examples considered in the previous
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Figure 12. Postulated and estimated (a) real and (b) imaginary parts of the refractive indices for the inner and outer layers of spherical-shaped
coated particles using the Bernard model.

Figure 13. Postulated and estimated (a) real and (b) imaginary parts of the refractive indices for the inner and outer layers of spherical-shaped
coated particles using the Bernard model combined with the genetic algorithm. Notice that in both cases the postulated and estimated values
lie on top of each other.
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Figure 14. PSD for cylindrical-shaped particles.

section (Table 2); notice that the real part errors were com-
puted for n−1 instead of n. Also notice that the inverse mod-
els do not compute the volume scattering function, rather it
is obtained after introducing the estimated complex refractive
indices on the suitable forward model, i.e., the Lorenz–Mie
or T -Matrix theories.

In the homogeneous sphere example, the Twardowski
model presents the highest errors, especially when compar-
ing the volume scattering function. Although the Stramski
model leads to complex refractive index errors considerably
higher than the genetic algorithm (particularly for the imag-
inary part), comparable estimates of the volume scattering
function are recovered in both cases. This implies that, for
this particular example, there is no need of accurate refractive
index estimates in order to obtain a suitable characterization
of the scattering properties. However, the genetic algorithm
performs with excellent accuracy for the refractive index re-
trieval.

In the coated sphere example, the genetic algorithm ap-
proximates the coated particle to a homogeneous one with a
single complex refractive index. Therefore, errors for the in-
ner and outer refractive indices cannot be obtained; addition-
ally, this method differs substantially when computing the
volume scattering function. Hence, if the optical response of
coated spheres was similar to the response of actual phyto-
plankton particles (Bernard et al., 2009) then homogeneous
spheres would not be a suitable choice for calculating optical
properties. The Bernard model is a fast technique to estimate
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Figure 15. (a) Absorption (a(λ)), scattering (b), and extinction (c) coefficients for cylindrical-shaped particles. (b) Volume scattering function
for cylindrical-shaped particles.

Figure 16. Inner and outer (a) real and (b) imaginary parts of the refractive indices using the Bernard model combined with the genetic
algorithm for cylindrical-shaped particles.
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Figure 17. Volume scattering function obtained using the Bernard
model combined with the genetic algorithm for cylindrical-shaped
particles.

the inner and outer refractive indices, but fails mainly at es-
timating the imaginary part of the refractive index (error up
to 51 %). This leads to a significant error associated with the
forward model when computing the volume scattering func-
tion. However, if the Bernard model is combined with the

genetic algorithm model, i.e., the Bernard model is used to
estimate the inner refractive index and the genetic algorithm
to retrieve the external one, accurate values are obtained for
the complex refractive indices and, after using the forward
model, for the volume scattering function.

Finally, the optical properties of homogeneous cylinders
are not accurately reproduced using coated spheres when
their refractive indices are obtained combining the Bernard
model and the genetic algorithm. It is likely that the opti-
mal retrieval method would be the genetic algorithm using
cylindrical shapes to obtain accurate estimates of the refrac-
tive indices. However, this involves using the slow T -Matrix
code of Mischenko iteratively, which would require several
months of computer time to converge (as the particles be-
come more aspherical, the convergence time increases con-
siderably). In order to make the retrieval faster, homogeneous
spheres with equal volume are used instead of cylinders, and
the retrieved refractive index is then used to obtain the IOPs
of cylinders. Using this method, the volume scattering func-
tion shows an average relative error of 16 %, improving the
result obtained when using spheres (22 %). This result con-
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Figure 18. (a) Postulated and estimated refractive indices using the genetic algorithm for the equal-volume, spherical-shaped homogeneous
particle and (b) the volume scattering function for the cylindrical-shaped particle.

Table 2. Averaged relative errors for each method.

Shapes Model n relative k relative VSF relative
error error

Homogeneous sphere
Twardowski model 42 % 44 % 68 %
Stramski model 8 % 15 % 0.2 %
Genetic algorithm 0.0 % 0.2 % 0.2 %

Coated sphere
Genetic algorithm – – 78 %
Bernard model 2 % 51 % 52 %
Bernard model & GA 0.0 % 0.1 % 0.2 %

Homogeneous cylinder
Bernard model & GA – – 77 %
Genetic algorithma 8 % 3 % 16 %b

a The refractive index is estimated for equal-volume spheres but the IOP is obtained after using that refractive index on
cylinders. b If the cylindrical shape is not used, the error rises to 22 %.

Figure 19. Spectral backscattering for the three test cases: homoge-
neous sphere, coated sphere, and homogeneous cylinder.

firms that the proper selection of particle shapes is an impor-
tant requirement in the modeling of optical properties.

This study has pointed at three important lines for future
research:

1. All the test cases are synthetic examples that, presum-
ably, are simpler than real life. Further work is neces-

sary in order to study the performance of algorithms
when using the optical properties of actual phytoplank-
ton species and bulk oceanic measurements. A more
complex inversion method remains to be developed in
order to deal with a mixture of shapes and refractive in-
dices. This scenario is currently dealt with using only
spherical particles of different sizes (Boss et al., 2001b,
and references therein); however, aside from the parti-
cle diameter, the T -Matrix method opens the possibility
to consider other parameters associated with the parti-
cle shape. Thus, a new inversion algorithm based on the
T -Matrix method and an optimization technique, such
as a genetic algorithm, could be developed in order to
estimate the proportion of each phytoplankton morpho-
logical type and their own refractive index. Certainly,
such algorithm would require an enormous computa-
tional effort, although this is a problem that becomes
less critical as computer technology evolves. Addition-
ally, other methods could be combined with the genetic
algorithm to make the estimation easier, as the one pre-
sented by Ciotti et al. (2002), that found a relationship
between the dominant cell size in natural phytoplankton
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communities and the spectral shape of the absorption
coefficient.

When dealing with actual phytoplankton, a critical issue
is the instrumental accuracy. The attenuation and scat-
tering coefficients are key inputs for all retrieval meth-
ods, in order to retrieve valid refractive indices. How-
ever, as stated by Ramírez-Pérez et al. (2015), the ac-
ceptance angle of optical instruments severely affects
the amplitude of the measurements. By comparing the
extinction coefficient of two instruments with different
acceptance angles, disparate magnitude values were ob-
tained, with an average ratio of 0.67. Accurate measure-
ments are a requirement for obtaining reliable results
with the presented methodology.

2. The accuracy of the inversion methods could be im-
proved by applying the T -Matrix method to new par-
ticle shapes. For instance, coated cylinders could repre-
sent algae with cylindrical shape (coated spherical par-
ticles generate backscattering functions closer to those
produced by actual phytoplankton particles Bernard
et al., 2009), or other axially symmetric designs could
replicate the actual shape of some phytoplankton par-
ticles (as commented before, the T -Matrix approach
allows using particle shapes with axial symmetry Sun
et al., 2016).

3. Ocean optics goes from research at a microscopic scale
(as shown in this paper) to remote sensing, measuring
the reflected or backscattered radiation in large areas.
The inversion methods based on Lorenz–Mie and T -
Matrix approaches could be extended to consider other
type of optical measurements, aside from the IOPs,
such as the remote-sensing reflectance. As an exam-
ple, Fig. 19 shows the spectral backscattering for the
three test cases: the homogeneous sphere, the coated
sphere, and the homogeneous cylinder. Many opera-
tional remote-sensing inversion models for IOPs use im-
plicit or explicit assumptions on the refractive index.
Hence, their output would likely improve when com-
bined with the inversion methods presented here. Re-
trieving the index of refraction from space would im-
prove the ability to distinguish different oceanic sources
of backscattering, but certainly require a much more
complex inversion scheme.

To conclude, the results presented in this paper and sum-
marized in Table 2, do not determine which is the best
method to estimate the phytoplankton optical properties,
since none of them are a realistic representation of real algae
with cell walls, chloroplasts, vacuoles, nuclei, and other in-
ternal organelles, each with its own optical properties. How-
ever, the assumed particles serve as a first approximation to
actual phytoplankton and are useful to extract some prelimi-
nary conclusions and to introduce improvements in order to

obtain approximations closer to reality. Most of the methods
shown in this paper are already being used for the retrieval
of the refractive indices of isolated particles or bulk oceanic
distributions, and their performance can be compared using
well-known models. It has been shown that the genetic algo-
rithm model is not a fast technique, since it requires several
minutes for each estimation (when using spherical shapes,
and longer for aspherical particles) as compared to the few
seconds generally required by other methods, with the Twar-
dowski model being the faster one. However, the genetic al-
gorithm is a versatile technique that alone, or combined with
other methods, improves the accuracy of the results to a level
not achieved by any other method.

6 Conclusions

The accuracy of different inverse methods retrieving refrac-
tive indices from the optical properties of small scatterers,
and their particle size distribution, has been analyzed. To
this end, three different synthetic examples were constructed,
each one with a different shape and distribution. The selected
shapes were homogeneous spheres, coated spheres, and ho-
mogeneous cylinders. The results indicate that the most accu-
rate methods are those using a genetic algorithm to optimize
the inversion, although they were also the slowest ones. In
particular, an excellent agreement was obtained between the
estimated and actual refractive indices and volume scattering
functions for the homogeneous and coated sphere cases, and
a fair agreement for the homogeneous cylinders. The results
suggest that even better characterizations could be obtained
for the actual phytoplankton optical properties. A next step
should be the analysis of the performance of these methods
when applied to measurements of isolated cultures of phyto-
plankton.

Acknowledgements. This work was supported by the Spanish
National Research Council (CSIC) under the EU Citclops Project
(FP7-ENV-308469), the MESTRAL project (CTM2011-30489-
C02-01), and the CSIC ADOICCO project (Ref 201530E063). The
authors would also like to show their gratitude to Laura Pelegrí,
Jimena Uribe, Josep Lluís Pelegrí, and Miquel Ribó for the English
revision, as well as to Emmanuel Boss and two anonymous
reviewers for their comments and suggestions, which helped to
enhance the quality of the manuscript.

Edited by: E. Boss
Reviewed by: two anonymous referees

References

Aas, E.: Refractive index of phytoplankton derived from its metabo-
lite composition, J. Plankton Res., 18, 2223–2249, 1996.

Aden, A. and Kerker, M.: Scattering of electromagnetic waves from
two concentric spheres, J. Appl. Phys., 22, 1242–1246, 1951.

Biogeosciences, 13, 4081–4098, 2016 www.biogeosciences.net/13/4081/2016/



A.-M. Sánchez and J. Piera: Methods to retrieve the complex index of aquatic particles 4097

Bernard, S., Probyn, T., and Barlow, R.: Measured and modelled
optical properties of particulate matter in the southern Benguela,
South African J. Sci., 97, 410–420, 2001.

Bernard, S., Probyn, T. A., and Quirantes, A.: Simulating the
optical properties of phytoplankton cells using a two-layered
spherical geometry, Biogeosciences Discuss., 6, 1497–1563,
doi:10.5194/bgd-6-1497-2009, 2009.

Bhandarkar, S., Zhang, Y., and Potter, W.: An edge detection
technique using genetic algorithm-based optimization, Pattern
Recognition, 27, 1159–1180, 1994.

Bohren, C. and Huffman, D. (Eds.): Absorption and scattering of
light by small particles, New York: Wiley, Oxford, 1998.

Boss, E., Pegau, W., Gardner, W., Zaneveld, J., Barnard, A., Twar-
dowski, M., Chang, G., and Dickey, T.: Spectral particulate atten-
uation and particle size distribution in the bottom boundary layer
of a continental shelf, J. Geophys. Res., 106, 9509–9516, 2001a.

Boss, E., Twardowski, M., and Herring, S.: Shape of the particulate
beam attenuation spectrum and its inversion to obtain the shape
of the particulate size distribution, Appl. Opt., 40, 4885–4893,
2001b.

Boss, E., Pegau, W., Lee, M., Twardowski, M., Shybanov,
E., Korotaev, G., and Baratange, F.: Particulate backscatter-
ing ratio at LEO 15 and its use to study particles com-
position and distribution, J. Geophys. Res., 109, C01014,
doi:10.1029/2002JC001514, 2004.

Bricaud, A. and Morel, A.: Light attenuation and scattering by phy-
toplanktonic cells: a theoretical modeling, Appl. Opt., 25, 571–
580, 1986.

Bricaud, A., Zaneveld, J., and Kitchen, J.: Backscattering efficiency
of coccol-25 ithophorids: use of a three-layered sphere model, in:
Ocean Optics XI Proc SPIE, 27–33, 1992.

Carder, K., Betzer, P., and Eggimann, D. W. (Eds.): Physical, chem-
ical, and optical measures of suspended particle concentrations:
Their intercomparison and application to the west African shelf,
in: Suspended Solids in Water, Springer US, Oxford, 1974.

Choi, W., Fang-Yen, C., Badizadegan, K., Oh, S., Lue, N., Dasari,
R., and Feld, M.: Tomographic phase microscopy, Nature Meth-
ods, 4, 717–719, 2007.

Ciotti, A., Lewis, M., and Cullen, J.: Assessment of the relation-
ships between dominant cell size in natural phytoplankton com-
munities and the spectral shape of the absorption coefficient,
Limnol. Oceanogr., 47, 404–417, 2002.

Clavano, W., Boss, E., and Karp-Boss, L.: Inherent optical proper-
ties of non-spherical marine-like particles – From theory to ob-
servation, Oceanography and Marine Biology: An Annual Re-
view, 45, 1–38, 2007.

Dall’Olmo, G., Westberry, T. K., Behrenfeld, M. J., Boss, E., and
Slade, W. H.: Significant contribution of large particles to optical
backscattering in the open ocean, Biogeosciences, 6, 947–967,
doi:10.5194/bg-6-947-2009, 2009.

Fortin, F., Rainville, F. D., Gardner, M., Parizeau, M., and Gagné,
C.: DEAP: Evolutionary algorithms made easy, Machine Learn-
ing Res., 13, 2171–2175, 2012.

Gordon, H. and Morel, A.: Remote assessment of ocean color for
interpretation of satellite visible imagery: A review, Springer Sci-
ence and Business Media, 2012.

Greenhalgh, D. and Marshall, S.: Convergence Criteria for Genetic
Algorithms, J. Comput., 30, 269–282, 2000.

Hahn, S. L.: Hilbert transforms in signal processing, Artech House
on Demand, 1996.

Hale, G. and Querry, M.: Optical constants of water in the 200-nm
to 200-µm wavelength region, Appl. Opt., 12, 555–563, 1973.

Hold-Geoffroy, Y., Gagnon, O., and Parizeau, M.: Once you
SCOOP, no need to fork, in: Proceedings of the 2014 Annual
Conference on Extreme Science and Engineering Discovery En-
vironment, 60 pp., ACM, 2014.

Kirk, J. T.: Light and photosynthesis in aquatic ecosystems, Cam-
bridge University Press, 1994.

Latimer, P.: Light scattering by a homogeneous sphere with radial
projections, Appl. Opt., 23, 442–447, 1984.

Lorenz, L.: Sur la lumière réfléchie et réfractée par une sphère (sur-
face) transparente, vol. I of Oeuvres scientifiques de L. Lorenz.
Revues et annotées par H. Valentiner, Librairie Lehmann et stage,
Copenhagen, 1898.

Mera, N., Elliott, L., and Ingham, D. B.: A multi-population ge-
netic algorithm approach for solving ill-posed problems, Com-
putational Mechanics, 33, 254–262, 2004.

Meyer, R.: Light-scattering from biological cells – Dependence of
backscatter radiation on membrane thickness and refractive in-
dex, Appl. Opt., 18, 585–588, 1979.

Mie, G.: Beiträge zur Optik trüber Medien, speziell kolloidaler Met-
allösungen, Ann. Phys., 330, 37–445, 1908.

Mischenko, M. and Travis, L.: Capabilities and limitations of a
current Fortran implementation of the T-matrix method for ran-
domly oriented, rotationally symmetric scatterers, Quant. Spec-
trosc. Radiat. Transfer, 60, 309–324, 1998.

Mischenko, M., Travis, L., and Mackowski, D.: T-matrix compu-
tations of light scattering by nonspherical particles: a review,
Quant. Spectrosc. Radiat. Transfer, 55, 535–575, 1996.

Mobley, C., ed.: Light and Water: Radiative Transfer in Natural Wa-
ters, Academic Press, 1994.

Morel, A.: Diffusion de la lumiere par les eaux de mer; resultats
experimentaux et approche theorique, Optics of the Sea, AGARD
Lecture Ser., 61, 3.1.1.–3.1.76, 1973.

Mugnai, A. and Wiscombe, W.: Scattering from nonspherical
Chebyshev particles. I: cross sections, single-scattering albedo,
asymmetry factor, and backscattered fraction, Appl. Opt., 25,
1235–1244, 1986.

Nocedal, J. and Wright, S. (eds.): Numerical Optimization, New
York : Springer, 1999.

Quirantes, A.: A T-matrix method and computer code for randomly
oriented, axially symmetric coated scatterers, Quant. Spectrosc.
Radiat. Transfer, 92, 373–381, 2005.

Quirantes, A. and Bernard, S.: Light scattering by marine algae:
two-layer spherical and nonspherical models, Quant. Spectrosc.
Radiat. Transfer, 89, 311–321, 2004.

Quirantes, A. and Bernard, S.: Light-scattering methods for mod-
elling algal particles as a collection of coated and/or nonspherical
scatterers, Quant. Spectrosc. Ra., 100, 315–324, 2006.

Ramírez-Pérez, M., Röttgers, R., Torrecilla, E., and Piera, J.: Cost-
effective hyperspectral transmissometers for oceanographic ap-
plications: performance analysis, Sensors, 15, 20967–20989,
2015.

Sánchez, A., Zafra, E., and Piera, J.: Hyperspectral characterization
of marine particles based on Mie-Lorentz and T-matrix codes and
a genetic algorithm, in: Workshop on Hyperspectral Image and

www.biogeosciences.net/13/4081/2016/ Biogeosciences, 13, 4081–4098, 2016

http://dx.doi.org/10.5194/bgd-6-1497-2009
http://dx.doi.org/10.1029/2002JC001514
http://dx.doi.org/10.5194/bg-6-947-2009


4098 A.-M. Sánchez and J. Piera: Methods to retrieve the complex index of aquatic particles

Signal Processing: Evolution in Remote Sensing (WHISPERS),
IEEE, 2014.

Stramski, D., Morel, A., and Bricaud, A.: Modeling the light at-
tenuation and scattering by spherical phytoplanktonic cells: a re-
trieval of the bulk refractive index, Appl. Opt., 27, 3954–3956,
1988.

Stramski, D., Bricaud, A., and Morel, A.: Modeling the inherent
optical properties of the ocean based on the detailed composition
of the planktonic community, Appl. Opt., 40, 2929–2945, 2001.

Stramski, D., Boss, E., Bogucki, D., and Voss, K.: The role of
seawater constituents in light backscattering in the ocean, Prog.
Oceanogr., 61, 27–56, 2004.

Sun, B., Kattawar, G., Yang, P., Twardowskic, M., and Sullivan, J.:
Simulation of the scattering properties of a chain-forming tri-
angular prism oceanic diatom, Quant Spectrosc Radiat Transfer,
available online, 2016.

Twardowski, M., Boss, E., Macdonald, J., Pegau, W., Barnard, A.,
and Zaneveld, J.: A model for estimating bulk refractive index
from the optical backscattering ratio and the implications for un-
derstanding particle composition in case I and case II waters, J.
Geophys. Res.-Oceans, 106, 14129–14142, 2001.

van de Hulst, H. (Ed.): Ligh scattering by small particles, New York
: Wiley, Oxford, 1957.

Volz, F.: Die optik und meteorologie der atmosphärishen trubung,
Ber. Dtsch. Wetterdienstes, 13, 1–47, 1954.

Waterman, P.: Matrix formulation of electromagnetic scattering,
Proceedings of the IEEE, 53, 805–812, 1965.

Wiscombe, W. and Grams, G.: The backscatered fraction in two-
stream approximations, J. Atmos. Sci., 33, 2440–2451, 1976.

Zaneveld, J. and Kitchen, J.: The variation in the inherent optical
properties of phytoplankton near an absorption peak as deter-
mined by various models of cell structure, Geophys. Res., 100,
13309–13320, 1995.

Zhu, C., Byrd, R., and Nocedal, J.: L-BFGS-B: Algorithm 778: L-
BFGS-B, FORTRAN routines for large scale bound constrained
optimization, ACM Transactions on Mathematical Software, 23,
550–560, 1997.

Biogeosciences, 13, 4081–4098, 2016 www.biogeosciences.net/13/4081/2016/


	Abstract
	Introduction
	Model theory
	Size distributions and polydispersions
	Inherent optical properties

	Review of refractive index retrieval models
	The Twardowski model
	The Stramski model
	The Bernard model
	The genetic algorithm model
	Summary of the refractive index retrieval models

	Simulations
	Spherical-shaped homogeneous particles
	The Twardowski model
	The Stramski model
	The genetic algorithm model

	Spherical-shaped coated particles
	The genetic algorithm model
	The Bernard model
	The Bernard model combined with the genetic algorithm model

	Cylindrical-shaped particles
	The Bernard model combined with the genetic algorithm model
	The genetic algorithm model


	Discussion
	Conclusions
	Acknowledgements
	References

