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Acronyms 

 

AFOLU: Agriculture, Forestry and Other Land Use 

AR5: Fifth Assessment Report  

CO2: Carbon dioxide 

CO2e: Carbon dioxide equivalent 

CH4: Methane 

EDGAR: Emission Database for Global Atmospheric Research.  

EPA: Environmental Protection Agency 

FAO: United Nations Food and Agriculture Organization. 

GHG: Greenhouse Gas  

GWP: Global Warming Potential. 

IPCC: Intergovernmental Panel on Climate Change 

JRC: Joint Research Center. 

MAC: Marginal Abatement Costs. 

MODIS: Moderate Resolution Imaging Spectrometer  

N2O: Nitrous oxide 

UNFCCC: United Nations Framework Convention on Climate Change 
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1. Expanded description of methods 

Our study identified, compiled, and aggregated AFOLU emissions (CO2, N2O, CH4) from several selected  

emission sources from the AFOLU sector, following the steps described in Figure 1. This Supplementary 

material will describe each step with the aim of providing clarity about the procedure followed to estimate the 

AFOLU emissions and uncertainties. 

 

Figure 1: Steps followed to populate the tropical 0.5° grid with AFOLU emissions and uncertainties and 
scaling up processes. 

 

1.1 List of land activities and their GHG emissions  

This study uses the conceptual framework of the IPCC AFOLU (Agriculture Forestry and Other Land Use) 

Guidelines for National Greenhouse Gas Inventories (IPCC 2006) to identify all possible GHG emitting land 

uses within the AFOLU sector (forests, croplands, wetlands and grasslands + livestock + soil management), 

carbon pools (aboveground biomass, below ground biomass, coarse woody debris, litter and soils), and 

gases (CO2, CH4, N2O). AFOLU emissions considered under this framework were human-induced GHG 

emissions for the AFOLU sector, understood as emissions under managed land. Further explanations for the 
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concept of managed land can be found in the IPCC 2006 Guidelines (IPCC 2006) Under this definition, fires 

in tropical ecosystems were included since 90 percent of tropical fires are the result of human activity 

(Roman-Cuesta et al. 2003; Van der Werf et al. 2010). Naturally occurring fluxes such as wetland CH4 

emissions or N2O forest soil emissions were not considered. Table 1 includes only those human activities on 

land uses and land use changes that we suspected to contribute the most to the AFOLU GHG emissions. 

We excluded relatively small emissions from secondary transitions (e.g. Other land converted to grasslands), 

and forest sinks (e.g. Other land to Forests: afforestation, regrowth, and Forests remaining Forests: growth). 

The justification to exclude these forest sinks from the AFOLU GHG budget relied on later publications that 

confirm that tropical regrowth and afforestation are small (e.g -0.4 PgCO2e.yr
-1

) (Achard et al. 2014) and -

0.06 PgCO2e.yr
-1

 (Baccini et al. 2012), respectively, the fact that forest growth is unlikely to be additional to 

its baseline (and therefore excluded from mitigation targets), and the  lack of spatially explicit, reliable, data 

on forest removals and associated uncertainties. 

 

1.2  Identifying AFOLU leading emission sources from the Fifth Assessment Report  

Roughly, the AFOLU sector contributed with 20-24 percent of the global GHG emissions in 2010, with a 

value of 10-12 Gt CO2e.yr
-1

 (Smith et al. 2014, Tubiello et al. 2015). Many activities add to this budget, as 

exposed in Figure 11.2 of the Fifth Assessment Report (Figure 2) (Smith et al. 2014), which disaggregates 

the AFOLU emissions for the last four decades. In our study, however, we selected only those activities 

whose emissions in 2000-2010 added up to 90% of the total AFOLU values, as described in Smith et al. 

(2014). Four sources of emission were in the agricultural domain, which contributes to ca. 12% to the global 

GHG (5-6 Gt CO2e.yr
-1

): 1. Enteric fermentation + agricultural soils (70% of agricultural emissions), 2. Paddy 

rice emissions (9-11%),  3. Biomass burning (6-12%), 4. Manure management (7-8%). While two other major 

sources came from the forest domain, which jointly represent the other half of the AFOLU emissions (5-6 Gt 

CO2eq.yr
-1

): Deforestation and  Degradation (e.g wood harvesting). 

 

We then compiled the most recent spatially explicit data sets that covered these key sources of emissions 

Table 2 offers a description of the compiled data sets, which will be useful for the Monte Carlo section.
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Table 1: Human derived GHG emissions (CO2, CH4, N2O and main contributing carbon pools: Above ground biomass (AGB)and soils, in managed land for the AFOLU sector 

(Agriculture, Forestry and Other land uses) following the IPCC AFOLU 2006 guidelines. It includes only major contributing classes excluding sink transitions (e.g. Other land to 

Forestry) or minor transitions (e.g. Other land converted to grasslands.* N2O emissions from soils are included under managed soils.
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Figure 2.  AFOLU emissions for the last four decades. Sub-sectorial agricultural emissions are based on 

FAOSTAT (2013). Emissions from crop residues, manure applied to soils, manure left on pasture, cultivated 

organic soils, and synthetic fertilizers are typically aggregated to the category ‘agricultural soils’ for IPCC 

reporting. For the Forestry and Other Land Use (FOLU) sub-sector data are from the Houghton bookkeeping 

model results (Houghton et al., 2012). Emissions from drained peat and peat fires are, for the 1970s and the 

1980s, from JRC/PBL (2012), derived from Hooijer et al. (2010) and van der Werf et al. (2006) and for the 

1990s and the 2000s, from FAOSTAT, 2013. Source: Figure 11.2 Fifth Assessment Report (Smith et al. 

2014). 
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Herrero et 

al. (2013) 

CH4 

N2O 
0.1° 2000 

Livestock 

systems + herd 

modelling+ 

feeds+ emission 

model: 

RUMIANT+ Tier 2 
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monograstric 

emissions 
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2
.yr
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Stdev 
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 Table 2: Summary of data sets and uncertainties used in this hotspot analysis of terrestrial gross emissions. When multiple years were available, we estimated 

annual means for the period 2000-2005.
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1.3  Compiling spatially explicit data sets of emissions and associated uncertainties, for 

AFOLU leading emission sources 

 

Table 2 summarises the selected emission data sets and associated uncertainties (authors, data units, data 

resolution, data distribution functions, types of uncertainty, etc). Figure 3 offers a visual representation of the 

spatial distribution of the data sets as annual means for the period 2000-2005,  for our study area, at 0.5° 

resolution. 

 

Figure 3: Spatial distribution of the emissions. 

1.3.1. Data sets and uncertainties 

1.3.1.1 Forest data sets + uncertainties 

Deforestation emissions (Harris et al. 2012)  

Deforestation emissions correspond to instantaneous carbon losses (aboveground and belowground) in an 

area where forest cover is completely removed, for the period 2000-2005, at 18.5km resolution, for the 

tropics. Emissions are assigned to the place of removal, with no transboundary effects. Harris et al. (2012) 
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did not measure forest recovery (afforestation, reforestation) so their deforestation emissions are gross 

estimates. Original units MgC.ha
-1

.5yr
-1

) were transformed to annual CO2e.grid cell, by applying equal area 

reprojected values for the 0.5 grid cells, a transformation factor of 44/12 from C to CO2, and a ratioing by 5 to 

obtain annual emissions assuming complete data dependence among years. The study area used political 

rather than biome boundaries so as to provide consistent country-specific deforestation emissions that could 

be used as reference emission levels. Their data base is freely available and consists of three digital data 

sets, one for each continent, in raster format, at 18.5 km. Each data set includes three rasters, one for the 

median emission estimates of deforestation (MgC.ha
-1

.5yr
-1

), and the other two for the lower and upper 

deforestation emission bounds (5
th
 and 95

th
 percentiles). The authors produced their deforestation emissions 

estimates using two variables: 1.  gross forest cover loss areas from 2000 to 2005 (ha) and 2. the spatial 

distribution of forest carbon  density maps (above and below ground C) at 1km resolution (MgC. ha
-1

) 

(Saatchi et al. 2012). The areas of forest loss were produced through a nested approach that combined 

Moderate Resolution Imaging Spectroradiometer MODIS and Landsat satellites, with a final resolution of 

18.5 by 18.5-km (called blocks by the authors). To resolve the disparate spatial resolution of the forest loss 

area and the carbon density data sets, the authors ran a Monte Carlo style procedure in which forested 1-km 

pixels within a given 18.5-km block were selected randomly (n = 1000 realizations) until the forest loss quota 

for the block was met. The total carbon values of selected 1-km pixels (MgC) were then summed across the 

block to derive an emissions estimate. The average of the 1000 estimates associated with forest loss is 

assigned as the best estimate of emissions per 18.5-km block.   

Uncertainties of deforestation emissions 

The authors describe the treatment of their deforestation emissions uncertainties in their Supplementary 

Material. We summarize it here, but for further information consult Harris et al. (2012): Deforestation 

uncertainty were a combination of the forest area uncertainty and the forest carbon densities uncertainties, 

which were merged using a randomized, Monte Carlo style sampling technique. In each scenario of the 

simulation, forested pixels (1-km) within each 18.5-km block were selected randomly until the total cleared 

area estimated within the block was reached. Carbon stock information for the cleared pixels was then used 

to calculate an emissions estimate associated with forest loss for that scenario. Iterating through scenarios 

for each block resulted in a distribution of emissions associated with the estimated level of forest loss. This 

approach allowed the combination of uncertainty from different sources without making assumptions about 

the distribution of the underlying data. Uncertainties considered: 
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1. Estimates of forest loss; 

2. Estimates of aboveground biomass; 

3. Estimates of belowground biomass; 

 

Uncertainty in forest loss 

The authors estimated the uncertainty in the forest loss product by modelling the relationship between two 

estimates of forest loss at the 18.5-km block scale, one derived from coarse resolution Moderate Resolution 

Imaging Spectroradiometer (MODIS) imagery and the other from higher resolution Landsat imagery. Earth 

biomes were divided into forest cover loss strata based on MODIS observations, and included high, medium 

and low forest cover loss strata per biome. The authors then selected a stratified random sample of 18.5-km 

blocks from each biome and stratum, and Landsat imagery was analysed to quantify forest cover loss per 

sample block. They applied stratum-specific regression estimators incorporating MODIS-indicated forest 

cover loss as the auxiliary variables to generate forest cover loss estimates over the global population of 

18.5-km blocks. To conduct the uncertainty analysis, a bootstrapping approach was used (i.e. resampling 

with replacement) which assumed that the observed data represented only one possible realization out of 

many, and reconstructed a large number of alternate realizations based on random resampling of residuals.  

 

Uncertainty in aboveground biomass 

The aboveground biomass at 1-km spatial resolution provided the best available estimate of biomass (in 

MgC.ha
-1

) and associated uncertainties across the tropics. The authors derived uncertainties from a 

bootstrapping exercise conducted as part of the Maximum Entropy (MaxEnt) model estimator through an 

error propagation approach and from an independent model validation analysis. See Saatchi et al. (2011) for 

full details of the MaxEnt approach. Saatchi et al. (2011) calculated a minimum and maximum possible 

biomass value that included a potential bias in the initial data used to train the model. The values 

represented the 0.5 percentile (minimum) and the 99.5 percentile (maximum) of an assumed Gaussian 

distribution of errors at the pixel scale. This range of potential error accounted for uncertainty from several 

sources, including the estimates of vegetation height from the Geoscience Laser Altimeter System (GLAS), 

onboard the Ice, Cloud, and land Elevation Satellite (ICESat), lidar data, allometric equations used to convert 

height to aboveground biomass, and prediction errors associated with the MaxEnt model estimator. The 

potential bias in the model estimate of forest biomass can be related to the ground estimates of biomass 

used in calibrating the GLAS lidar data or the inventory plots used directly in the MaxEnt model. This bias 
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cannot be quantified systematically due to lack of detailed information on inventory data and the paucity of 

ground measurements of forest biomass to evaluate the estimates. However, by using the estimate of the 

potential bias and introducing it in computing emissions, Saatchi et al. (2011) ran the best estimates 

possible.  

Uncertainty in belowground biomass 

Belowground biomass was estimated from aboveground biomass using a regression equation developed 

from field data collected in forests across multiple biomes. Uncertainties in this relationship between above 

and belowground biomass were estimated from the original model fit; the model fitted a power function to 

above and belowground biomass data using least squares regression. A bootstrapping approach was then 

implemented for forest loss uncertainty to create a distribution of regression coefficients.  

 

Merging forest emissions uncertainties 

Harris et al. (2012) used a series of distributions representing uncertainty from each of the above three main 

uncertainty sources to construct 1,000 scenarios of forest emissions. From these 1,000 scenarios, they 

estimated 90% prediction limits at the block, country, regional, and pan-continental scales by first 

aggregating each individual map to the targeted scale (e.g., country, continent) and then selecting the 0.05 

and 0.95 percentiles (i.e., 50th and 950th out of 1,000 sorted simulations). The identification of the 0.05 and 

0.95 percentile values was computed individually for the forest loss area, carbon stock, and emissions, such 

that the low emission value was not simply a combination of the low bound for forest loss and the low bound 

for carbon stocks. 

 

Forest degradation: Wood harvesting (Poulter et al. (2015), data accessible upon request)  

Wood harvesting is a 1-degree global gridded data set that was generated using National Forest Inventory 

data and the FAO Forest Resources Assessment (FRA) (Figure 4). The total harvested volume for both 

round wood and fuelwood was 3,076 million m
3
 for the reference year of 2005, which is equivalent to a global 

carbon estimate of 0.89 PgC. The data set was downscaled using a forest mask from the Global Land Cover 

(GLC) 2000 data set and assuming wood harvest was distributed evenly. The original data was produced at 

the resolution of the GLC2000 (approx. 1X1km) and the 1 degree data set was produced by aggregating the 

1x1 km cells within a 1° grid. The resulting GEOCARBON Wood Harvest data set consists of the following 

five variables: 
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 1. Round wood Forest Area in Hectares for each cell 

 2. Fuelwood Forest Area in Hectares for each cell 

 3. Round wood (industrial) harvest volume in m3 

 4. Fuelwood harvest volume in m3 

 5. Total Harvest volume (round wood + fuelwood) in m
3
 

We chose fuel and industrial round wood harvest (m
3
) as our harvest data. We assumed instantaneous 

emissions assigned to the place of removal. Emissions were transformed from m
3
 to MgCO2.yr

-1 
using an 

emission factor of 0.25 (Mg C/m
3
) (Grace et al. 2014), and a factor of 44/12 from C to CO2. Because the 

resolution of this layer was larger than our grid, the original value of wood volume at 1° was equally 

distributed among the 0.5° grid cells. Wood harvesting also includes forest managed areas and, therefore, 

not all wood removals are degradation. 

Consistency checks for the wood harvest data were carried out for each administrative value to ensure that 

the gridded wood harvest data set was consistent with the volume reported for that administrative unit. Wood 

harvest statistics were acquired from a range of NFIs around the world. For the remaining countries, either 

the wood harvest statistics were reported at national level (i.e. same as FAO-FRA) or the data were out of 

date (e.g., before 2000). In all cases, the cumulative, aggregated harvested volume for all species groups 

was used. The cumulative volume for the US and Canada included both round wood and fuelwood volume. 

For the remaining countries, the volume of fuelwood was obtained from the FAO FRA database since the 

fuelwood volume was not explicitly reported by the NFI. 

Figure 4: Global wood harvest (industrial roundwood + fuelwood) estmated from Forest Inventories and 

FAO-Forest Assessment Resource (FRA) 
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Two land cover masks were generated from the 1-km GLC2000 (GLC2000-JRC, 2003): 1. A forest map 

derived from used solely for the downscaling of the industrial round wood statistics, and 2.  a more inclusive 

“forest mask” for fuelwood which also included shrub cover and sparsely forested land cover classes, 

particularly relevant in Africa and parts of Asia.  

Wood harvesting uncertainties  

Uncertainties were not estimated in the original harvest emission data set. We therefore, applied a first 

estimate of emission uncertainties considering a 20 percent value of the per-pixel harvest emissions, based 

on the author’s expert opinion. 

Forest degradation: Biomass burning emissions (Van der Werf et al. 2010) 

We used version 3 of the Global Fire Emission Database (GFED) for our fire GHG emissions (CO2, CH4, 

N2O) (Van der Werf et al. 2010). Data were downloaded from http://www.globalfiredata.org/data.html Data 

units were ggas/m
-2

.month
-1

 at 0.5° resolution. We selected the period 2000-2005, which was originally 

offered as monthly data, and subsequently transformed into annual emissions for each of the three 

considered GHGs. We used equal area reprojected values and the factors exposed in Table 3 to transform 

the original units into CO2e per grid cell. The original fire data set was partitioned into six fire categories: 

savannah, woodlands, agriculture, deforestation, forests, peats. We removed deforestation fires to avoid 

double counting with deforestation emissions, and only considered net fire emissions as those involving 

woody material. Savannahs and agricultural fires were removed. Monthly data emissions for the selected 

partitions were transformed to annual values. Total fire net emissions (CO2e) per pixel were the sum of the 

annual means for CH4, N2O and CO2.  

From units To units Conversion 

 kgC (dSOC) kg CO2eq. kgC * 44.0 / 12.0 

 kgC (CH4) kg CO2eq. kgC * 16.0 / 12.0 * 21.0 

 kgN (N2O) kg CO2eq. kgN * 44.0 / 28.0 * 310.0 

Table 3: Data conversions to CO2e from different gas elements. dSOC is the change in Soil Organic 

Carbon. Conversion factors use values from the Fourth Assessment Report  

Emissions were estimated using a revised version of the Carnegie-Ames-Stanford-Approach (CASA) 

biogeochemical model and improved satellite-derived estimates of area burned, fire activity, and plant 

productivity to calculate fire emissions for the 1997–2013 period on a 0.5° spatial resolution with a monthly 

time step. For November 2000 onwards, estimates were based on burned area, active fire detections, and 

plant productivity from the MODerate resolution Imaging Spectroradiometer (MODIS) sensor. They used 

http://www.globalfiredata.org/data.html
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maps of burned area derived from the Tropical Rainfall Measuring Mission (TRMM) Visible and Infrared 

Scanner (VIRS) and Along-Track Scanning Radiometer (ATSR) active fire data prior to MODIS (1997–2000) 

and estimates of plant productivity derived from Advanced Very High Resolution Radiometer (AVHRR) 

observations during the same period.  

CASA calculates carbon “pools” for each grid cell and time step based on carbon input from net primary  

productivity (NPP) and carbon emissions through heterotrophic respiration (Rh), fires, herbivory, and 

fuelwood collection. CASA version used here had a 0.5°×0.5° grid and a monthly time step. For each grid 

cell and month, fire carbon emissions were then based on burned area, tree mortality, and the fraction of 

each carbon pool combusted (combustion completeness, CC). Each carbon pool was assigned a unique 

minimum and maximum CC value with the fine fuels (leaves, fine litter) having relatively high values while 

coarse fuels (stems, coarse woody debris) having lower values. The actual combustion completeness was 

then scaled linearly based on soil moisture conditions with CC closer to the minimum value under relatively 

moist conditions, and vice versa (van der Werf et al., 2006). 

Forest degradation: Biomass burning emission uncertainties 

Annual uncertainties for different regions were expressed as the 5th, 25th, 50th, 75th,and 95th percentiles of 

2000 runs in a Monte Carlo set up. Figure S6 in Van der Werf et al. (2010) (see Figure 5 below) offers 

numbers that give an indication of 1σ uncertainties (expressed as percentage of the 50th percentile) 

assuming a Gaussian distribution. Since the GFED v.3 global data on biomass burning emissions did not 

include per pixel uncertainties, we assigned these regional uncertainties to all the pixels within each region, 

under the assumption of complete data dependence . We estimated the regional annual mean uncertainties 

for the period 2000-2005, by multiplying our mean annual aggregated GHG emissions (CO2e: CO2, CH4, 

N2O) per pixel, with the regional mean annual variability percent which represented  1σ uncertainty  (as 

displayed in Figure 5).  

 

CASA model uncertainties 

The CASA model estimated emissions and uncertainties of biomass burning. Uncertainties related to a 

diversity of variables: burned area, fuel loads, combustion completeness, and emission factors. Van der Werf 

et al. (2010) undertook a formal uncertainty assessment for the burned area (Giglio et al. 2010) but a similar 

approach for estimating uncertainties in fuel loads, combustion completeness, and emission factors was not 
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possible due to the lack of ground truth data. To get an initial estimate of the spatial variability in 

uncertainties in carbon emissions the authors propagated the uncertainties from the burned area estimates 

through their model in a set of Monte Carlo simulations (n=2000). They also assigned subjective best-guess 

estimates of other model parameter uncertainties in these simulations (Table 3) following approaches 

described by French et al. (2004) and Jain et al. (2007). The authors attributed best-guess uncertainties to 

several parameters used to calculate biomass burning emissions (Table 4). They considered normally-

distributed uncertainties for the light use efficiency (scaling directly to biomass density), burned area, 

combustion completeness, and burning depth into organic soil.  

 

CASA model uncertainties  

Burned area Stdev  (Giglio et al. 2010) 

Deforested area Reported burned area stdev x2 Expert judgement 

Woody biomass 22% 

Based on Amazon biomass comparison 

with Saatchi et al. 2007 

Expert judgement 

Herbaceous biomass Double the uncertainty of woody biomass 

due to unaccounted impacting factors not 

well represented in low spatial resolution 

(e.g. time since last fire, grazing,  etc) 

Expert judgement 

Tree mortality 25% Expert judgement 

Depth soil burning 50% of range Expert judgement 

Combustion 

completeness 

50% of range Expert judgement 

Table 4:  disaggregated uncertainties of the CASA model for biomass burning emissions. Source: Van der 

Werf et al. (2010) 

Fire emissions uncertainties results 

Results of the Monte Carlo simulation indicated that globally, uncertainties were around 20% (1σ) for annual 

carbon estimates during the MODIS era (2001–2009) and somewhat higher during the years before, when 

burned area was derived from ATSR and VIRS hotspots. Regionally, uncertainties were highest in boreal 

regions and Equatorial Asia where organic soil burning occurs. One factor that had a major impact on the 

spatial distribution of the uncertainties was whether mapped burned area was available, or whether burned 

area estimates were derived from fire hot spot – burned area relations. For the latter, uncertainties were 

much higher. This was not only the case in the pre-MODIS era, but also for about 10% of the total burned 

area in the MODIS era for which no burned area maps were available (Giglio et al., 2010). Because 

uncertainties were often higher than the absolute burned area and because negative burned area estimates 

were truncated at 0, the mode of the Monte Carlo runs was higher than the estimates reported throughout 
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the authors’ paper. The uncertainty analysis focused on carbon emissions, for trace gas emissions the added 

uncertainty of emissions factors should be taken into account (Andreae and Merlet, 2001).  

Figure 5. Annual uncertainties for different regions expressed as the 5th, 25th, 50th, 75th,and 95th percentiles of 2000 

runs in a Monte Carlo set-up. Circles denote the estimates reported throughout the paper, which do not necessarily align 
with the 50th percentiles due to truncation of several parameters in the Monte Carlo simulations. Numbers on top give an 
indication of 1σ uncertainties (expressed as percentage of the 50th percentile) assuming a Gaussian distribution. 
Source: Fig S6, Supplementary Material Van der Werf et al. (2010). 

1.3.1.2 Agriculture data sets + uncertainties 

Livestock (Herrero et al. 2013)  

Livestock emission data sets included enteric fermentation (CH4) and manure management (N2O, CH4) for 

year 2000, for 28 regions, 8 livestock production systems, 4 animal species (cattle, small ruminants, pigs,  

and poultry), and 3 livestock products (milk, meat, and eggs), at 0.1°cell resolution. Herrero et al. (2013) 

presented a unique, biologically consistent, spatially disaggregated global livestock data set containing 

information on biomass use, production, feed efficiency, excretion, and greenhouse gas emissions. Their 

data base contained over 50 new global high-resolution maps with information for understanding the multiple 

roles (biophysical, economic, social) that livestock can play in different parts of the world. We used only the 

maps on enteric fermentation (CH4) and manure management (N2O, CH4) for the aggregated animal 
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species, at 0.1° spatial resolution. The original units (kg CO2e.km
-2

.yr
-1

) were transformed to CO2e.grid cell
-1

 

by applying equal area reprojected values. The CO2e of enteric fermentation and manure management were 

then summed to obtain a total emission value of livestock per grid cell. Livestock was entered in the Monte 

Carlo simulations as one variable only. 

Emissions were estimated using a livestock systems classification based on Seré and Steinfeld (1996), 

widely used for studying different aspects of livestock. Systems were broken down based on agroecological 

differentiations (arid-semiarid, humid-subhumid, and temperate/tropical highland areas).Numbers of animals 

for each of these systems and regions were estimated using the data of Wint and Robinson (2008) for the 

year 2000, as well as herd dynamics models (Lesnoff 2008) parameterized for each region and production 

system. Biomass consumption by different species in each region and system relied on estimates of the 

availability of four main types of feeds (grass, crop residues, grains, occasional feeds) and the development 

of feasible diets for each species in each region and production system. For ruminants, information on the 

quantity and quality of the different feeds was then used to parameterize an IPCC Tier 3 digestion and 

metabolism model (RUMINANT), as described in Herrero et al. (2008) and Thornton and Herrero (2010). The 

model estimates production of milk and meat, manure production, N excretion, and methane emissions. For 

monogastrics, information on feed quality was used to estimate feed intake, productivity, and feed use 

efficiency, using standard nutrient requirements guidelines (NRC 1988). For the estimation of nitrous oxide 

emissions, the IPCC Tier 2 approach was used with specific manure management practices for each 

species, system, and region. More information of this process is given in Havlík et al. (2014). 

Livestock uncertainties 

No spatially explicit uncertainty data were provided in the authors’ original data base. Therefore, and based 

on the author’s expert judgement, we considered the uncertainties to be 20 percent of the total emissions 

values (CO2e), per pixel.  When individual uncertainties were needed for CH4 and N2O separately, we also 

applied 20 percent to the disaggregated emissions.  

Cropland soil emissions (Ogle et al. (2013), data available from authors upon request)  

Cropland emissions (N2O and soil dSOC) (changes in soil organic carbon) were produced by Ogle et al. 

(2013) for the Environmental Protection Agency MAC-Report (2013), at 0.5° resolution, for time periods 

2000-2030 with five-year increments, based on the DAYCENT ecosystem model. For our AFOLU analysis 

we used the annual mean emission data for the period 2000-2005. The original units (g N2O-N.m-
2
.y

-1
 and 
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gC.m
-2

.5y
-1

)  were transformed to CO2e.y
-1

.grid cell
-1

 using equal area values and the factors displayed in 

Table 3. The database included direct and indirect emissions from mineral-based cropland soil processes: 

synthetic and organic fertilization, residue N, mineralization and asymbiotic fixation). To be consistent with 

other data sets we did not include indirect emissions (e.g. NO3
-
 leaching, N runoff in overland water flow). 

The authors combined DAYCENT derived NOx emissions with the IPCC default factors for indirect N2O 

emissions (De Klein et al., 2006).  

DAYCENT is a process-based model (Del Grosso et al., 2001) that simulates biogeochemical C and N fluxes 

between the atmosphere, vegetation, and soil by representing the influence of environmental conditions on 

these fluxes including soil characteristics and weather patterns, crop and forage qualities, and management 

practices. DAYCENT utilizes the soil C modelling framework developed in the Century model (Parton et al. 

1987, 1988; Metherell et al. 1993), with refinement to simulate C dynamics at a daily time-step. Key 

processes simulated by DAYCENT include crop production, organic matter formation and decomposition, 

soil water and temperature regimes by layer, in addition to nitrification and denitrification processes.  

Emissions estimated by the DAYCENT modelled six selected major crop types (maize, wheat, barley, 

sorghum, soybean and millet). Estimates are based on emissions per unit (m
2
) of physical area in each in 

each 0.5° x 0.5° grid cell, and so were multiplied by an estimate of cropland area in each grid cell to compute 

total GHG emissions. The authors approximated crop-specific areas using harvested area data. First, crop-

specific harvested areas for each 0.5° x 0.5° grid cell were estimated from Monfreda et al. (2008). Next, 

harvested areas for analogous crops were added to areas of the major crop types (i.e., oats with wheat, rye 

with barley, green corn with maize, and lentil, green bean, string bean, broad bean, cow pea, chickpea and 

dry bean with soybeans) to increase the coverage of cropland area. The sums of harvested areas fractions 

computed in this manner were less than total cropland areas (Ramankutty et al. 2008) for all but 1.6% of grid 

cells. In the last step, total harvested area was scaled to match at the country scale data on harvested areas 

reported in FAOSTAT. By including analogous crops and matching FAOSTAT harvested areas, the cropland 

area simulated by DAYCENT was about 61% of the global non-rice cropland areas reported by FAOSTAT. 

The crop soil emissions provided by Ogle et al. (2013) were lower than those reported in other data sets (e.g. 

FAO) not only because the above mentioned conservative total crop areas but also because they excluded 

certain emissions due to data and resources limitations: drainage of organic soils, grassland soils, other 
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crops not considered above (e.g. sugarcane, tobacco, vegetables, cotton, tea, etc), restoration of degraded 

land, burning of residues or biofuel.  

Cropland emissions over organic soils 

To complement the emissions of crops from organic soils, which were excluded in Ogle et al. (2013) 

database, we used a Tier 1 approach where we estimated the CO2 emissions from drained organic soils. We 

i) first located the global areas with histosols, ii) we then overlapped them with Monfreda et al. (2008) maps 

on crop areas, and ii) then applied a Tier 1 annual emission factor for cultivated organic soils of 20 MgC.ha
-1

 

yr
-1

 derived from the IPCC (IPCC 2006). To locate the global areas with histosols we used ISRIC’s global soil 

database (Soil grids 1 km) from ftp://ftp.soilgrids.org/data/recent/, and selected a map of histosol probability 

of occurrence (TAXGWRB_Histosols) with a probability threshold of ≥ 6% (based on the assigned map 

values of known histosol areas, max probability of occurrence in the original map was 52%), we then 

overlayed it with a soil carbon content map (OCSTHA) (Mg.ha-1), which we downloaded from the same site. 

We established a carbon threshold minimum value of 200 Mg C ha
-1

 by visually contrasting the location of 

our carbon thresholded + histosol probability areas with known maps of tropical peatland distribution (e.g. 

GLWD).  We then downloaded 5 min resolution global harvest fraction maps which represented the fraction 

of area harvested, in each grid cell, in year 2000, for each of the six major crops considered by Ogle et al. 

(2013). We downloaded the “Harvested Area and Yields of 175 Crops (M3-Crops Data)” data set from 

http://www.geog.mcgill.ca/~nramankutty/Datasets/Datasets.html. The areas of each selected crop were 

transferred to our 0.5° grid by means of zonal statistics, added, and unit transformed to estimate hectares 

per grid cell of crops over histosol, which were then multiplied by the IPCC Emission Factor (20 MgC.ha
-1

.yr
-

1
) and transformed to CO2e.ha

-1
.yr

-1
 (multiplying it by 44/12). Tropical CO2e emissions from this source 

resulted in 28 TgCO2e.yr
-1

. This value is lower than what would be obtained through global peatland 

drainage emissions (CO2) at country-level in FAOSTAT (500 TgCO2e.yr
-1

), and lower than the peatland 

drainage emissions reported in Asia (630 TgCO2e.yr
-1

) by Hooijer et al. (2010). Our low values can probably 

be attributed to the fact that the Ogle’s six crop covers (maize, wheat, sorghum, soya beans, millet and  

barley) are not that frequent in the tropics, and unlikely to be grown on histosols.  

 

Cropland soil emissions uncertainties 

The uncertainties of the soil cropland emissions were provided on a per pixel basis (0.5°) as standard 

deviations. When providing uncertainties for the aggregated CO2e emissions (dSOC and N2O), we assumed 

ftp://ftp.soilgrids.org/data/recent/
http://www.geog.mcgill.ca/~nramankutty/Datasets/Datasets.html
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complete data independence and aggregated the variances. The authors used empirically based methods to 

provide an alternative to the error propagation techniques. They developed a linear mixed effect model to 

quantify both bias and variance in modeled soil C stocks, which were estimated using the Century 

ecosystem simulation model. The statistical analysis was based on measurements from 47 agricultural 

experiments, They then conducted Monte Carlo analysis by drawing values from the joint probability 

distribution for the parameters in the linear mixed effect model. They selected 1000 sets of parameters for 

the stat model, which produced 1000 of the so-called adjusted estimates. They took the mean and the 

standard deviation from this distribution as the final result of uncertainty (e.g. adjusted stdev).  

Limits of the uncertainty analysis in CENTURY data 

The uncertainty estimator provided by the authors reflects imperfect knowledge about parameterization, 

formulation of the model, model evaluation data (i.e., measurements) and initial values. Uncertainties in the 

model input and scaling of simulation results were not addressed because information about environmental 

conditions, land use and management activity were known for the sites. The uncertainty estimator was 

predicated on how well it represented the combination of environmental conditions and land management 

practices, which was dependent on the robustness of the data set, and data thresholds. First, none of the 

experiments had measurements below 1200 gm−2 or above 9000 gm−2. Therefore the estimator should not 

be applied to soils with higher or lower C stock values. While a variety of land management practices were 

represented in the data set, there were only three studies evaluating the effect of grassland management. 

Consequently, the estimator is not robust for estimating uncertainties in modeled soil C stocks for grazing 

systems. In the author’s data, the experimental data used to develop the uncertainty estimator were mostly 

independent of the parameterization data, and therefore, the empirically derived estimator was considered 

robust for determining uncertainties at sites where measurements were not available.  

 

Paddy rice emissions (Li et al. (2013), data available from authors upon request) 

We used data from Li et al.’s study for EPA’s MAC Report (2013). Emission data were estimated by the 

Denitrification-Decomposition (DNDC) model, which simulates production, crop yields, greenhouse gas 

fluxes (CH4, N2O) and organic soil carbon (dSOC) of global paddy rice, at 0.5° resolution under “business-

as-usual” (BAU) condition and various mitigation strategies Li et al. (2006, 2010). Model outputs were 

reported for 2010 as the baseline, and used  22 years of replications to account for climate variability. The 

original units (KgC.ha
-1

.yr
-1

 for dSOC and CH4 and KgN. ha
-1

.yr
-1

 for N2O) were transformed to grid cell 

values by multiplying by equal area reprojected values, and applying the factors exposed in Table 3.  
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The original rice emission data set contained the above mentioned GHG emissions expressed as two flux 

values produced by using the maximum and minimum data on soil properties. Data is based on the MSF 

(Most Sensitive Factor) method which uses an envelope approach. No mean value was offered. Based on 

discussions with the author, the distribution of the data was known to be right skewed, and through the 

authors’ expert judgement a log-normal distribution was considered to be the best –though not perfect- fit. 

This not perfect fit inflated a bit the final AFOLU emission, Monte Carlo derived values.  

DNDC model 

DNDC is a soil biogeochemical model that simulates the processes determining the interactions among 

ecological drivers, soil environmental factors, and relevant biochemical or geochemical reactions, which 

collectively determine the rates of trace gas production and consumption in agricultural ecosystems (Li 

2001). Details of management (e.g., crop rotation, tillage, fertilization, manure amendment, irrigation, 

weeding, and grazing) have been parameterized and linked to the various biogeochemical processes (e.g., 

crop growth, litter production, soil water infiltration, decomposition, nitrification, denitrification, fermentation) 

embedded in DNDC (e.g., Li et al., 2006; Giltrap et al., 2010; Dai et al., 2012)(See the end of the 

Supplementary further information about the model parameterization, management scenarios, and 

parameterization details). The DNDC predicts daily CH4, N2O and soil carbon fluxes from rice paddies 

through the growing and fallow seasons as fields remain flooded or move between flooded and drained 

conditions during the season. 

Uncertainties of rice emissions   

Rice emission uncertainties were expressed as two flux values produced by using the maximum and 

minimum data on soil properties. Emission and uncertainty data were offered at a 0.5° level. Given the 

complexities of the global rice sector, the estimated GHG emissions need to consider several limitations 

(EPA MAC-Report, 2013):  

 Availability and quality of data that represent the heterogeneous rice production systems of the world. 

Management practices, were not always available for all countries or regions and approximations were 

made based on limited literature or expert judgment.  

 

 Biophysical modelling uncertainties: in particular with respect to soil organic carbon simulations. The 

DNDC modelling of the business-as-usual baseline conditions and mitigation scenarios was performed 
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using a set of inputs and assumptions developed based on various sources. Soil organic carbon, has a 

significant impact on the net GHG emissions from the sector, and is particularly challenging to simulate 

given the lack of monitoring data at the global scale.  

 

1.5 Creating a 0.5 degree grid for the study area 

Grid 

We created a WGS-84, lat-lon, 0.5° degree polygon vector using the centroid as the origin of coordinates for 

each grid cell. The areal extent of the grid spanned the tropics and subtropics (31 to -54° N, 130 to -120° E). 

A list of the countries included in this study can be found in Table 8. The grid contained 17,191 cells (Africa 

=7,214 cells, Asia= 2,868, and CS America= 7,111). This tropical grid was later used to define the zones for 

zonal statistics. Each grid cell was identified with an l equal area value obtained from a projection system 

that took into account the Earth’s geometrical distortions (e.g. Albers equal area conic projection). This way, 

whenever the emissions had to be weighted by area, we used the equal area values, to guarantee consistent 

area among grid cells. Once the emissions data sets were gathered, we populated the grid with the selected 

emissions through zonal statistics. We ran quality assessment tests that contrasted the emissions of each 

data set (e.g. deforestation, livestock, rice, fire, etc) at the country level, against published data, to guarantee 

that the stored emissions data in each grid cell had been properly processed and unit transformed (see the 

Quality Assessment Section, for further details). Data stored in this grid, at cell level, were then used as the 

basis for the Monte Carlo analyses and to produce the final AFOLU rasters. Emission data stored in the grid 

were annual means for the period 2000-2005. Annual means were the best way to offer the final AFOLU 

emission data since the temporal range of the different data sets varied. All datasets included the year 2000, 

except rice whose emissions took the year 2010 as the baseline (see Table 2). Three data sets were for the 

year 2000 (enteric fermentation, manure management, and wood harvest), three offered multiple years (e.g. 

fire, crops, deforestation) and we estimated their  annual means for the period 2000-2005. Therefore,  .we 

offer an annual snap-shot of AFOLU emissions and uncertainties that are a useful benchmark against which 

countries can follow up their AFOLU emission trends. 

1.6  Uncertainty estimation of AFOLU emissions 

The AFOLU sector is well known for its large uncertainties (up to 50 percent) (Smith et al. 2014). These 

values are the highest of all the emission sectors reported under the IPCC (Tubiello et al. 2014), therefore, 

for our AFOLU emission analysis to be meaningful, we needed a robust uncertainty analysis. We made two 



24 
 

 

initial decisions: 

 Working at the pixel level: We chose to work at the pixel level because one of the major 

contributions of our research was its highly disaggregated (0.5°), spatially explicit, data on emissions 

and uncertainties.  

 Aggregating uncertainties through Monte Carlo simulations: Instead of a simple propagation of 

errors method, we chose Monte Carlo simulations to aggregate the uncertainties because: i) some 

data sets were not Gaussian, ii) there possible was correlations among data, and iii) we desired a 

distribution of the AFOLU aggregated data from where to extract the 5
th
 and 95

th
 percentiles. 

We ran our uncertainty estimations as a sequential four-step process: 1. Definition of the error model, 2. 

Parameterization of the error model, 3. Processing of the data, and 4. Considerations of data spatial 

correlation.  

 

1. Definition of the error model: At the pixel level, our model assumed independent contributions from 

multiple emission sources due to the lack of reference data on emissions and uncertainties correlations. We 

aggregated the emissions in each pixel following Equation 1: 

 

(Eq 1)  Emission(x) = E1(x) + V1(x) + ... + En(x) + Vn(x), where E1..n are the input emission data sets and 

V1..n are the uncertainties expressed in variance. 

 

Table 2 describes the different data sets, including their data distributions. Five data sets were Gaussian and 

two were log-normal (e.g. deforestation and rice). Uncertainties of the original emission data sets were 

expressed as standard deviations, or as percentiles (e.g. 5
th
 95

th
). For those variables where there was no 

pixel uncertainty (livestock and wood harvesting) we relied on the authors’ expert judgements.  

 

2. Parameterization of the error model: To run Monte Carlo simulations at the pixel level, a parameterized 

model for each emission source was required. Models were based on the distribution functions of each 

emission data source. Gaussians probability functions used their means and standard deviations. Log-

normals used location and scale parameters. However, log-normal models did not match the data perfectly 

well, which resulted in slightly higher values (2.5%) for the aggregated AFOLU emissions per pixel obtained 

through Monte Carlo, than obtained through the original data sets. 
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The Monte Carlo error model followed Equation (3): 

Equation(3)    AFOLU uncertainties (pixel level) = Gaussian(livestock) + Gaussian(fire) + Gaussian(wood 

harvest) + Gaussian(crops)  + Lognormal(rice) + Lognormal(deforestation) 

 

3. Processing of the data: We ran 1000 Monte Carlo simulations per pixel using the parameterized models in 

Equation(3), and obtained the mean, variance and 5
th
 and 95

th
 percentiles of the final AFOLU data 

distribution. We chose two measures of uncertainties at pixel level (variance and 5th-95th percentiles) 

because they offer different information (total uncertainty vs thresholds of uncertainty).  

 

 Aggregated AFOLU variance: We aggregated the variance in each pixel following Equation 2,  

Equation (2)                      

 

Where σ is the standard deviation, and σ
2 

is the variance. Assuming ρ =0 (complete independence) at the 

pixel level, the variance of the aggregated emissions (AFOLU emissions) is the sum of the variances of the 

individual emission sources (e.g. crops, deforestation, rice, livestock, etc). All the uncertainties were 

transformed to variances at the pixel level. In the case of the percentiles, the associated variances were 

computed from the reported means and percentiles using an optimizer with a sum of squares cost criterion. 

In the case of the standard deviations, they were simply squared.  

 

 The 5
th
 and 95

th
 percentiles per pixel were obtained from the AFOLU distribution function produced by 

1000 Monte Carlo simulations in each pixel.  

4. Considerations of spatial correlation in the uncertainty data: scaling up: We ran our Monte Carlo analysis 

at the pixel level, but we also needed to produce statistics of emissions and uncertainties at other scales. 

This implied propagating the uncertainties to other levels of spatial aggregation (e.g. continent, tropics). 

Spatial correlation and cross-correlation are important to correctly aggregate uncertainties when there is a 

change of scale (e.g. from pixel to country or continental levels). Two extreme situations can occur: complete 

data dependence or complete data independence. Dependence assumes the variation of individual pixels´ 

uncertainties to completely depend on neighbouring effects, and independence assumes the opposite. In 

reality, data behaves between these extremes. However, and due to lack of available information on the data 
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spatial correlation, we assumed complete dependence of the uncertainties when scaling up. This is a 

conservative approach since data dependence always results in larger uncertainty values due to an additive 

correlation term (ρ > 0), that turns 0 in uncorrelated variables (ρ = 0) (Eq. 2). 

The aggregation of the pixel AFOLU uncertainties to these larger areas was estimated differently for the two 

different measures of uncertainty that we use in this research: variance and 5
th
 and 95

th
 percentiles:  

1. For the variance: variances at aggregated scales were computed as the squared sum of standard 

deviations at pixel level. Note that this equals the sum of the cross product of the vector standard 

deviations at pixel level and its transpose, which implies complete spatial correlation of pixels within 

aggregation units.  

An easy example of this approach can be explained with 2 random variables (x, y) using Equation 2. 

If ρ=1 (complete correlation) 

Eq (2)                      

σ (x+y)=  √ (σx
2 + σy

2 + 2 σxσy) = √ (σx + σy)
2 -----> σ (x+y) = (σx + σy) 

where σ are standard deviations and σ
2
 variances. Under complete data dependence, the 

aggregation of the uncertainties can be obtained through the addition of the standard deviations, 

which are the squared to obtained the aggregate variance (from σ to σ
2
) 

2. For the 5
th
 and 95

th
 percentiles: the scaling up of the percentiles was computed as the sum of the 

corresponding percentiles at the pixel level. This can be considered a worst-case scenario since the 

approach produces wider ranges than when partial spatial correlations of pixels are modelled (e.g. 

we are adding the most extreme uncertainties for each pixel, the lower values (5
th
 percentile) or the 

higher values (95
th
 percentiles).  

2.  Net vs gross AFOLU assessments 

Net assessments consider both emissions by sources and absorption by sinks. For AFOLU emission 

reporting, both emissions and removals should be considered. Afforestation, forest regrowth and 

sequestration from forest remaining forests are important processes to consider in net land use AFOLU 

balances. However, we excluded forest sink contribution in our AFOLU assessments for several reasons: i) 
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lack of spatially explicit GHG absorption emission data and associated uncertainties. It would be possible to 

derive forest absorption data through Tier 1 approaches that used the existing spatially explicit data on 

increased canopy cover (Hansen et al. 2013) but the accuracy of the absorption product would be quite 

lower than the emission data sets, many of which use Tier 3 approaches, ii) the most important sequestration 

activity would be afforestation but pantropical countries contribute little to large scale afforestation projects 

(China would be an important exception but it is not included in our study area) Viet nam and India would be 

the only two countries in the tropics were some level of afforestation is occurring (Smith et al. 2014), iii) forest 

regrowth is important in net land use emission assessments but its contribution has been reported to be quite 

small in the tropics (e.g. -0.4 PgCO2e.yr
-1

 ) (Achard et al. 2014), moreover iv) the sequestration role of 

forests remaining forests (e.g. growth) is unlikely to be additional from their baselines, which is fundamental 

for mitigation efforts. The exception would be large –national scale- forest restoration initiatives over forest 

land, or effective large scale forest management programmes, which do not seem to be occurring in our 

pantropical study area with the exception of, perhaps, Viet Nam.  

 

To evaluate that the exclusion of the forest sink would not invalidate our emission budgets, we downloaded 

FAO data on forest land use emissions and absorptions for 2000-2005 for our pantropical region. Net 

emissions from forests remaining forests (degradation + sink effects due to growth, regrowth, improved 

forest management, or/and forest restoration projects) added up to -0.3 PgCO2e.yr
-1

, while deforestation 

emissions added up to 3.2 PgCO2e.yr
-1

. The net sequestration effect of forests remaining forests was, 

therefore, one order of magnitude smaller than the deforestation emissions in 2000-2005. While this small 

contribution could respond to many possible combinations of degradation (e.g. high/low degradation 

emissions) and sequestration (e.g. high/low sequestration from forests), we at least verified that the net 

contribution of the sink for the tropic was small, and that some continents, such as Asia do not have net 

sinks. Table 5 shows the sink contribution (forest remaining forests),  the net deforestation (forest land use 

change) and the net forest emission balance, at aggregated tropical and continental scales. 
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 Forest remaining forest (net 

emissions: degradation + sinks) 

Forest land use change 

(net deforestation) 

Net forest 

emission balance 

 Pg CO2e.yr
-1

 

Tropical -0.3 3.2 2.9 

Africa -0.05 0.7 0.65 

Asia 0.12 0.6 0.7 

Central South 

America 

-0.4 1.9 1.5 

Table 5: Forest statistics per continent on net deforestation, net emissions from forest remaining forests 

(sinks and removals), and the net forest balance. Data was extracted at country level from FAOstats 

 

Gross and Net AFOLU estimates under the AR5 

Based on the AR5 (Smith et al. 2014), gross FOLU emissions in the tropics were approximately 8.2 

PgCO2.yr-1 (2000-2007), which are reported as Baccini’s estimates using Houghton’s book-keeping model 

(Figure S7 supplementary, Fig 11.8 AR5). This value contrasts with the approximately 6 PgCO2e.yr-1 (2000-

2005), gross emissions estimated in three data bases (Hotspots, AFOLU and EDGAR-JRC). While time 

periods are not identical, the differences rather relate to the included sources and methods chosen to 

estimate them. Thus, our lower emissions estimates include multiple gases (not only CO2, but also CH4 and 

N2O) and forest fire emissions (2 PgCO2e.yr-1), which are fully omitted in the 8.2 PgCO2.yr-1 estimate. 

However, we did not include soil SOM emissions (0.55 PgCO2.yr-1) nor shifting cultivation (2.35 PgCO2.yr-

1).This last we assumed to be part of the deforestation estimates. It is unclear how Baccini’s gross estimates 

separates between shifting cultivation and deforestation. Moreover, Baccini’s wood-harvesting estimates 

were also higher than the estimates in our considered data bases (2.49 PgCO2.yr-1 vs a maximum of 2 

PgCO2.yr-1 for FAOSTAT). It is also unclear why the AR5 report selectively uses some gross emission 

estimates from Baccini et al. (2012)’s study but not all. Thus, Baccini et al. (2012) report a gross FOLU 

budget of 12.32 PgCO2.yr-1 that derives from larger deforestation values (4.18 PgCO2.yr-1) than the ones 

selected for the AR5 (2.97 PgCO2.yr-1), includes fire emissions (2.86 PgCO2.yr-1) –not included in the AR5-

, wood decay (3.04 PgCO2.yr-1), soil SOM emissions (0.55 PgCO2.yr-1) and shifting cultivation (2.35 

PgCO2.yr-1). This estimates maze urgently call for more transparent and more detailed information on 

methods and assumptions for future AFOLU estimates under the IPCC Assessments Reports. 

 

The same call for higher transparency applies to the AFOLU net estimate under the AR5 (5 PgCO2.yr-1) (Fig 

S8 supplementary, Fig. 11.2 AR5). This value is reported to be the aggregation of: i) the Land Use Change 

and Forestry net emissions from Houghton et al. (2012), and the ii) emissions of drained and burned 

peatlands from FAOSTAT (2013), as explained in the figure caption. However, we believe there are 
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problems with these reported data bases. Thus, Houghton et al. (2012) report a value of 4.03 PgCO2.yr-1 

(1.1 PgC.yr-1) (2000-20009) for land use chage and forestry, but Figure 11.2 shows a value closer to 3.67 

PgCO2.yr-1 which matches better the estimate reported by Baccini et al. (2012) (2000-2007). On the other 

hand, emissions from burning peatlands are supposed to derive from FAOSTAT for 2000-2009 but we could 

not reproduce this number using FAOSTAT, and the value of 1.1 PgCO2e.yr-1 that appears in Fig 11.2 AR5 

(Fig S8 supplementary) is closer to peatland fire and decay estimates reported by Houghton et al. (2012) for 

the period 1997-2010, which includes the very severe El Niño fires 1997 in Indonesia (and does not 

correspond to the 2000-2009 period). These numbers mismatches urgently call for more dialogue among the 

AFOLU community and higher transparency on data and methods.  

 

 

Figure 6: Table 11.1 reported under the AR5-WGIII (Smith et al. 2014) 

http://www.ipcc.ch/pdf/assessment-report/ar5/wg3/ipcc_wg3_ar5_chapter11.pdf 

 

http://www.ipcc.ch/pdf/assessment-report/ar5/wg3/ipcc_wg3_ar5_chapter11.pdf
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Figure 7: Gross and net contributions of emissions from sources and removal from sinks 

for the FOLU sector, for different studies. Source: Figure 11.8 from AR5, WGIII (Smith et 

al. 2014) http://www.ipcc.ch/pdf/assessment-report/ar5/wg3/ipcc_wg3_ar5_chapter11.pdf 

 

http://www.ipcc.ch/pdf/assessment-report/ar5/wg3/ipcc_wg3_ar5_chapter11.pdf
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Figure 8: Net AFOLU estimates for different time periods. Source: Figure 11.2 from AR5-

WGIII (Smith et al. 2014) http://www.ipcc.ch/pdf/assessment-

report/ar5/wg3/ipcc_wg3_ar5_chapter11.pdf 

 

3.  FAO and EDGAR-JRC databases and comparative AFOLU emissions 

To assess the results of our aggregated AFOLU emissions, we contrasted our scaled up country level 

emission values with other databases that also offer AFOLU country emission data (for a list of countries 

used see Table 9). No uncertainty data exists in these other databases, so comparisons were restricted to 

emissions.  

Emission data from FAOstats were downloaded from http://faostat3.fao.org/home/E and for EDGAR-JRC 

v4.2 FT2010 from http://edgar.jrc.ec.europa.eu/overview.php?v=42FT2010 We chose AFOLU N2O, CH4 and 

http://www.ipcc.ch/pdf/assessment-report/ar5/wg3/ipcc_wg3_ar5_chapter11.pdf
http://www.ipcc.ch/pdf/assessment-report/ar5/wg3/ipcc_wg3_ar5_chapter11.pdf
http://faostat3.fao.org/home/E
http://edgar.jrc.ec.europa.eu/overview.php?v=42FT2010
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CO2 emissions from 2000 to 2005 and then estimated their annual means. The FAO data set had a complete 

an organized metadata that allowed the understanding of the different variables. Emissions were offered per 

land use (forests, croplands, wetlands, grasslands) and agriculture. EDGAR-JRC did not count on any 

metadata and the understanding of the offered data was confusing. Emissions were organized per GHG 

(CO2, N2O and CH4) and then by a code similar to the IPCC GHG reporting categories. Table 6 displays the 

V4.2 FT2010 coding.  

 

Code Description as in the FT2010 Excel files Code Description as in the FT2010 

Excel files 

4D direct agricultural soil emissions (fertilizers, manure, 

crop residues) 

5A Forest fires 

4D4 Other direct soil emissions 5C Grassland fires 

4E Savannah burning 5D Wetland/peat fires and decay 

4F field burning of agricultural residues 5F2 Forest fires decay 

Table 6: Codes offered for each GHG for each year, in the V4.2 FT2010 Excel datasheets. 

 

To make the comparison with our data possible, we chose those variables that match our AFOLU emissions. 

Therefore, we excluded non-woody vegetation fires, we excluded forest sinks, and we also exclude those 

emissions that were not included in our analyses (e.g. energy in agricultural emissions). Table 7 shows a 

brief overview of the included variables as named in each database, and the way to group these variables 

into forests, crops and livestock, which are then visualized in Figure 6. 

For a description of the differences among AFOLU databases, please refer to Tubiello et al. (2015). We 

estimated the AFOLU emissions for the study area covered by of our research, as annual means for 2000-

2005, for the selected data sets in each database (FAO and EDGAR-JRC) (Table 7). Final AFOLU values 

were  7.9, 6.6, and 5.7 PgCO2e.yr
-1

 for this study, FAOstats and EDGAR-JRC respectively. 

 This study FAOstats EDGAR-JRC 

F
o

re
s
ts

 

Deforestation (CO2) Net forest conversion (CO2) 
No direct deforestation emission 
exists.  

Biomass burning 
(CO2, CH4, N2O) 

Biomass burning of humid forests 
and other forests (CH4, N2O) 
Biomass burning of organic soils 
(CH4, N2O, dSOC) 

Forest fires and wetland/peat 
fires + decay of drained soils 
(CO2, CH4, N2O) 

Harvesting (CO2) 
No direct harvesting emission data 
available 

No direct harvesting emission 
data available 

C
ro

p
s

 

Crop soil emissions (N2O, 
dSOC) 

Synthetic fertilizers (N2O) 
Manure applied to soils (N2O) 
Crop residues (N2O) 
 

Direct agricultural soil emissions 
(fertilizers, manure, crop 
residues) (N2O) 
Other direct soil emissions (CO2) 

Crop emissions over CO2 emissions of croplands over Not available 
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organic soils (CO2) drained histosols (CO2) (Cropland-
land use) 

Rice (CH4, dSOC) Rice cultivation (CH4) Rice (CH4) 

L
iv

e
s
to

c
k

 

Livestock 
Enteric fermentation (CH4) 
Manure management 
(N2O, CH4) 

Enteric fermentation (CH4)  
Manure management (CH4, N2O)  
Manure applied to pastures (N2O)  
 

Enteric fermentation (CH4) 
Manure Management (CH4,N2O) 
 

Table 7: Brief overview of the emissions included in each database. 

Figure 9 shows the comparison of AFOLU emissions among these three databases, and the emissions 

partitioning into three main categories: Forests, Crops and Livestock. Forest emissions were the most 

uncertain among the three data bases. 

 

Figure 9: Comparison of AFOLU emissions and three main emission categories (forests, crops and 

livestock) for three databases: this study, FAOstats, and EDGAR-JRC. 

4.  Quality Assessment Tests 

 

Deforestation based on Harris et al. (2012) data 

 

TgC TgCO2 Harris TgCO2 this study 

Brazil 340 1246.7 1240.7 

Argentina 10 36.7 37.3 

Indonesia 105 385.0 350.5 

DRC 23 84.3 82.5 

 

Fire regional Van der Werf et al. (2010) 
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Mean TgC.yr
_1

 Mean TgCO2.yr
_1

 TgCO2 this study 

EQAS 113.2 414.9 240.9 

SHSA 251.8 923.4 418.5 

SHAF 551.3 2021.6 1911.2 

NHSA 23.5 86.2 52.6 

 

 

      
 

       Regional biomass burning emissions in our study area were smaller than Van der Werf et al. (2010) values 

because  we had eliminated deforestation fires and non-woody fires, and not all the countries in each region 

were included in our study area. For fire, the Quality Assesment was more an evaluation of orders of 

magnitude. 

Crop soil emissions  (direct N2O) (Ogle data versus EPA’s MAC Report 2013) 

 

TgCO2e MAC Report TgCO2e this study 

Argentina 14 15 

Brazil 35 36 

India 60 55 

US 82 83 

China 109 119 

 

Rice emissions (Li data versus EPA’s MAC Report 2013) 

 

TgCO2e MAC REPORT TgCO2e in this study 

 

CH4 N2O dSOC (CO2) CH4 N2O dSOC (CO2) 

India 91.2 76.7 -50 133 68 -36 

Indonesia 81.7 25.5 2.2 82 13 -6 

China 72.9 34.6 -69.4 40.8 32 -37 

Vietnam 47 25.7 -4.8 35.6 22 -4 

Bangladesh 54.4 63 -16 68 77 -12 

World 484 260 -179 526 246 -126 

 

Livestock emissions (Mario data versus MAC Report 2013) 

 

TgCO2e TgCO2e this study 

India 300 333 

China 242 250 

Brazil 235 218 

US 174 170 

Bangladesh 80 78 
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5. AFOLU country statistics for gross emissions 

 

 
AFOLU country gross emissions and 

uncertainties 
Percent contribution to country AFOLU gross 

emissions 
Percent contribution to country AFOLU gross 

emissions uncertainties 

 TgCO2e.yr-1    %    % 

Country 
AFOLU 
emiss. 

5th 
percent 

95th 
percent 

Variance 
Defores
tation 

Fire Harvest 
Lives
tock 

Crop Rice 
Defores
tation 

Fire Harvest 
Lives
tock 

Crop Rice 

Angola 282.9 189.5 391.4 4.5E+15 8.3 87.8 2.2 1.5 0.2 0.0 29.3 70.6 0.0 0.0 0.0 0.0 

Argentina 153.2 102.4 235.3 2.6E+15 25.5 13.9 11.6 37.2 11.0 0.8 93.1 0.9 0.5 5.5 0.0 0.0 

Bangladesh 184.4 154.8 219.5 4.0E+14 1.6 0.1 1.5 23.3 0.2 73.3 0.7 0.0 0.1 25.1 0.0 74.1 

Belize 3.1 2.0 4.5 6.2E+11 87.4 2.2 7.0 1.4 1.3 0.7 99.7 0.0 0.3 0.0 0.0 0.0 

Benin 13.7 10.1 18.2 8.0E+12 10.2 8.7 57.0 18.9 4.7 0.5 59.9 0.9 35.3 3.9 0.0 0.0 

Bhutan 4.4 2.5 8.5 6.3E+12 41.3 2.7 38.5 15.1 2.0 0.4 97.8 0.0 1.9 0.3 0.0 0.0 

Bolivia 92.3 49.8 172.2 2.5E+15 49.1 34.8 2.2 11.3 1.9 0.6 98.4 1.5 0.0 0.1 0.0 0.0 

Botswana 11.5 7.1 19.0 2.1E+13 51.6 2.6 19.1 26.5 0.2 0.0 97.4 0.0 0.9 1.7 0.0 0.0 

Brazil 1870.3 1187.2 2918.3 3.7E+17 68.1 4.9 12.5 12.0 2.1 0.4 98.8 0.1 0.6 0.5 0.0 0.0 

Brunei 0.8 0.5 1.2 7.5E+10 33.2 0.2 62.7 3.2 0.0 0.7 89.5 0.0 10.5 0.0 0.0 0.0 

Burundi 5.9 4.2 8.1 1.9E+12 11.1 1.1 65.5 10.0 12.0 0.3 59.2 0.0 39.8 0.9 0.1 0.0 

Cambodia 66.0 37.0 118.1 1.1E+15 49.9 34.0 0.0 8.7 0.2 7.2 98.2 1.7 0.0 0.1 0.0 0.0 

Cameroon 57.2 34.9 96.2 4.9E+14 42.1 16.5 24.8 15.5 1.0 0.1 96.7 0.8 1.8 0.7 0.0 0.0 
Central 
African 
Republic 231.7 153.8 317.7 2.8E+15 7.2 88.4 2.2 2.0 0.2 0.0 17.8 82.2 0.0 0.0 0.0 0.0 

Chad 32.8 23.6 45.3 6.2E+13 12.8 32.1 24.7 30.0 0.2 0.0 74.3 10.9 6.0 8.8 0.0 0.0 

Chile 48.1 34.8 67.5 1.5E+14 40.5 5.6 41.2 11.0 1.7 0.0 88.6 0.2 10.4 0.7 0.0 0.0 

Colombia 111.7 66.8 191.5 2.2E+15 51.2 1.4 11.6 28.3 3.0 4.6 98.2 0.0 0.3 1.5 0.0 0.0 

Congo 20.3 9.3 42.2 1.7E+14 64.5 4.9 30.1 0.6 0.0 0.0 99.2 0.0 0.8 0.0 0.0 0.0 

Congo, DRC 438.8 287.8 642.8 1.5E+16 18.8 60.2 20.3 0.5 0.2 0.0 68.0 28.8 3.2 0.0 0.0 0.0 

Costa Rica 6.7 4.1 10.7 4.8E+12 69.0 2.3 1.2 20.3 0.1 7.2 98.1 0.0 0.0 1.4 0.0 0.5 

Cote d'Ivory 26.0 16.1 42.6 9.8E+13 41.2 3.6 41.5 10.1 3.1 0.6 94.7 0.0 5.0 0.3 0.0 0.0 

Cuba 9.6 6.8 13.8 6.0E+12 20.9 12.9 6.1 47.7 1.8 10.6 78.1 1.4 0.2 15.3 0.0 5.0 
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AFOLU country gross emissions and 

uncertainties 
Percent contribution to country AFOLU gross 

emissions 
Percent contribution to country AFOLU gross 

emissions uncertainties 

 TgCO2e.yr-1  % % 

Country 
AFOLU 
emiss. 

5th 
percent 

95th 
percent 

Variance 
Defores
tation 

Fire Harvest 
Lives
tock 

Crop Rice 
Defores
tation 

Fire Harvest 
Lives
tock 

Crop Rice 

Dominican 
Republic 4.0 2.2 6.6 2.2E+12 41.8 1.9 0.0 51.1 1.0 4.2 92.8 0.0 0.0 6.7 0.0 0.5 

Ecuador 32.4 20.1 52.6 1.5E+14 52.6 1.3 17.1 20.6 2.1 6.4 97.8 0.0 0.8 1.1 0.0 0.3 

El Salvador 2.5 1.6 4.3 1.2E+12 21.7 3.4 3.5 60.9 6.9 3.7 94.8 0.0 0.0 5.1 0.0 0.0 
Equatorial 
Guinea 1.9 0.6 4.5 2.1E+12 89.0 0.0 10.6 0.3 0.0 0.0 99.9 0.0 0.1 0.0 0.0 0.0 

Ethiopia 151.4 108.5 202.6 1.0E+15 8.8 10.1 55.0 25.2 0.9 0.0 54.0 1.3 36.9 7.7 0.0 0.0 
French 
Guiana 1.9 0.8 4.3 2.0E+12 62.5 0.3 32.3 0.3 0.0 4.6 99.2 0.0 0.8 0.0 0.0 0.0 

Gabon 15.8 5.5 36.9 1.5E+14 87.5 2.0 9.9 0.5 0.1 0.0 99.9 0.0 0.1 0.0 0.0 0.0 

Ghana 32.2 21.9 45.9 6.6E+13 23.3 3.7 60.3 10.6 1.6 0.4 71.0 0.1 28.0 0.9 0.0 0.0 

Guatemala 25.4 17.3 37.6 4.5E+13 73.9 4.0 5.1 12.9 3.6 0.4 98.9 0.1 0.1 0.9 0.0 0.0 

Guinea 28.8 17.3 51.3 1.9E+14 25.1 13.7 40.0 20.1 0.5 0.6 97.3 0.2 1.9 0.5 0.0 0.0 
Guinea-
Bissau 3.4 2.4 5.1 1.4E+12 14.3 31.2 16.8 24.5 0.9 12.3 94.6 2.9 0.8 1.6 0.0 0.1 

Guyana 8.6 3.9 17.6 2.7E+13 63.7 0.3 10.6 1.6 0.2 23.7 95.6 0.0 0.1 0.0 0.0 4.2 

Haiti 3.5 2.5 4.6 5.0E+11 10.5 0.6 28.2 58.4 2.1 0.1 52.0 0.0 9.0 38.9 0.0 0.1 

Honduras 16.7 10.7 27.8 4.2E+13 34.6 6.9 39.7 12.8 5.8 0.3 96.3 0.1 3.2 0.3 0.0 0.0 

India 897.5 706.8 1117.7 1.8E+16 7.7 0.6 27.9 38.6 6.0 19.3 35.6 0.0 20.9 40.0 0.1 3.4 

Indonesia 664.4 359.8 1099.4 5.9E+16 50.6 32.9 0.0 2.6 1.0 12.9 84.6 13.6 0.0 0.0 0.0 1.7 

Jamaica 1.2 0.7 2.3 3.2E+11 60.1 0.6 0.0 39.3 0.0 0.0 97.1 0.0 0.0 2.9 0.0 0.0 

Kenya 49.9 34.8 71.0 1.8E+14 15.0 0.9 50.5 33.1 0.4 0.0 75.4 0.0 17.2 7.4 0.0 0.0 

Laos 62.1 34.1 108.9 7.1E+14 89.3 3.5 0.0 5.2 0.2 1.7 99.9 0.0 0.0 0.1 0.0 0.0 

Lesotho 3.3 2.5 4.2 3.4E+11 8.7 7.5 47.6 33.2 3.0 0.0 49.7 0.8 33.3 16.1 0.0 0.0 

Liberia 11.8 6.1 22.2 3.3E+13 61.4 0.1 37.3 0.8 0.0 0.4 97.4 0.0 2.6 0.0 0.0 0.0 

Madagascar 37.0 23.5 60.9 1.9E+14 32.8 11.3 25.2 27.5 0.6 2.7 95.4 0.4 1.9 2.2 0.0 0.2 
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AFOLU country gross emissions and 

uncertainties 
Percent contribution to country AFOLU gross 

emissions 
Percent contribution to country AFOLU gross 

emissions uncertainties 

 TgCO2e.yr-1  % % 

Country 
AFOLU 
emiss. 

5th 
percent 

95th 
percent 

Variance 
Defores
tation 

Fire Harvest 
Lives
tock 

Crop Rice 
Defores
tation 

Fire Harvest 
Lives
tock 

Crop Rice 

Malawi 10.9 7.2 17.4 1.6E+13 18.2 34.0 31.9 11.3 4.0 0.7 93.6 3.2 2.8 0.4 0.0 0.0 

Malaysia 162.2 91.1 270.1 3.4E+15 84.5 1.4 10.9 0.8 0.1 2.3 99.6 0.0 0.4 0.0 0.0 0.0 

Mali 30.6 22.2 41.6 4.9E+13 11.3 14.6 29.9 38.3 1.2 4.7 69.5 2.7 10.5 17.1 0.0 0.1 

Mexico 133.4 99.9 183.6 9.1E+14 23.1 13.8 3.8 25.3 33.1 0.8 90.2 2.1 0.1 5.7 1.9 0.0 

Mozambique 222.5 142.7 337.3 4.9E+15 15.9 75.4 7.4 0.8 0.5 0.0 75.8 24.0 0.2 0.0 0.0 0.0 

Myanmar 180.4 126.3 261.0 2.0E+15 57.7 4.9 13.8 9.5 0.9 13.1 97.1 0.2 1.3 0.6 0.0 0.8 

Namibia 5.2 2.8 9.7 8.3E+12 34.3 2.7 9.6 52.9 0.4 0.0 94.9 0.0 0.2 4.9 0.0 0.0 

Nepal 29.7 19.6 44.6 8.3E+13 25.2 1.2 4.7 59.4 3.5 6.1 84.4 0.0 0.1 15.4 0.0 0.1 

Nicaragua 33.7 23.0 49.4 8.7E+13 75.7 2.3 0.8 14.1 4.2 2.9 98.9 0.0 0.0 0.9 0.0 0.1 

Nigeria 129.7 96.2 170.1 6.3E+14 11.0 8.3 46.1 29.1 4.1 1.5 57.8 1.0 29.3 11.7 0.0 0.0 

Panama 7.9 4.9 12.6 7.3E+12 60.2 1.2 8.9 18.8 1.1 9.7 96.4 0.0 0.3 1.2 0.0 2.1 
Papua New 
Guinea 26.8 9.2 60.9 3.7E+14 95.3 3.0 0.0 1.7 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 

Paraguay 76.0 47.9 123.2 7.9E+14 46.2 25.9 6.9 15.4 5.2 0.4 97.1 2.1 0.1 0.7 0.0 0.0 

Peru 49.0 28.7 86.1 4.8E+14 56.4 1.8 16.4 18.9 3.5 3.1 98.8 0.0 0.5 0.7 0.0 0.0 

Philippines 38.8 25.5 61.7 1.6E+14 39.9 0.5 0.0 18.0 15.8 25.9 93.7 0.0 0.0 1.3 0.8 4.1 

Rwanda 6.8 5.1 8.7 1.4E+12 9.9 2.0 52.5 16.0 19.4 0.2 43.3 0.1 51.7 4.8 0.1 0.0 

Senegal 16.0 11.9 21.3 1.2E+13 11.6 14.5 30.7 39.8 0.8 2.5 70.2 2.5 10.2 17.1 0.0 0.0 

Sierra Leone 8.7 4.6 16.6 2.0E+13 69.9 5.0 9.9 6.5 0.2 8.4 99.8 0.0 0.1 0.0 0.0 0.0 

Somalia 18.5 12.4 27.8 3.5E+13 17.1 0.0 25.8 53.9 3.1 0.0 80.3 0.0 3.7 16.0 0.0 0.0 

South Africa 88.1 62.3 127.4 6.0E+14 19.3 9.6 37.4 30.7 3.1 0.0 85.8 0.5 8.2 5.5 0.0 0.0 

Sri Lanka 11.8 8.3 19.1 2.5E+13 23.1 0.7 0.0 20.8 0.2 55.2 97.8 0.0 0.0 0.8 0.0 1.4 

Sudan 179.6 128.5 238.0 1.3E+15 7.0 35.5 24.7 26.5 6.3 0.0 43.8 28.5 12.8 14.7 0.2 0.0 

Suriname 3.8 1.6 8.2 6.4E+12 74.0 0.6 14.0 0.2 0.0 11.1 99.7 0.0 0.2 0.0 0.0 0.1 

Swaziland 2.0 1.3 3.4 9.2E+11 18.7 6.1 40.1 33.4 1.7 0.0 96.7 0.0 1.9 1.3 0.0 0.0 

Tanzania 130.8 85.9 202.0 1.9E+15 20.7 41.9 19.1 16.7 1.2 0.4 90.9 6.7 1.4 1.1 0.0 0.0 
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AFOLU country gross emissions and 

uncertainties 
Percent contribution to country AFOLU gross 

emissions 
Percent contribution to country AFOLU gross 

emissions uncertainties 

 TgCO2e.yr-1  % % 

Country 
AFOLU 
emiss. 

5th 
percent 

95th 
percent 

Variance 
Defores
tation 

Fire Harvest 
Lives
tock 

Crop Rice 
Defores
tation 

Fire Harvest 
Lives
tock 

Crop Rice 

Thailand 101.6 63.9 166.9 1.5E+15 65.3 2.2 1.4 9.7 1.6 19.7 99.4 0.0 0.0 0.2 0.0 0.4 

The Bahamas 0.0 0.0 0.1 5.9E+08 41.6 52.0 3.1 3.3 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 

The Gambia 1.0 0.8 1.3 3.6E+10 6.9 45.3 13.7 31.1 1.6 1.2 58.3 27.4 2.3 11.9 0.0 0.0 

Togo 4.2 2.9 6.2 1.6E+12 21.6 6.4 44.0 25.1 2.8 0.2 89.0 0.2 8.1 2.6 0.0 0.0 

Uganda 49.6 34.7 70.2 1.8E+14 10.8 12.2 54.8 17.2 5.0 0.1 75.6 1.1 21.1 2.1 0.0 0.0 

Uruguay 26.6 17.6 42.2 1.0E+14 12.6 0.3 20.4 62.6 1.2 2.8 91.9 0.0 0.8 7.3 0.0 0.0 

Venezuela 74.7 40.8 140.3 1.6E+15 54.1 7.7 4.1 27.5 2.3 4.3 99.2 0.1 0.0 0.7 0.0 0.0 

Vietnam 112.2 72.3 183.3 1.8E+15 28.9 6.1 0.1 10.7 1.2 53.0 94.3 0.1 0.0 0.4 0.0 5.2 

Zambia 205.1 141.2 277.8 1.9E+15 12.1 80.0 6.1 1.4 0.4 0.0 30.3 69.3 0.4 0.0 0.0 0.0 

Zimbabwe 43.8 30.2 65.9 1.6E+14 47.6 10.2 23.4 16.2 2.5 0.0 96.2 0.4 2.3 1.1 0.0 0.0 
 

Table 8: Country statistics for AFOLU gross emissions, thresholds of uncertainty (5
th
, 95

th
 percentiles), total uncertainty (variance), contribution of leading emissions 

sources to the country’s AFOLU gross emissions (%), and contribution of the leading emission sources to the country’s gross emissions uncertainties (%). 
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7. Other 

Rice emissions (Li et al. (2013)) 

Fertilizer 

Fertilizer N rates were determined to be inaccurate due to low modeled total yields for several countries in 

initial simulations. The authors recalibrated fertilizer N applications by simulating pure rice systems (i.e. 

systems with no other crops in the rotation; about 72% of the global total by area) at seven different N rates 

based on the distribution of available FAO Fertistat national rates for rice (table 9).  For each country, based 

on a comparison of yield generated from each N rate and yield figures from FAO 2009 data, Li et al. (2013) 

selected the higher of the N rate based on calibration (i.e. the rate of the yield that most closely matched 

FAO yield) or the N rate given by Fertistat. They then replaced existing rates in the Globe database with the 

new rates. 

Category N application rate (kgN/ha) 

Minimum 4.8 

10th percentile 35.1 

25th percentile 50.3 

Mean 86.4 

75th percentile 119.8 

90th percentile 144.5 

Maximum 250 

Table 9: N application rates used in yield calibration of the DNDC model for rice production 

1.1 Simulations 

Twenty four scenarios were run using DNDC 9.5 (table 10). The scenarios addressed management 

techniques (Table 11) in various combinations hypothesized to reduce greenhouse gas (GHG) emissions 

from rice systems:  flood regime (continuous flooding / CF, mid-season drainage / MD, dry seeding / DS, 

alternate wetting and drying / AWD, and switching to non-wetland systems / dryland rice), residue 

management (partial removal or 50% or total incorporation), conventional tillage or no till, and various 

fertilizer alternatives (conventional / urea, ammonium sulphate in place of urea, urea with nitrification 

inhibitor, slow release urea, 10% reduced fertilizer, and 30% reduced fertilizer. 
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Abbreviation Scenario Flooding Residue Alt. mgt. Fertilization 

cf Continuous Flooding CF 50% - conventional 

cf_r100 
Continuous Flooding, 100% 

Residue Incorporation 
CF 100% - conventional 

cf_amsu 

Continuous Flooding, 

Ammonium Sulphate 

Fertilizer 

CF 50% - 
ammonium 

sulfate 

cf_ninhib 

Continuous Flooding, 

Nitrification Inhibitor 

Fertilizer 

CF 50% - 
nitrification 

inhibitor 

cf_slowrel 
Continuous Flooding, Slow 

Release Fertilizer 
CF 50% - slow release 

cf_notill Continuous Flooding, No Till CF 50% no till conventional 

cf_f70 
Continuous Flooding, 30% 

Reduced Fertilizer 
CF 50% - 

30% 

reduced 

cf_f90 
Continuous Flooding, 10% 

Reduced Fertilizer 
CF 50% - 

10% 

reduced 

md Mid-season Drainage MD 50% - conventional 

md_r100 

Mid-season Drainage 

w/100% Residue 

Incorporation 

MD 100% - conventional 

md_amsu 

Mid-season Drainage, 

Ammonium Sulphate 

Fertilizer 

MD 50% - 
ammonium 

sulfate 

md_ninhib 

Mid-season Drainage, 

Nitrification Inhibitor 

Fertilizer 

MD 50% - 
nitrification 

inhibitor 

md_slowrel 
Mid-season Drainage, Slow 

Release Fertilizer 
MD 50% - slow release 

md_notill 
Mid-season Drainage, No 

Till 
MD 50% no till conventional 

md_f70 
Mid-season Drainage, 30% 

Reduced Fertilizer 
MD 50% - 

30% 

reduced 

md_f90 
Mid-season Drainage, 10% 

Reduced Fertilizer 
MD 50% - 

10% 

reduced 

md_ds 
Mid-season Drainage, Dry 

Seeding 
MD w/DS 50% - conventional 

awd 
Alternate Wetting & Drying 

AWD 50% - conventional 
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(AWD) 

awd_ninhib AWD w/Nitrification Inhibitor AWD 50% - 
nitrification 

inhibitor 

awd_slowrel AWD w/Slow Release AWD 50% - slow release 

ds Dry Seeding DS 50% - conventional 

ds_f80 
Dry Seeding, 20% Reduced 

Fertilizer 
DS 50% - 

20% 

reduced 

dry Dryland Rice 
dryland 

rice 
50% - conventional 

dry_f80 
Dryland Rice, 20% Reduced 

Fertilizer 

dryland 

rice 
50% - 

20% 

reduced 

Table 10: Rice management scenarios 

Management technique description 

rice flooding 

CF 
rice paddy is flooded on planting date and drained 10 days prior to harvest date 

- applies to both irrigated and rainfed rice 

MD 
rice paddy is drained twice during growing season for 8 days - final drainage is 

10 days prior to harvest date - applies only to irrigated rice 

AWD 

rice paddy is initially flooded to 10 cm – water level is reduced through evapo-

transpiration to -5cm and reflooded based on available water from precipitation - 

applies only to irrigated rice 

dryland rice all irrigated and rainfed rice are swapped for dryland rice - no flooding occurs 

rice seeding 

DS 
rice paddy is flooded 40 days after planting date and drained 10 days prior to 

harvest date - applies to both irrigated and rainfed rice 

residue incorporation 

50% 
50% of above-ground crop residue is removed - remaining residue is 

incorporated at next tillage 

100% all residue remains in place and is incorporated at next tillage 

tillage 

conventional 
prior to first crop in rotation tillage to 20cm depth; subsequent tillages (following 

each crop in rotation) to 10cm depth 

no-till tillage only mulches residue 
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fertilizer 

conventional fertilizer N applied as urea on plant date using a crop-specific rate 

ammonium sulfate fertilizer N applied as ammonium sulfate on plant date using a crop-specific rate 

nitrification inhibitor 
nitrification inhibitor is used with urea; reduced conversion of NH4 to NO3 is 

simulated with 60% efficiency over 120 days 

slow-release 
slow-release urea applied on planting date – N is released over 90 days at a 

linear rate 

10% reduced Crop-specified baseline fertilizer N rate is reduced by 10% (applied as urea) 

30% reduced Crop-specified baseline fertilizer N rate is reduced by 30% (applied as urea) 

Table 11: rice management techniques 

1.2 Post-processing / Summary Statistics 

DNDC creates two output files for each scenario: one with mean GHG flux value for full irrigation and one 

with mean GHG flux with zero irrigation.  Based on the percent irrigated value for each grid cell, model result 

files were combined to derive values based on mean irrigation. 

Most of the major rice producing countries have some mix of flood regimes (table 12).  To determine 

baseline management against which to compare all other scenarios (Table 13), simulation results were 

combined based on flood regime fraction.  For instance, baseline emissions for Bangladesh were determined 

by averaging the results of the CF and MD scenarios (CF * 0.2 + MD * 0.8). 

Region CF MD DS 

Bangladesh 20% 80% 0% 

Cambodia 43% 57% 0% 

China 20% 80% 0% 

India 30% 70% 0% 

Indonesia 43% 57% 0% 

Japan 20% 80% 0% 

Laos 43% 57% 0% 

Myanmar 43% 57% 0% 

Thailand 43% 57% 0% 

US: California 100% 0% 0% 



46 
 
 

US: Other 0% 0% 100% 

All Other Countries 100% 0% 0% 

Table 12: Flood regime by country 

Abbreviation scenario residue 

alt. 

mgt. fertilization weighted average 

base Baseline 50% - conventional cf / md / ds 

base_r100 
100% Residue 

Incorporation 
100% - conventional 

cf_r100 / md_r100 / 

ds_r100 

base_amsu 

Ammonium 

Sulfate 

Fertilizer 

50% - 
ammonium 

sulfate 

cf_amsu / md_amsu / 

ds_amsu 

base_ninhib 

Nitrification 

Inhibitor 

Fertilizer 

50% - 
nitrification 

inhibitor 

cf_ninhib / md_ninhib / 

ds_ninhib 

base_slowrel 
Slow Release 

Fertilizer 
50% - slow release 

cf_slowrel / md_slowrel / 

ds_slowrel 

base_notill No Till 50% 
no 

till 
conventional 

cf_notill / md_notill / 

ds_notill 

base_f70 
30% Reduced 

Fertilizer 
50% - 

30% 

reduced 
cf_f70 / md_f70 / ds_f70 

base_f90 
10% Reduced 

Fertilizer 
50% - 

10% 

reduced 
cf_f90 / md_f90 / ds_f90 

base_ds Dry-Seeding 50% - conventional ds / md_ds 

Table 13: baseline flooding scenarios 

For EPA’s MAC-Report (2013) results were reported at the country level in either annual per hectare rates or 

annual national totals. GHG emissions (N2O and CH4) and dSOC were reported in their native units or in 

CO2 equivalents (global warming potential / GWP).   


