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Abstract. Inaccurate estimate of the largest terrestrial carbon
pool, soil organic carbon (SOC) stock, is the major source
of uncertainty in simulating feedback of climate warming on
ecosystem–atmosphere carbon dioxide exchange by process-
based ecosystem and soil carbon models. Although the mod-
els need to simplify complex environmental processes of soil
carbon sequestration, in a large mosaic of environments a
missing key driver could lead to a modeling bias in predic-
tions of SOC stock change.

We aimed to evaluate SOC stock estimates of process-
based models (Yasso07, Q, and CENTURY soil sub-model
v4) against a massive Swedish forest soil inventory data set
(3230 samples) organized by a recursive partitioning method
into distinct soil groups with underlying SOC stock develop-
ment linked to physicochemical conditions.

For two-thirds of measurements all models predicted ac-
curate SOC stock levels regardless of the detail of input data,
e.g., whether they ignored or included soil properties. How-
ever, in fertile sites with high N deposition, high cation ex-
change capacity, or moderately increased soil water content,
Yasso07 and Q models underestimated SOC stocks. In com-
parison to Yasso07 and Q, accounting for the site-specific
soil characteristics (e. g. clay content and topsoil mineral N)
by CENTURY improved SOC stock estimates for sites with
high clay content, but not for sites with high N deposition.

Our analysis suggested that the soils with poorly predicted
SOC stocks, as characterized by the high nutrient status and
well-sorted parent material, indeed have had other predomi-
nant drivers of SOC stabilization lacking in the models, pre-

sumably the mycorrhizal organic uptake and organo-mineral
stabilization processes. Our results imply that the role of soil
nutrient status as regulator of organic matter mineralization
has to be re-evaluated, since correct SOC stocks are decisive
for predicting future SOC change and soil CO2 efflux.

1 Introduction

In spite of the historical net carbon sink of boreal soils,
500 Pg of carbon since the last ice age (Rapalee et al., 1998;
DeLuca and Boisvenue, 2012; Scharlemann et al., 2014),
boreal soils could become a net source of carbon dioxide
to the atmosphere as a result of long-term climate warm-
ing (Kirschbaum, 2000; Amundson, 2001). They have the
potential to release larger quantities of carbon than all an-
thropogenic carbon emissions combined (337 Pg; Boden
et al., 2010). In order to preserve the soil carbon pool and
to utilize the soil carbon sequestration potential to mitigate
anthropogenic CO2 emissions, mitigation strategies of cli-
mate forcing aim to improve soil organic matter management
(Schlesinger, 1999; Smith, 2005; Wiesmeier et al., 2014).

Supporting soil management decisions requires an ac-
curate quantification of spatially variable soil organic car-
bon (SOC) stock and SOC stock changes (Scharlemann
et al., 2014). The initial level of SOC stock is essential in
order to estimate SOC stock changes (Palosuo et al., 2012;
Todd-Brown et al., 2014), especially when estimating carbon
emissions due to land-use change, e.g., afforestation of grass-
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lands (Berthrong et al., 2009). Process-oriented soil carbon
models like CENTURY, Roth-C, Biome-BCG, ORCHIDEE,
JSBACH, ROMUL, Yasso07, and Q are important tools for
predicting SOC stock change, but there are also risks for poor
predictions (Todd-Brown et al., 2013; DeLuca and Boisv-
enue, 2012). The models need further validation and im-
provement as they show poor spatial agreement on fine scale
and moderate agreement on regional scale against SOC stock
data (Todd-Brown et al., 2013; Ortiz et al., 2013). Despite the
potentially quantitative importance of CO2 emissions the ex-
pected change will be small in relation to the SOC stock.
Therefore, the uncertainty of measurements and/or model
estimates could prevent conclusions on SOC stock changes
(Palosuo et al., 2012; Ortiz et al., 2013; Lehtonen and Heikki-
nen, 2015) especially for the soils with the largest SOC
stocks, which are the most sensitive to carbon loss. Beside
large uncertainties, the poor agreement between the modeled
and measured SOC stocks (Todd-Brown et al., 2013) could
also indicate missing biotic or abiotic drivers of long-term
carbon storage (Schmidt et al., 2011; Averill et al., 2014).

For example, ignoring the essential role of soil nutrient
availability in ecosystem carbon use efficiency (Fernández-
Martínez et al., 2014) could lead to missing important con-
trols of plant litter production and soil organic matter stabi-
lization mechanisms. Soil nutrient status is linked to the mo-
bility of nutrients in the water solution (Husson et al., 2013),
production, quality and microbial decomposition of plant lit-
ter (Orwin et al., 2011), and formation of the soil organic
matter (SOM). The SOM affects soil nutrient status by re-
cycling of macronutrients (Husson et al., 2013), and water
retention and water availability (Rawls et al., 2003).

In spite of state of the art soil carbon modeling based on
the amount and quality of plant litter “recalcitrance”, affected
by climate and/or soil properties as in the Yasso07, Q, and
CENTURY models, these types of process-based models do
not include mechanisms for SOM stabilization by (a) the or-
ganic nutrient uptake by mycorrhizal fungi; (b) humic or-
ganic carbon interactions with silt-clay minerals; and (c) the
inaccessibility of deep soil carbon and carbon in soil aggre-
gates to soil biota (Orwin et al., 211; Sollins et al., 1996;
Torn et al., 1997; Six et al., 2002; Fan et al., 2008; Dun-
gait et al., 2012; Clemente et al., 2011). Although the models
do not contain aforementioned mechanisms and controls for
changes in SOM stabilization processes, they have been pa-
rameterized using a wide variety of data sets and can treat
soil biotic, physicochemical, and environmental changes im-
plicitly. The Yasso07 model (Tuomi et al., 2009, 2011) is an
advanced forest soil carbon model and it is used for Kyoto
protocol reporting of changes in soil carbon amounts for the
United Nations Framework Convention on Climate Change
(UNFCCC) by European countries, e.g., Austria, Finland,
Norway, and Switzerland. The Q model (Ågren et al., 2007)
is a mechanistic litter decomposition model developed in
Sweden and used, e.g., to compare results produced with
Swedish national inventory data (Stendahl et al., 2010; Ortiz

et al., 2011) and also with other models at national or global
scales (Ortiz et al., 2013; Yurova et al., 2010). The CEN-
TURY model (Parton et al., 1987, 1994; Adair et al., 2008)
is one of the most widely applied models and it is used for
soil carbon reporting to the UNFCCC by Canada, Japan, and
USA. Although individual parameters and functions vary,
mathematical models such as Yasso07, Q, and CENTURY
have similar structures. For example, these models are driven
by the decomposition rates of litter input and SOM. Decom-
posing litter and SOM is divided into pools based on litter
quality, and its transfer from one pool to another is, apart
from model functions and parameters, affected by temper-
ature (Q), and/or water (Yasso07), and/or soil texture and
structure (CENTURY). The Q model does not include ex-
plicit moisture functions, whereas precipitation affects de-
composition for the Yasso07 and CENTURY models (Tuomi
et al., 2009; Adair et al., 2008). On the other hand, the mod-
els do not explicitly or by default include mechanisms that
reduce decomposition by excessive precipitation/moisture
(Falloon et al., 2011).

We hypothesized that (1) soil carbon estimates of the
Yasso07, Q, and CENTURY models would deviate for soils
where SOC stabilization processes not implicitly accounted
by the models are predominant, (2) the Yasso07 and Q mod-
els ignoring soil properties would fail on the nutrient-rich
sites of the southwestern coast of Sweden and on occasion-
ally paludified clay and silt soils, and (3) the CENTURY
model outperforms the Yasso07 and Q models due to fact
that it includes soil properties as input variables.

We grouped Swedish forest soil inventory data into ho-
mogenous groups with specific soil physicochemical con-
ditions using a regression tree and recursive partitioning
modeling methods. After that we ran the models until they
reached an equilibrium with a litter input that was derived
from the Swedish forest inventory. Thereafter, we compared
the model estimates against data by groups that were ob-
tained from the regression tree model. In discussion we ad-
dress the reasons why the models deviate and indicate direc-
tions of further improvements.

2 Material and methods

2.1 Measurements

We analyzed data from the Swedish forest soil inventory
(SFSI), which is a stratified national grid survey of vege-
tation and physicochemical properties of soils (SLU, 2011;
Olsson et al., 2009). The soil data distinguished between
the organic, B (0–5 cm of B horizon), BC (45–55 cm below
ground surface), and C (55–65 cm from the top of the mineral
soil) horizons (Olsson et al., 2009). All analysis was done
using R software for statistical computing and graphics (R
Core Team, 2014). The soil data were identical to a data set
used in Stendahl et al. (2010). We restricted our sample plots
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Table 1. Description of the Swedish Forest Soil Inventory (SFSI) data reduction of soil sorting of parent material and humus types; SFSI
conversion estimate of soil classes of soil moisture to numerical representation of soil water content; and SFSI conversion estimate of classes
to numerical representation of soil texture (sand, silt, and clay content for sediments by Lindén (2002) and for tills by Albert Atterberg’s
distribution of the different grain size fractions).

Sorting parent material Humus type Moisture
SFSI Reduced SFSI Reduced SFSI SFSI Numeric

Bedrock Bedrock Moder No-peat Water Long-term
Poorly sorted sediments Unsorted Mor 1 No-peat level (m) moisture %
Tills Unsorted Mor 2 No-peat Dry < 2 10
Well-sorted sediments Sorted Mull No-peat Fresh 1–2 20

Mull-Moder Peat Fresh-moist < 1 30
Peat Peat Moist < 0.5 50
Peat-Mor Peat

Texture

SFSI Numeric
Sediments Tills

Sand % Silt % Clay % Sand % Silt % Clay %

Bedrock 0 0 0 0 0 0
Boulder 0 0 0 0 0 0
Gravel 10 0 0 10 0 0
Coarse sand 40 5 0 40 5 0
Sand 80 10 0 45 10 0
Fine sand 70 25 5 55 15 0
Coarse silt 50 40 10 65 20 5
Fine silt 10 75 15 55 35 10
Clay 0 65 35 0 85 15
Peat 0 0 0 0 0 0

to minerogenic soils since the Q, Yasso07, and CENTURY
models were not developed for use on peat soils, and only to
plots for forest land use with Swedish forest inventory data
(SFI). We also excluded samples with total SOC stock be-
low 2.8 and above 470.5 (tCha−1), i.e., samples with SOC
stock below 0.01 and above 99.9 percentile. Measurement
data originated from 1993 to 2002, which constitute a full
inventory, and from 2020 sample plots located around Swe-
den, and in total it included 3230 samples. For each sample
plot the weather (years 1961–2011) and N deposition (years
1999–2001) data were retrieved from the nearest stations of
Swedish Meteorological and Hydrological Institute (SMHI)
network (Fig. 1). The plots, which were linked by the closest
distance to the given weather station had the same weather
and N deposition data, and the number of soil samples per
station ranged between 10 and 70. The mean total SOC stock
of samples corresponding to weather stations ranged from
40 to 200 (tCha−1), and the SOC stock level decreased from
southern to northern Sweden (Fig. 1).

Each sample plot contained categorical data from the field
survey on the sorting of soil parent material, humus type,
soil texture, and soil moisture. In our analysis we reduced
categorical classes by basing them on the sorting of soil par-
ent material and humus type (Table 1). We determined nu-

meric values for silt, clay, and sand content from soil texture
categories by Albert Atterberg’s distribution of the different
grain size fractions in tills and distributions for sediments by
Lindén (2002) (Table 1). We also determined numeric val-
ues of volumetric soil water content (SWC) from categorical
field data classified according to the depth of the ground wa-
ter level (WL; Table 1).

As is typical for soil carbon inventories, the variation of
data was large (Table 2). For example, the mean total SOC
stock of all samples was 93 (tCha−1) while 1st and 99th per-
centiles were 17 and 309 (Table 2). The mean SOC stock
was 33.3 and 66.8 (tCha−1) for the humus horizon and the
mineral soil. The mean values of cation exchange capacity
(CEC) (23.9 mmolc kg−1), the base saturation (36.4 %), and
the C / N ratio (16.5) indicated conditions of medium fertil-
ity, although the soils were mostly acidic (mean pH was 5.2).
The mean prevailing soil water content (22.3) was typical for
the well-drained forest soils. The mean annual temperatures
ranged from below 0 to above 8 ◦C, and annual precipita-
tion varied between 392 and 1154 mm (Table 2). Total SOC
stock for all the samples generally increased for peat and peat
like humus forms, for well-sorted sediments, for soils with
high fraction of silt and clay and with increasing soil mois-
ture (Fig. S1 in the Supplement).
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Table 2. Descriptive characteristics (mean, confidence interval, 1st, 50th, and 99th percentile) of selected variables (n= 3230 samples). The
values of the bulk density, cation exchange capacity, base saturation, C / N ratio, and pH are shown only for BC soil horizon (fixed 45–50 cm
depth below the ground surface) due to the strong correlation to the total soil carbon stock. The soil was cut off at 1 m. The site productivity
index (H100, m) is an approximation of the site fertility expressed as the height of trees at 100 years of age. Stand and understory biomass,
and litter input are modeled values for approximated equilibrium conditions based on observations.

Mean CI 1st percentile 50th percentile 99th percentile

Total soil carbon stock (tCha−1) 93.24 1.95 17.02 79.68 308.68
Humus carbon stock (tCha−1) 33.29 1.17 3.89 22.82 176.66
Mineral soil carbon stock (tCha−1) 66.82 1.7 6.92 54.81 273.91
Depth of humus (cm) 10.52 0.27 1 8 36
Depth of soil (cm) 93.37 0.6 18 99 99
Stoniness (%) 39.91 0.54 3.96 42.37 65.05
Bulk density of BC (gdm−3) 1267.1 5.5 790.55 1294.9 1522.13
Cation exchange capacity of BC (mmolc kg−1) 23.94 1.28 1.53 12.33 203.25
Base saturation of BC (%) 36.44 1.02 4.33 25.73 100
C / N ratio of BC 16.5 0.35 3.33 14.98 62.45
pH of BC 5.17 0.02 4.36 5.08 7.26
Silt content (%) 19.98 0.57 0 15 85
Clay content (%) 3.16 0.25 0 0 35
Sand content (%) 51.25 0.63 0 55 80
Long-term soil moisture (%) 22.36 0.2 10 20 30
Mean air temperature (◦C) 4.63 0.09 −0.44 5.34 8.47
Total precipitation (mm) 697.87 7.13 392.54 637.11 1154.55
Nitrogen deposition (kgNha−1 y−1) 7.17 0.14 2.35 6.56 17.67
Productivity class (H100, m) 23.61 0.21 12 23 36
Total stand biomass (tCha−1) 56.02 1.39 1.34 51.14 156.52
Total understory biomass (tCha−1) 2.69 0.05 0.96 2.37 6.02
Total litterfall input (tCha−1) 3.17 0.03 1.65 3.07 5.28

2.1.1 Biomass and litterfall estimates

For the biomass and litterfall estimation we adopted a stan-
dard method of national greenhouse gas inventories for esti-
mating soil carbon stock changes (Statistics Finland, 2013).
In order to model SOC stocks of forest in equilibrium (not
SOC stocks changes), we modified the method by estimating
the long-term litterfall of forest in equilibrium. Forest stand
biomass was estimated by allometric biomass functions for
stem with bark, branch, foliage, stump, coarse roots and fine
roots applied to basic tree dimensions (breast height diame-
ter, total height of tree, number of trees) of SFI stands (Mark-
lund, 1988; Pettersson and Ståhl, 2006; Repola, 2008; Lehto-
nen et al., 2016a). In order to simulate “equilibrium” soil car-
bon stock, we estimated long-term mean forest biomass, re-
ferred to as “equilibrium forest” below.

We adopted an observed fraction of photosynthetically ac-
tive absorbed radiation (fAPAR; Fig. A1 in Appendix A) as
a relative indicator of a site’s capacity to produce biomass
(minimum is 0, maximum is 1) by accounting for the forest
stand structure, ranging from the absent stand fAPAR = 0 to
the closed canopy stand fAPAR = 1, through its major role
on limiting of the potential gross primary production (Pel-
toniemi et al., 2015). The fAPAR was calculated based on
SFI measurements of basic tree dimensions as in Härkönen

et al. (2010) and for the main tree species (pine, spruce, de-
ciduous) it was well correlated with the stand basal area (Ap-
pendix A).

The equilibrium forest fAPAR values were assumed to be
in a range between the median and the maximum fraction of
the observed state forest fAPAR for a given species, latitu-
dinal degree, and site productivity index (Appendix A). We
selected equilibrium fAPAR as the 70th percentile (fAPAR70)
out of a range from the 50th to 95th, because the modeled
soil carbon distributions with a litter input from the fAPAR70
biomass agreed best with the measured soil carbon distri-
butions (Fig. S2). The fAPAR70 was the estimated 70th per-
centile of the observed fraction of absorbed radiation specific
for a given species, latitudinal degree, and site productivity
index H100 (height of trees at 100 years of age; m; Fig. B1 in
Appendix B). The site index H100, that can be translated to
a specific productivity (m3 ha−1 yr−1), was for Swedish for-
est inventory plots determined based on height development
curves and observed site properties by using the methodol-
ogy of Hagglund and Lundmark (1977) (Swedish Statistical
Yearbook of Forestry, 2014). Instead of modeling of equi-
librium biomasses for every tree stand component separately
for the species, latitude, and site productivity index, we sim-
plified the biomass modeling first by estimating only equilib-
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Figure 1. Geographical locations of meteorological stations with
corresponding number of nearest soil samples (n, size of the circle)
and their mean measured soil organic carbon stock (tCha−1, color
of the circle) across Sweden.

rium forest stand structure for the species, latitude, and pro-
ductivity (fAPAR70, Table A1 in Appendix A) and secondly
by using fAPAR70 with fAPAR biomass models (Table B1 in
Appendix B) to estimate the biomass components.

We modeled the equilibrium biomass by applying the fit-
ted exponential functions between the observed state forest
biomass components (stem, branch, foliage, stump, coarse
roots, fine roots, estimated by tree stand measurements and
the allometric biomass functions) and the observed fraction
of absorbed radiation (fAPAR; Appendix B) to the estimated
fAPAR70 of the equilibrium forest. The understory vegeta-
tion of the equilibrium forest was estimated by applying our
ground vegetation models (Appendix C) to the modeled equi-
librium forest characteristics, and plot-specific environmen-
tal conditions.

In order to derive the litter inputs, the annual turnover
rate (TR), the fraction of living biomass that is shed onto
the ground per year of biomass components, was applied
to the modeled biomass components of the equilibrium for-
est. The needle litter TR was a linear function of latitude
for pine and spruce and a constant for deciduous species

(Ågren et al., 2007). The TR of branches and roots were from
Mukkonen and Lehtonen (2004) and Lehtonen et al. (2004)
and the TR of stump and stem were from Viro (1955), Mälkö-
nen (1974, 1977) and Liski et al. (2006). For tree fine roots,
we assumed there was a difference between tree species and
between southern and northern Sweden. For pine, spruce,
and birch the TR fine roots were 0.811, 0.868, and 1.0, re-
spectively, as reported by Maidi (2001), Kurz et al. (1996),
and Liski et al. (2006). Kleja et al. (2008) and Leppälampi-
Kujansuu et al. (2014) reported different fine-root TR for
southern (1 and 0.83) and northern Finland (0.5). We interpo-
lated TR according to the mean annual temperature gradient
between TR of fine roots in the south and the north. The fine-
roots TR of 0.811, 0.868, and 1.0 in the warmest southern-
most soil plots were thus reduced down to 0.5 in the coldest
northernmost soil plots. The understory TR was applied as in
Lehtonen et al. (2016b).

The major part of the litter input originated from the tree
stand biomass components, which were modeled by the non-
linear functions with R2 values close to 0.9 (Fig. B1, Ta-
bles A1 in Appendix A, and B1 in Appendix B). The linear
understory vegetation models had low R2 values (Table C1
in Appendix C). However, when the understory models (Ap-
pendix C) were applied only to plots close to equilibrium for-
est, as in our application, the R2 values of predicted and ob-
served understory components were larger (Fig. S9). In com-
parison to major understory litterfall originating from rea-
sonably well-predicted dwarf shrubs and mosses (Figs. S9
and S10), the influence of poorer understory models (for
herbs, grass, and lichens) was small on predictions of the un-
derstory litter and marginal on predictions of the total forest
litterfall (Fig. S10). The main improvement on the accuracy
of total litter input was achieved by avoiding the confounding
effect of management on observed forest state by modeling
the biomass/litterfall estimates representing the mean long-
term conditions (defined by estimated equilibrium fAPAR70)
for small regions (defined by degree of latitude and produc-
tivity index for dominant species; Fig. A1 in Appendix A).
Thus the estimates accurately reflected the long-term spatial
variability in dominant species, nutrient status and climate
(Fig. S11) and lacked higher spatial and temporal precision;
as attempts for high precision of the estimates applied for the
period of the last few thousand years would be uncertain due
to high variation of factors affecting plot history.

2.1.2 Correlation analysis

Overall our data consist of 3230 soil samples and their car-
bon stocks linked to soil physicochemical variables, stand
and ground vegetation biomass and litterfall components,
and nearest weather station environmental variables. We per-
formed the Spearman’s rank correlation analysis between the
total soil carbon stock and the other soil variables, site, cli-
mate, and vegetation characteristics. As expected the total
soil carbon stock most strongly correlated with the measured
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Figure 2. (a) Classification/regression tree for the measured soil carbon stock (tCha−1), soil physicochemical properties, and site envi-
ronmental characteristics; the cation exchange capacity of BC horizon (CEC.BC, (mmolc kg−1)), the C / N ratio (CN.BC), the nitrogen
deposition (N.deposition kgNha−1 y−1), the highly bound soil water of C horizon (bound.H2O.C, %), and soil class variables as type of
sorted or unsorted soil parent material and humus type. Note that variables used to calculate the soil carbon stock (bulk density, carbon
content, depth, and stoniness) were excluded from the regression tree analysis. The values in the leaves of the tree show for the distinct en-
vironmental conditions mean soil carbon stock (tCha−1), number and percentage of samples. (b) The interpretation of 10 physicochemical
soil groups of the regression tree model into the levels of carbon, soil moisture, and fertility roughly increasing from left to right.

variables used for its calculation, e.g., bulk density, depth of
humus and mineral soil, carbon content, and stoniness. These
variables were excluded from further regression tree analysis,
which aimed to group data according to the processes of soil
carbon stock development.

2.1.3 Regression trees

In order to organize SOC data into groups according to the
physicochemical soil variables and to better understand the
nature of measured data, we generated regression trees of
SOC stocks by using recursive partitioning (RPART; Th-
erneau and Atkinson, 1997). RPART is based on developing
decision rules for predicting and cross-validation of continu-
ous output of soil carbon stocks (regression tree). The clas-
sification tree was built by finding a single variable, which

best splits the data into two groups. Each sub-group was re-
cursively separated until no improvement could be made to
the soil carbon stock estimated by using the split-based re-
gression model. The complex resultant regression tree model
was cross-validated for a nested set of sub-trees by comput-
ing the estimate of soil carbon stock to trim back the full tree.

When building the regression tree models, we excluded
variables such as bulk density, carbon contents of soil lay-
ers, soil depth, and stoniness, since these measured variables
were used for determining the total soil carbon stock. The
selected variables for the RPART data mining were based
on the correlations analysis (see Sect. 2.1.2), the processes
of soil organic matter formation (e.g., Husson et al., 2013)
and decomposition, and represented the soil categorical vari-
ables (sorting of parent material, soil texture, long-term soil
moisture, and humus form), soil physicochemical variables
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(sand, clay, and silt content, long-term soil moisture, highly
bound water, C / N ratio, pH, CEC of organic, B, BC, and C
horizons), climatic variables (annual mean air temperature,
annual precipitation sum), and stand and site characteristics
(tree species coverage of pine, spruce and deciduous, total
foliar litter input, productivity class and N deposition). Alter-
natively, we also ran regression and classification analysis by
excluding all measured soil variables because soil variables
are often unavailable for landscape level modeling.

The regression tree model separated the measured to-
tal SOC stocks (tCha−1) into 10 groups. The cation ex-
change capacity of the BC horizon (CEC, mmolc kg−1) di-
vided all the samples into two-thirds of lower SOC stock
groups (means between 65 and 130 tCha−1) and one-third of
larger groups (means between 86 and 269 tCha−1; Fig. 2a).
The group of the smallest SOC stock consisted of 959 sam-
ples compared to eight samples of the group with the largest
SOC stocks. We acknowledge that this is a small distinct
group based only on eight observations. However, we did
not have any reasons to exclude these data points as outliers.
These observations indicated highly fertile conditions (high
N deposition, the largest H100 among groups (31 m), second
largest litter input, the highest temperature and precipitation
on well-drained soil) (Fig. 2, Table S1 in the Supplement).
Two-thirds of samples with smaller SOC stocks were sub-
divided by CEC and the type sorting of soil parent material
(sorted or unsorted). One-third of samples with larger SOC
stocks was subdivided by the C / N ratio, CEC, N deposition
among others. Roughly generalized, groups from left to right
or from 1 to 10 formed a gradient in levels of SOC stock,
moisture, nutrient status, and production (Fig. 2, Table S1).

The alternative regression tree model was built with vari-
ables other than soil properties. The regression tree with the
annual mean air temperature, the annual precipitation sum
and the percentage of pine trees in the stand, and the ni-
trogen deposition separated measured SOC stocks (tCha−1)
into five groups (Fig. S3). Colder groups with smaller SOC
stocks (with means 67 and 85) had less litter input (below
3 tCha−1) and a low site productivity index (H100 < 20 m;
Table S2).

2.2 Soil carbon stock modeling

The Q model (Rolff and Ågren, 1999) is a continuous mech-
anistic litter decomposition model describing change of soil
organic matter over time. The decomposition rate for the
branch, stem, needle, fine root, and woody litter fractions
is controlled by the temperature, litter quality, microbial
growth, and litter invasion rate. The model has been cali-
brated for seven climatic regions of Sweden in order to ac-
count for Swedish temperature and precipitation gradients
(Ortiz et al., 2011; Table 3). The Q model was applied in
several studies of SOC stock and change estimation in Swe-
den (e.g., Stendahl et al., 2010; Ortiz et al., 2013; Ågren
et al., 2007). The Q model was run for seven Swedish cli-

matic regions (Ortiz et al., 2011). The mean regional parame-
terization from the calibration of the 2011 Q model was used
for the plot simulations. Thus, the simulations in each re-
gion represent variations in climate and litter input and not
parameter variations. The equilibrium soil carbon stocks are
estimated in the model using the equation for equilibrium
soil carbon stock, which is derived from the decomposition
functions with constant amounts and quality of litter input.

The Yasso07 model (Tuomi et al., 2009, 2011) is one of the
most widely applied SOC models. The model was calibrated
based on almost 10 000 measurements of litter decomposi-
tion from Europe, North and South America (Table 3). The
required annual inputs of litterfall, its size and chemical com-
position, temperature, and precipitation determine the de-
composition and sequestration rates of soil organic matter.
Yasso07 estimates SOC stock to a depth of 1 m (organic and
mineral layers), change of SOC stock, and heterotrophic soil
respiration. Species-specific chemical composition of differ-
ent litter compartments of Yasso07 were used according to
Liski et al. (2009). The initial soil organic matter of Yasso07
was zero. The simulated soil carbon stock corresponding to
equilibrium between the litter input and decomposition was
achieved by a Yasso07 spin-up run of 10 000 years. Yasso07
runs used litter inputs of the equilibrium forest biomasses
(see Sect. 2.1.1) and climate variables (annual air tempera-
ture, monthly temperature amplitude, and annual precipita-
tion). The global parameter values of decomposition rates,
flow rates, and other dependencies of the Yasso07 soil car-
bon model were adopted from Tuomi et al. (2011) and the
estimates of Yasso07 SOC stocks were used in comparison
with measurements and other models. We did not use the
SOC stocks simulated with the more recent Yasso07 param-
eters based on the litter decomposition data from the Nordic
countries (Rantakari et al., 2012), because the SOC stocks
simulated with the global parameter values produced a better
fit with SFSI measurements.

The CENTURY mathematical model originally devel-
oped for grassland systems (Parton et al., 1987, 1992) has
been since modified for various ecosystems including boreal
forests (Nalder and Wein, 2006). The CENTURY is also one
of the most widely applied models. The soil organic mat-
ter in the model consists of active, slow, and passive pools,
which have different TR (Table 3). The decomposition rates
are modified by temperature and moisture, and in addition
the decomposition rates of the slow and passive pools rely
on lignin to N and C to N ratios, while the active pool de-
composition rate relies on soil texture. The model simulates
soil organic matter to a depth of 20 cm. The model simu-
lates plant production and pools of living biomass, while TR
for biomass pools determine the litterfall inputs to soil. To
compare the performance of the soil sub-model with other
soil carbon dynamics models, Q and Yasso07, we only used
the CENTURY soil sub-model. We used the same litterfall
inputs as used by the Q and Yasso07 simulations, which
were estimated by our litterfall modeling (see Sect. 2.1.1).
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Table 3. Description of models and data inputs relevant for this study.

Model Yasso07 Q CENTURY v4.0 soil submodel

Time step Year Year Month
Parameterization Global Scandinavian Combined global with site specific
Carbon pools Labile (acid -, water -, and ethanol- sol-

uble and non-soluble), recalcitrant (hu-
mus)

Cohorts (foliage, stems, branches,
coarse roots, fine roots, “grass”), soil
organic

Litter (surface structural and
metabolic, belowground str. and
met.), surface microbial, soil
organic matter (active, slow and
passive)

Biomass Biomass components estimated by allometric biomass functions and provided stand data for litter input estimation
Litter amount Annual or monthly fractions of biomass components (species specific, same total litter inputs for all models)
Litter quality Literature-based solubilities Estimated cohorts qualities C / N ratios and lignin / N ratios
Temperature air Annual mean, monthly amplitude Annual mean Max and min monthly mean
Precipitation Annual total – Monthly total
Soil properties – – Bulk density, sand, silt, and clay content
Soil depth (m) 1 – 0.2

The litter inputs reflected N deposition and site productivity
(Fig. S11). For CENTURY we adopted general parameters
from the parameter file “tree.100”, parameters of site “AND
H_J_ANDREWS” for conifers, and site “CWT Coweeta” for
deciduous trees. The N dynamics in CENTURY sub-model
included tuning site-specific parameters of topsoil mineral N
relative to N deposition (Throop et al., 2004) and reduction
of C / N ratio of the litterfall up to 15 % for most productive
sites (Merilä et al., 2014). We also accounted for site-specific
soil drainage by varying its parameter between 1 and 0.6 rel-
ative to long-term soil water content ranging between 10 and
50 % (Raich et al., 2000). The CENTURY SOC stocks sim-
ulation were run with equilibrium forest litter inputs, site-
specific C / N ratios of litterfall, site-specific soil parameters
(specific bulk density, sand, silt, and clay content, mineral N
in topsoil, and drainage) and climate variables (monthly air
temperature, and monthly precipitation). In order to account
for the deep soil carbon (Jobbágy and Jackson, 2000), we
scaled CENTURY estimates representing the topsoil horizon
by adding 40 % of estimated site-specific SOC stock. The
simulated equilibrium SOC stocks were estimated by a spin-
up run of 5000 years. The number of years to reach equi-
librium (equilibrium between the litter input and decomposi-
tion) was sought empirically on 100 random sites, and differs
from Yasso07 and Q models.

3 Results

The distributions of Yasso07, Q, and CENTURY model es-
timates of total SOC stocks (tCha−1) were in agreement
for two-thirds of the measured data with lower SOC stock
(Fig. 3, distributions of groups 1, 2, and 4). The remain-
ing one-third of SOC data were underestimated by models.
This one-third of data were separated into seven physico-
chemical soil groups (means of groups ranging from 104 to
exceptionally large 269 tCha−1, see Fig. 3, distributions of
groups 3, and 5–10). The linear regression of mean levels of

all 10 physicochemical soil groups (weighted by the number
of samples in each group) between the modeled and mea-
sured SOC stocks showed smaller underestimation of CEN-
TURY compared to Yasso07 and Q models (Fig. 4). The
weighted root mean square error (RMSE) was 27.5 (tCha−1)
for CENTURY and 31.6 and 38.8 for Yasso07 and Q, respec-
tively. The proportion of explained variance was larger for Q
(r2
= 0.58) than for Yasso07 and CENTURY (r2

= 0.42 and
0.32; Fig. 4). The deviation of the distributions of CENTURY
SOC stocks, simulated using soil bulk density, sand, silt, and
clay content, were lower than those of Yasso07 and Q esti-
mates for 10 physicochemical soil groups (Fig. 3). Account-
ing for site-specific soil texture (clay, silt, and sand content)
and structure (bulk density) by the CENTURY model im-
proved SOC stock estimates for fertile sites with high clay
content, but not for sites with high N deposition. Varying
CENTURY parameters of site-specific topsoil mineral nitro-
gen and C / N ratio of the litterfall showed that this impact on
SOC stocks estimates was small in comparison to sensitivity
of SOC stock estimates to litterfall (Fig. S12). The applica-
tion of site-specific drainage on our mostly well-drained soils
showed minor impact on estimated CENTURY SOC stocks.

As expected, the models clearly showed less variation than
the measurements. The shift of the mean values from the cen-
ter of distribution, the width of confidence intervals of means,
and the width of the tails of distributions were clearly larger
for the measurements than for the modeled estimates (Fig. 3).
The modeled distributions agreed for the poor–medium fer-
tility soils with low and medium measured SOC stocks, low
and medium CEC, unsorted parent material, low tempera-
tures, and low production (groups 1, 2, and 4; Figs. 2, 3,
Table S1). Disagreement between modeled and measured
SOC stock distributions were formed on fertile soils with
sorted parent material (groups 3 and 5), soils with higher
water content (groups 3, 5, and 10), where nitrogen depo-
sition was large (groups 7 and 8), and where CEC was me-
dian or large (Figs. 2, 3). The largest deviation between the
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Figure 3. Bean plot of distributions of the soil carbon (tCha−1) measurements (gray fill) and estimates for 10 physicochemical groups. The
full and dashed horizontal lines represent the group means and their confidence intervals. The n is the number of samples. For description of
group levels of SOC stocks, moisture, and fertility see Fig. 2 and Table S1.

measured and modeled distributions was found for the rela-
tively small physicochemical groups of soils (3 %) typical for
highly bound water and peat humus types (groups 8 and 10;
Figs. 2, 3). The distributions of measured total SOC stocks
(tCha−1) generally increased for the groups with higher nu-
trient status (Figs. 3, S4). The distributions of SOC stocks
in mineral soil were larger than those in humus horizon, and
distributions of mineral SOC stocks increased with fertility
slightly more than distributions of SOC stocks in humus hori-
zon (Fig. S4).

After excluding all the soil physicochemical characteris-
tics from the recursive partitioning, the SOC stock distribu-
tions of five group regression tree models (Fig. S3, Table S2)
were in agreement between the measurements and model es-
timates for three groups (77 % of samples) and deviated for
two groups (23 %; Fig. S5). The modeled SOC stock dis-
tributions agreed with measurements for all models on sites
with low annual temperatures < 3 ◦C in northern sites (low-
C.cold.pine, low-C.cold.other) and for warmer conditions in
middle Sweden on sites with low nitrogen deposition and me-
dian SOC stocks (Fig. S5). However, the models underesti-
mated SOC stocks on sites with high (> 10 kgNha−1 y−1) N
deposition (21 % of samples) and on sites with warm and dry
climate (2 % of samples; Fig. S5).

The variation of density functions of modeled SOC stocks
for 10 physicochemical groups (Fig. 3) was similar to the
variation of the total annual plant litter input (tCha−1;
Fig. S6) indicating that litterfall was the main driver of SOC
accumulation in the models . The mean levels of annual plant
litter input and mean SOC stocks for 10 soil groups were
more strongly correlated for Yasso07 and Q models (with
r2 values 0.86 and 0.96, respectively) than for CENTURY

(r2
= 0.52). Although, models performed reasonably well

for the largest soil groups of nutrient and production levels
(Figs. 3 and 4), none of the models was able to predict vari-
ation of individual samples (Fig. S7). The model estimates
were well correlated between Yasso07 and CENTURY with
r2 ranging from 45 to 73 % for individual samples of 10 soil
groups, whereas the correlations of estimates between Q and
the other two models were lower (Fig. S8).

4 Discussion

4.1 SOC stock distributions linked to mechanisms of
SOM stabilization

It has been suggested that process-based soil carbon mod-
els with the current formulation lacking major soil environ-
mental and biological controls of decomposition would fail
for conditions where these controls predominate (Schmidt
et al., 2011; Averill et al., 2014). Even so, the effect of the
soil properties on SOC stocks, e.g., soil nutrient status in
the widely used models such as Yasso07, Q, and CENTURY,
have not previously been quantitatively evaluated. We found
that in comparison with Swedish forest soil inventory data,
the models based on the amount and quality of inherent struc-
tural properties of plant litter (Q, Yasso07, and CENTURY)
produced accurate SOC stock estimates for two-thirds of
northern boreal forest soils in Sweden. Two-thirds of the
distributions of SOC stocks measurements of SFSI agreed
with distributions of SOC stock estimates of the Q, Yasso07,
and CENTURY soil carbon models (Fig. 3, distributions of
groups 1, 2, and 4). However, the SOC stocks underestima-
tion by these models for one-third of the data (Fig. 3, distri-
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Figure 4. Scatter plot between mean measured and mean mod-
eled soil organic carbon stocks (tCha−1) for 10 physicochemical
groups for Yasso07, CENTURY and Q models. Data were fitted
with weighted linear regression (lines). The number of samples in
each group was used as weights for fitting and also as weights for
the weighted mean of squared differences between the modeled and
measured values (MSE, tCha−1). The RMSE is the square root of
MSE. The r2 is the proportion of explained variance. The p value
is the calculated probability that the fit is significant.

butions of groups 3, and 5–10) indicated that some drivers
other than molecular structure, especially site nutrient status,
play an important role in higher SOC stocks sequestration.

Some level of deviation from measurements and poorly
explained spatial variation (Fig. S7) was expected from the
uncertainties of the SOC measurements, annual plant lit-
ter inputs and climate variability for the model SOC stock
change estimates (Ortiz et al., 2013; Lehtonen and Heikki-
nen, 2015). For the long-term SOC stock development the
model uncertainties are less known than for the short-term
litter decomposition. Previously reported fine-scale compari-
son also showed poor agreement between Earth system mod-
els and the Northern Circumpolar Soil Carbon Database
(Todd-Brown et al., 2013), although drivers of the devia-
tion still remained open. Our results showed that if models
strongly depend on the litter inputs (Fig. S6) then the spa-
tial differences between measured and modeled SOC stock
distributions could be linked to sites with rich nutrient status
through cation exchange capacity, C / N ratio, N deposition,
drainage (sorting of parent material) among other factors
(Figs. 2 and 3). Additionally, when the soil properties were
excluded from the regression, the estimates of SOC stocks
also deviated for the fertile groups (Fig. S5). However, the
rich nutrient status for these groups was linked to differences

in species composition, N deposition, and climate (tempera-
ture, precipitation) instead of soil properties (Fig. S3).

Larger net soil carbon accumulation in nutrient-rich sites
could be attributed to the relative differences in litterfall com-
ponents (relatively more leaves and branches with higher N
content than fine roots) and, to higher N availability and car-
bon use efficiency of decomposers, reduction of respiration
per unit of C uptake (Ågren et al., 2001; Manzoni et al., 2012;
Fernández-Martínez et al., 2014). The largest deviation be-
tween measured and modeled data in our study was found for
fertile presumably N rich and fresh to fresh-moist sites. The
soils with large N deposition were also highly productive and
showed high to exceptionally high SOC stocks (Figs. 2, 3,
soil groups 7 and 8). This was in agreement with fertiliza-
tion and modeling study of Franklin et al. (2003) showing
an increase in soil C accumulation with N addition. Our
forest biomass and litterfall estimates were based on for-
est inventory and modeling, but the site nutrient status and
N deposition was only partially reflected in the amount of
biomass/litterfall (Fig. S11) and its quality. The quality was
only reflected through the biochemical differences between
species and plant litter components. The relative differences
between the biomass/litterfall components or between C / N
ratios of litterfall in relation to site fertility are not accounted
for by the current biomass models, but soil fertility could
be considered in an attempt of SOC stock modeling (in-
cluded in CENTURY but missing in Yasso07 and Q models).
For example the proportion of acid-, water-, and ethanol-
soluble and non-soluble litter inputs for Yasso07 could be
re-evaluated by allowing it to vary depending on site fertil-
ity, in addition to currently used variation specific for species
and the litter components. Although CENTURY SOC stocks
were sensitive to the amount of clay, the variation of topsoil
mineral N and C / N ratio of litterfall did not improved SOC
stock predictions for sites with high N deposition (Fig. 3 and
Table S1).

The litter decomposition and SOC stabilization rates in
Yasso07, Q, and CENTURY based on the litter quality “re-
calcitrance” originating from the litter bag mass loss mea-
surements have major drawbacks. The mass loss from the
litter bags is assumed to be fully mineralized, although the
litterbags are subjected to non-negligible leaching (Rantakari
et al., 2012; Kammer and Hagedorn, 2011). The SOC stabi-
lization represented in models by the remaining litter mass is
thus underestimated due to the fraction of particulate organic
matter and dissolved organic carbon that is lost from the lit-
terbags but later immobilized, e.g., through organo-mineral
stabilization. The use of stable isotopes seems to determine
the field carbon mineralization and accumulation rates from
the labile (high C quality and N concentration) or recalcitrant
(low C quality and N concentration) litter more accurately
than litter bags (Kammer and Hagedorn, 2011).

A higher amount of more recalcitrant fine roots compared
to more labile leaves (Xia et al., 2015) heavily increased the
soil carbon sequestration in CENTURY model simulations,
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which was in line with McCormack et al. (2015). Though,
the contribution of fine roots to SOC stabilization is still not
settled due to the significant role of mycorrhizal fungi in
SOC accumulation (Averill et al., 2014; Orwin et al., 2011).
Xia et al. (2015) claimed that more recalcitrant fine roots
contribute to stable SOC more than leaf litter, because fine
roots degrade slower. This would be supported by the fact
that the derivatives of fine roots from degradation by fungi
are more stable than the derivatives of leaves from degra-
dation by microbes. However, more recalcitrant plant litter
has been also suggested to stabilize fewer SOC stocks (Kam-
mer and Hagedorn, 2011). This is a result of recalcitrant lit-
ter satisfying less of the microbial N demands promoting
respiration and reducing the long-term production of micro-
bial products, precursors for the organo-mineral stabilization
(Cotrufo et al., 2013, Castellano et al., 2015). According to
the microbial efficiency-matrix (MEM) stabilization mecha-
nism (Cotrufo et al., 2013) fertile sites with relatively more
labile plant litter, but with larger absolute production and
larger microbial activity than poor sites, would in long-term
stabilize more carbon through organo-mineral stabilization.
Our results supported MEM stabilization theory by showing
larger carbon stocks in mineral soil than in humus horizon,
and by relatively more SOC stocks in mineral soil in fertile
groups than in poor conditions (Fig. S4).

Expanding on the CENTURY model structure, the
MySCaN model incorporating the organic nutrient uptake
by mycorrhizal fungi estimated a positive effect on SOC
accumulation, relatively larger in poor than in fertile sites
(Orwin et al., 2011). Therefore, not accounting for the or-
ganic nutrient uptake by mycorrhizal fungi by the Yasso07,
Q, and CENTURY models probably led to the underestima-
tion of SOC stocks in sites with higher nutrient status. This
hypothesis needs to be tested in further studies. We did not
have all input data and the source code to include MySCaN
into our model intercomparison. The spatial trends of N and
P data of litter in Sweden that would be needed to make
such a study were not available. However, adjusting biomass
turnover rates, used for the litter input estimation, in depen-
dence to site fertility would lead into larger inputs for fer-
tile sites and increased SOC stock accumulation as a result
of increasing plant productivity and inputs. It is well estab-
lished that SOM increases soil fertility by improving the soil
water and nutrient holding capacity; recycling of SOM in-
creases CEC, humic substances and nutrient availability for
plant resulting in larger biomass/litter production (Zandonadi
et al., 2013). As an alternative to adjusting turnover rates
with site fertility, we suggest that a feedback link in models
between increasing fertility due to SOC stock accumulation
(e.g., due to increased CEC relative to humus, increased ni-
trogen availability), increasing litter inputs, and reduced rates
of SOC decomposition per unit of litter input (e.g., through
satisfying more microbial N demand with less respiration,
limited oxygen in increased moisture conditions) would also
increase SOC stock accumulation.

Increased moisture and more frequent water saturation
due to SOC accumulation limits soil oxygen availability and
slows rates of microbial decomposition, which increases the
rate of SOC stabilization. Our results, which were derived
from mostly well-drained soils, suggest that measured high
SOC stocks may be partly caused by reduction of decom-
position at increased water content (Fig. 2). The CENTURY
model has an optional function that represents the reduction
of decomposition caused by anaerobic conditions. The func-
tion becomes active when a controlling parameter, “drain”,
is changed, and the value of the parameter has to be arbitrar-
ily determined through parameter fitting against SOC data
(e.g., Raich et al., 2000). However, this function was meant
for anaerobic conditions in poorly drained soils; therefore, it
was not applicable to the prevailing conditions of our sites.
Accounting for drainage only on some sites slightly affected
decomposition, when precipitation increased and potential
evapotranspiration decreased in late spring or early autumn.
Water availability affecting soil fertility and SOC formation
is beside climate also affected by topography (Clarholm and
Skyllberg, 2013), which was not accounted for by CEN-
TURY. Detailed modeling of soil water conditions requires
specific functions and many parameters, which are not in-
cluded in simpler SOC models like Q and Yasso07. However,
appropriate modeling of soil water conditions and reduction
of decomposition in wet conditions (not necessarily at satu-
ration) would potentially improve the performance of SOC
models in particular for soils with high SOC stocks.

4.2 Intercomparison of models

The similarities between the variations of modeled SOC
stocks and litterfall inputs for the soil groups with different
fertilities (Figs. 3, S6) could be expected for the Yasso07 and
Q models, which ignore the soil properties. These models run
organic matter decomposition and humus stabilization with
litterfall, temperature, and/or precipitations input data. Litter
quality as input in Yasso07 and Q implicitly includes some
information on soil properties, but as we saw litter quality
hardly mapped any of soil fertility. Although, the impact of
soil properties on the estimates was seen in the more complex
CENTURY model for sites with high clay content, the SOC
stock of sites with high N deposition were underestimated.
The CENTURY model depended less on the amount of litter
input. In testing multiple soil carbon models with the same
litter inputs, Palosuo et al. (2012) observed larger variation
in modeled SOC stocks at the early stage of the litter decom-
position (10 years) but later on at 100 years the variation de-
creased. Although the variations of SOC stocks were similar
between the models, the estimated CENTURY SOC stocks
distributions were lower than the Yasso07 estimates when
we did not accounted for deep soil carbon. CENTURY in its
original configuration simulated SOC stock up to 20 cm soil
depth (Metherell, 1993), whereas the Yasso07, Q, and mea-
sured SOC stock data represented up to 100 cm of the soil
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(Tuomi et al., 2009; Stendahl et al., 2010). In Yasso07 model
parameters were calibrated based on soil age chronosequence
data of SOC stocks for soil depths up to 30 cm, which was
assumed to represent 60 % of the total SOC stocks up to
100 cm soil depth (Liski et al., 1998, 2005 as cited by Tuomi
et al., 2009). Therefore, when 40 % of the missing deep car-
bon (Jobbágy and Jackson, 2000) were added on top of the
original CENTURY estimates as was done when calibrating
Yasso07, the SOC stock levels for CENTURY were larger
than those for the Yasso07 and Q models.

Although estimated SOC stocks of CENTURY were gen-
erally larger than those of Yasso07, the correlation between
CENTURY and Yasso07 estimates was stronger than for Q
model compared to two other models (Fig. S8). The reason
was probably similar global parameterizations of Yasso07
and CENTURY whereas Q was specifically parameterized
and applied for the regions in Sweden (Ågren and Hyvö-
nen, 2003; Ortiz et al., 2013). Furthermore the Q model
SOC stock estimates were more sensitive to differences in
species coverage e.g., to pine and spruce (Ågren and Hyvö-
nen, 2003) and formed two distinct point cloud distribu-
tions (one for pine and broadleaves, the other for spruce)
when compared with the CENTURY or Yasso07 estimates
(Fig. S8). In spite of similarities in Yasso07 and CENTURY
SOC stocks estimates, Yasso07 was more sensitive to species
coverage through species-specific litterfall solubility (Liski
et al., 2009) than CENTURY, which treated conifers in a
single group (Metherell et al., 1993). Pine and other species
(spruce) coverage was shown to affect measured low and me-
dian SOC stocks of colder climate if the soil properties were
not considered (Fig. S5). Therefore, the pattern of increased
accumulation of SOC stock on sites with larger spruce cov-
erage partially observed in distribution of Yasso07 estimates,
and missing in the CENTURY estimates, could be related to
the slightly lower solubility/decomposability of spruce com-
pared to pine litterfall. However, the CENTURY model SOC
stocks were also highly sensitive to accurate estimation of
fine-root litterfall (McCormack et al., 2015) typically in-
creasing with colder climate and increasing the C / N ratio
of the organic layer (Lehtonen et al., 2016a), which is driven
by the dominant tree species (Cools et al., 2014).

Large SOC stock measurements on sites with high long-
term nitrogen deposition over 10kgNha−1 y−1 (Figs. 3
and S4) were underestimated by the Q, Yasso07, and CEN-
TURY models. A positive correlation between nitrogen de-
position and SOC stocks measurements in Sweden had been
previously reported by Olsson et al. (2009), and the model-
ing study by Svensson et al. (2008) indicated that Swedish
soil carbon was decreasing in the north and increasing in the
south mainly as a result of different nitrogen inputs. The Q
and Yasso07 models do not have nitrogen processes. As for
CENTURY, it is reported that large N input could enhance
plant productivity and then increase SOC (Raich et al., 2000).
The purpose of our study was to evaluate the performance of
soil carbon models against the SOC data using the same litter

input, and the feedback of nitrogen input to plant productiv-
ity was primarily included in this study indirectly, through
estimated equilibrium litter input based on site productivity
index, which strongly correlated with N deposition (Figs. A1
in Appendix A and S11). In spite of a slight increase of SOC
stock estimates when CENTURY accounted for the site-
specific topsoil mineral N, the C / N ratio of litterfall (Fig.
S12), in sites with large N deposition CENTURY still un-
derestimated. However, as in the case of drainage discussed
earlier, the CENTURY incorporates more detailed processes
than the relatively simpler soil carbon models do, Q and
Yasso07, and hence the CENTURY could potentially repro-
duce a wider range of SOC stocks if it was parameterized
with more detailed data.

5 Conclusions

In this study we presented the reasons to re-evaluate the con-
nection between the soil nutrient status and performance of
widely applied soil carbon models (Yasso07, Q, and CEN-
TURY). As previously described in detail, our simulation
was based on the widely used process-based SOC models,
accurate driving data including litter inputs, and massive
SOC data points (Swedish inventory data, N= 3230). The
models differed in the main controls and functions and their
performance was expected to depend on model complexity
(CENTURY outperforming Q and Yasso07). The intercom-
parison of SOC stocks between Yasso07, Q, and CENTURY
models and Swedish soil carbon inventory data revealed that
these process-based mathematical models developed for pre-
dicting short-term SOC stock changes can all in their cur-
rent state predict accurate long-term SOC stocks for most
soils. However, in medium–highly productive sites of south-
ern Sweden for conditions where the high nutrient status pre-
dominates soil carbon accumulation, the models with their
current formulation (lacking nutrient status-related controls
of decomposition and SOC accumulation) underestimated
SOC stocks. The estimates of CENTURY fitted generally
better to measurements than those of Yasso07 and the Q
model. Although the Yasso07 model, which requires fewer
parameters and less input data, showed similar performance
than CENTURY, except for sites with high clay content.

Through the intercomparison of three different widely
used SOC models with massive data points, we identified
that re-evaluation of the impact of nutrient status would im-
prove the model development towards their accuracy. Partic-
ularly, the relationship between the soil nutrient status and
the mechanism of soil organo-mineral carbon stabilization
needs to be re-evaluated, because larger SOC stocks were
found more in the mineral than in the humus soil horizon.
We suggest evaluating enhanced microbial transformation of
soil organic matter and the mycorrhizal organic nutrient up-
take in relation to larger plant biomass/litter production in
nutrient-rich sites resulting in higher SOC stock accumula-
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tion in deeper soil layers. In addition to the organo-mineral
carbon stabilization, we also suggest further model develop-
ment accounting for the soil nutrient status through evaluat-
ing the effect of topography on sorting of the parent material,
and its silt and clay complexes.

Our study is very useful for developing accurate soil car-
bon and Earth system models. Furthermore, developing ac-
curate models that would account for the soil nutrient sta-
tus as one of the key controls affecting the soil organic mat-
ter production and SOC stabilization improves estimation of
feedback of global warming on SOC stock temperature sen-
sitivity and soil CO2 efflux, national reporting of soil carbon
stock changes for UNFCCC, and implications of decisions
mitigating the climate change effects on soil carbon stocks.

6 Data availability

The source codes of the Yasso07, Q, and CENTURY models
used in this paper are available through the Supplement. Data
used in this study can be available directly by contacting the
authors.
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Appendix A: Models of fraction of absorbed radiation
for observed and equilibrium forest

The fraction of photosynthetically active absorbed radiation
(fAPAR) for the observed state forest was calculated based on
measurements of Swedish forest inventory as in Härkönen
et al. (2010). For the main tree species fAPAR was also well
correlated with the stand basal area (r2 was 0.85, 0.86, and
0.88 for pine, spruce, and deciduous stands, respectively, co-
efficients of regressions in Table A1 in Appendix A). The ob-
served state forest fAPAR varied between 0 and a maximum
close to 1 (Fig. A1 in Appendix A).

The equilibrium forest fAPAR values were assumed to be
ranging between the median and the maximum fraction of
observed state forest fAPAR for given species, latitudinal de-
gree, and site productivity index (indicated by the height of
largest tress at 100 years of stands age). The equilibrium for-
est fAPAR values were set to 70th percentile of maximum
(fAPAR70) for given species, latitudinal degree, and site pro-
ductivity index. We selected 70th percentile from the range
between 50th and 95th, because the modeled soil carbon dis-
tributions with the litter input from biomass of fAPAR70 best
agreed with measured soil carbon distributions (Fig. S2).

Table A1. Parameter estimates and their standard errors of the fAPAR regressions with the stand basal area (BA, m2 ha−1), and the
fAPAR70LAT and fAPAR70H100 regressions with the latitude (LAT, ◦) and with the site productivity index (H100, m) for Scots pine, Norway
spruce, and deciduous stands.

fAPAR = a×BA/(b+BA) a±SE b±SE c±SE adj.R2

Pine 1.00± 0.03 11.75± 0.81 0.85
Spruce 1.17± 0.03 10.67± 0.87 0.86
Deciduous 1.13± 0.06 7.41± 1.15 0.88
fAPAR70LAT = LAT/(a+ b×LAT)+ c

Pine −9976± 3691a 143± 54b 0.72± 0.02 0.92
Spruce −2689± 3507c 35± 50d 0.97± 0.09 0.74
fAPAR70LAT = a+ b×LAT
Deciduous 1.36± 0.28 −0.01± 0.01e 0.26
fAPAR70H100 = a× e(b/H100)

Pine 0.86± 0.02 −5.22± 0.41 0.89
Spruce 0.97± 0.01 −2.85± 0.22 0.86
Deciduous 0.94± 0.02 −2.63± 0.50 0.51

p < 0.001 for all parameters except for a 0.023, b 0.024, c 0.461, d 0.498, and e 0.076.

The fAPAR70 values specific for pine, spruce, and decidu-
ous stands were modeled with latitude and site productiv-
ity index (H100) in two steps. First, the fAPAR70LAT and the
fAPAR70H100 values were modeled separately by regression
models with latitude and with site productivity index (Ta-
ble A1 in Appendix A). Second, the fAPAR70LAT was reduced
by the difference between the fAPAR70H100 and the maximum
fAPAR70H100 (fAPAR70 = fAPAR70LAT+ fAPAR70H100− max-
imum fAPAR70H100). The fAPAR70 equaled the fAPAR70LAT
only for the maximum site productivity index, otherwise it
was reduced.
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Figure A1. The fraction of photosynthetically active absorbed radiation (fAPAR; estimated as in Härkönen et al., 2010) observed fAPAR
and equilibrium fAPAR (fAPAR70, set to 70th percentile of maximum fAPAR for given species, latitudinal degree, and site productivity
index). Panels (a), (b), and (c) show relation between fAPAR and latitude (◦) for forest stands dominated by Scots pine, Norway spruce, and
deciduous species, whereas panels (d), (e), and (f) show relation between fAPAR and site index H100 (height of dominant trees at 100 years
in meters).
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Appendix B: Models of forest dry weight biomass with
fAPAR

We fitted species-specific exponential regression models
between the biomass components (stem, branch, foliage,
stump, coarse roots, fine roots, all in kgha−1) of observed
state forest and the observed fraction of absorbed radiation
(fAPAR) (statistics of the regression models in Table B1 in
Appendix B). The biomass components derived with allo-
metric models (measured) and those derived with fAPAR
models (modeled) showed strong correlations (Fig. B1 in
Appendix B). In order to model the long-term mean forest
biomass “equilibrium forest biomass” we applied the fAPAR
biomass models to the modeled fAPAR70 values.

Table B1. Parameter estimates and their standard errors for the co-
efficients of the dry weight biomass (kgha−1) models with the frac-
tion of absorbed radiation (y = abfAPAR ) for Scots pine, Norway
spruce, and deciduous stands.

y = abfAPAR Species a±SE b±SE adj.R2

Branch pine 610± 21 122± 6 0.92
spruce 877± 35 54± 2 0.92
deciduous 290± 26 156± 16 0.89

Fine root pine 422± 13 21± 1 0.84
spruce 317± 14 15± 1 0.80
deciduous 453± 28 14± 1 0.82

Foliage pine 361± 24 86± 8 0.71
spruce 766± 40 33± 2 0.83
deciduous 141± 28 71± 16 0.56

Root pine 703± 26 183± 10 0.92
spruce 629± 32 113± 7 0.90
deciduous 359± 33 150± 16 0.89

Stem and bark pine 1793± 84 254± 17 0.89
spruce 974± 72 229± 19 0.86
deciduous 972± 98 161± 18 0.88

Stump pine 232± 10 214± 13 0.89
spruce 171± 10 129± 9 0.88
deciduous 80± 8 216± 25 0.87

p < 0.001 for all parameters.
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Figure B1. Scatter plots (n= 3698 in each panel) for the dry weight tree biomass components (tCha−1) between “modeled” (estimated based
on fraction of absorbed radiation, fAPAR, and our fAPAR models) and “measured” (estimated based on basic tree dimensions and allometric
biomass models). The r2 values represent the coefficient of determination indicating how close the modeled values fit the measured values.
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Appendix C: Models of understory vegetation

We used Swedish forest inventory ground vegetation cov-
erage (%) data visually monitored between 1993 and 2002
on 2440 plots around Sweden with altogether 4472 observa-
tions separately for species of forest floor vegetation or their
classes (Table S3). In order to derive the ground vegetation
biomass and to apply the coverage/biomass conversion func-
tions (Lehtonen et al., 2016), we grouped the species cov-
erage observations into five functional types (dwarf shrubs,
herbs, grasses, moss, and lichen; Table S3). The applied
coverage/biomass conversion functions estimated separately
the above- and below-ground biomass components for dwarf
shrubs, herbs, and grasses, and total biomass for moss, and
lichen.

Except the understory coverage, the forest inventory data
also contained basic tree dimensions (diameter and height
of trees) and stand variables (species dominance, age, basal
area, site productivity class indicated by the height of largest
tress at 100 years of stands age), and also we linked the plots
by their closest proximity to SMHI weather stations with
weather data (air temperature, precipitation) and location at-
tributes of the weather stations (latitude, longitude, altitude).

Table C1. Parameter estimates and their standard errors for the coefficients of the forest understory vegetation dry weight biomass (kgha−1)
models (Eq. C1) for functional types (1 – dwarf shrubs, 2 – herbs, 3 – grasses, 4 – mosses, and 5 – lichens) with intercept (a) and n – number
of predictors (b1 – age (years), b2 – basal area (m2 ha−1), b3 – annual air temperature (◦C), b4 – latitude (◦), b5 – H100 (height of trees at
100 years of age, m), b6 – H100 of spruce trees (m), b7 – H100 of pine trees (m), b8 – pine dominance (0/1), and b9 – spruce dominance
(0/1)). For the latin names of species included into understory functional types see Table S3.

W a±E b1±SE b2±SE b3±SE b4±SE b5±SE b6±SE b7±SE b8±SE b9±SE adj.R2

Above 1 24.28± 0.32 0.13± 0.01 -0.43± 0.02 7.13± 0.33 0.29
ground 2 −82.13± 6.8 −0.1± 0.1a 1.23± 0.1 0.77± 0.03 0.12

3 4.07± 0.30 −0.16± 0.01 0.27± 0.01 −1.36± 0.15 0.21
4 32.9± 0.62 −0.78± 0.04 0.48± 0.06 3.66± 0.3 5.76± 0.29 0.22
5 19.91± 0.57 −0.13± 0.01 −0.45± 0.02 6.31± 0.29 0.25
total 43.68± 0.29 0.12± 0.01 −0.41± 0.01 6.34± 0.3 0.30

Below 1 −256.3± 3.5 0.1± 0.01 −0.35± 0.02 5.05± 0.06 8.56± 0.35 0.75
ground 2 −89.34± 7.85 −0.03± 0.1b 1.4± 0.12 0.78± 0.04 −4.97± 0.27 0.19

3 5.97± 0.37 −0.19± 0.01 0.32± 0.01 −1.78± 0.19 0.21
total −251.9± 3.3 −0.2± 0.01 5.15± 0.05 0.7

Total −222.7± 4.0 0.12± 0.01 −0.44± 0.02 4.9± 0.07 0.67

p < 0.001 for all parameters except for ap = 0.44, and bp = 0.84.

We built linear models for dry weight biomass of understory
vegetation (kgha−1) in a two level selection of the predictors
from stand, weather and location variables. First, we selected
the predictors into linear models by using R package “Mass”
and its stepwise model selection by exact Akaike’s informa-
tion criterion (AIC; Venables and Ripley, 2002). Second, we
refined the model by using “relaimpo” R package estimating
usefulness (Grömping, 2006), or relative importance for each
of the predictors in the model, and by selecting only predic-
tors with relative importance ≥ 0.1. The general form of the
models was

yi = a+ b1x1+ . . .+ bnxn+ ε, (C1)

where yi is the understory dry weight biomass (kgha−1), x1
. . . xn are the predictors, a, b1 . . . bn are parameters of the
ith understory functional type (Table C1 in Appendix C), and
ε is the residual error. Statistics of the models are shown in
Table C1 in Appendix C. Scatter plots between the measured
coverage derived biomass and modeled dry weight biomass
(kgha−1) of the functional types of ground vegetation for the
forests in their observed state close to the estimated equilib-
rium are shown on Fig. S9.
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The Supplement related to this article is available online
at doi:10.5194/bg-13-4439-2016-supplement.

Acknowledgements. We thank the Finnish Ministry of Environ-
ment and the Finnish Ministry of Agriculture and Forestry for
funding this work through the Metla project 7509 “Improving soil
carbon estimation of greenhouse gas inventory”, and Academy of
Finland for funding the mobility projects 276300 and 276602. We
would like to thank the editor and the reviewers for their valuable
comments improving the manuscript.

Edited by: A. V. Eliseev
Reviewed by: three anonymous referees

References

Adair, E. C., Parton, W. J., Del Grosso, S. J., Silver, W. L., Harmon,
M. E., Hall, S. A., Burke, I. C., and Hart, S. C.: Simple three-pool
model accurately describes patterns of long-term litter decompo-
sition in diverse climates, Global Change Biol., 14, 2636–2660,
2008.

Ågren, G. I., Bosatta, E., and Magill, A. H.: Combining theory and
experiment to understand effects of inorganic nitrogen on litter
decomposition, Oecologia, 128, 94–98, 2001.

Ågren, G. I. and Hyvönen, R.: Changes in carbon stores in Swedish
forest soils due to increased biomass harvest and increased tem-
peratures analysed with a semi-empirical model, Forest Ecol.
Manage., 174, 25–37, 2003.

Ågren, G., Hyvönen, R., and Nilsson, T.: Are Swedish forest soils
sinks or sources for CO2—model analyses based on forest inven-
tory data, Biogeochemistry, 82, 217–227, 2007.

Amundson, R.: The carbon budget in soils, Annu. Rev. Earth Planet.
Sci., 29, 535–562, 2001.

Averill, C., Turner, B. L., and Finzi, A. C.: Mycorrhiza-mediated
competition between plants and decomposers drives soil carbon
storage, Nature, 505, 543–545, 2014.

Berthrong, S. T., Jobbágy, E. G., and Jackson, R. B.: A global meta-
analysis of soil exchangeable cations, pH, carbon, and nitrogen
with afforestation, Ecol. Appl., 19, 2228–2241, 2009.

Boden, T. A., Marland, G., and Andres, R. J.: Global, re-
gional, and national fossil-fuel CO2 emissions, Carbon Diox-
ide Information Analysis Center, Oak Ridge National Labo-
ratory, US Department of Energy, Oak Ridge, Tenn., USA,
doi:10.3334/CDIAC/00001_V2010, 2010.

Castellano, M. J., Mueller, K. E., Olk, D. C., Sawyer, J. E., and Six,
J.: Integrating Plant Litter Quality, Soil Organic Matter Stabiliza-
tion and the Carbon Saturation Concept, Glob. Change Biol., 21,
3200–3209, doi:10.1111/gcb.12982, 2015.

Clarholm, M. and Skyllberg, U.: Translocation of metals by trees
and fungi regulates pH, soil organic matter turnover and nitrogen
availability in acidic forest soils, Soil Biol. Biochem., 63, 142–
153, 2013.

Clemente, J. S., Simpson, A. J., and Simpson, M. J.: Association of
specific organic matter compounds in size fractions of soils un-
der different environmental controls, Org. Geochem., 42, 1169–
1180, 2011.

Cools, N., Vesterdal, L., De Vos, B., Vanguelova, E., and Hansen,
K.: Tree species is the major factor explaining C : N ratios in Eu-
ropean forest soils, Forest Ecol. Manage., 311, 3–16, 2014.

Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K., and
Paul, E.: The Microbial Efficiency-Matrix Stabilization (MEMS)
framework integrates plant litter decomposition with soil organic
matter stabilization: do labile plant inputs form stable soil or-
ganic matter?, Glob. Change Biol., 19, 988–995, 2013.

Deluca, T. H. and Boisvenue, C.: Boreal forest soil carbon: distri-
bution, function and modelling, Forestry, 85, 161–184, 2012.

Dungait, J. A. J., Hopkins, D. W., Gregory, A. S., and Whitmore, A.
P.: Soil organic matter turnover is governed by accessibility not
recalcitrance, Glob. Change Biol., 18, 1781–1796, 2012.

Falloon, P., Jones, C. D., Ades, M., and Paul, K.: Direct soil mois-
ture controls of future global soil carbon changes: An impor-
tant source of uncertainty, Global Biogeochem. Cy., 25, GB3010,
doi:10.1029/2010GB003938, 2011.

Fan, Z., Neff, J. C., Harden, J. W., and Wickland, K. P.: Bo-
real soil carbon dynamics under a changing climate: A model
inversion approach, J. Geophys. Res.-Biogeo., 113, G04016,
doi:10.1029/2008JG000723, 2008.

Fernández-Martínez, M., Vicca, S., Janssens, I. A., Sardans, J.,
Luyssaert, S., Campioli, M., Chapin III, F. S., Ciais, P., Malhi,
Y., Obersteiner, M., Papale, D., Piao, S. L., Reichstein, M., Roda,
F., and Penuelas, J.: Nutrient availability as the key regulator of
global forest carbon balance, Nature Climate Change, 4, 471–
476, 2014.

Franklin, O., Högberg, P., Ekblad, A., and Ågren, G. I.: Pine for-
est floor carbon accumulation in response to N and PK addi-
tions: bomb 14C modelling and respiration studies, Ecosystems,
6, 644–658, 2003.

Grömping, U.: Relative importance for linear regression in R: the
package relaimpo, J. Stat. Softw., 17, 1–27, 2006.

Hagglund, B. and Lundmark, J.: Site index estimation by means of
site properties, Scots pine and Norway spruce in Sweden, Stud.
For. Suec., 138, 38, 1977.

Härkönen, S., Pulkkinen, M., Duursma, R., and Mäkelä, A.: Esti-
mating annual GPP, NPP and stem growth in Finland using sum-
mary models, For. Ecol. Manage., 259, 524–533, 2010.

Husson, O.: Redox potential (Eh) and pH as drivers of
soil/plant/microorganism systems: a transdisciplinary overview
pointing to integrative opportunities for agronomy, Plant Soil,
362, 389–417, 2013.

Jobbágy, E. G. and Jackson, R. B.: The vertical distribution of soil
organic carbon and its relation to climate and vegetation, Ecol.
Appl., 10, 423–436, 2000.

Kammer, A. and Hagedorn, F.: Mineralisation, leaching and sta-
bilisation of 13C-labelled leaf and twig litter in a beech for-
est soil, Biogeosciences, 8, 2195–2208, doi:10.5194/bg-8-2195-
2011, 2011.

Kirschbaum, M. U. F.: Will Changes in Soil Organic Carbon Act as
a Positive or Negative Feedback on Global Warming?, Biogeo-
chemistry, 48, 21–51, 2000.

Kleja, D. B., Svensson, M., Majdi, H., Jansson, P., Langvall, O.,
Bergkvist, B., Johansson, M., Weslien, P., Truusb, L., and Lin-
droth, A.: Pools and fluxes of carbon in three Norway spruce
ecosystems along a climatic gradient in Sweden, Biogeochem-
istry, 89, 7–25, 2008.

www.biogeosciences.net/13/4439/2016/ Biogeosciences, 13, 4439–4459, 2016

http://dx.doi.org/10.5194/bg-13-4439-2016-supplement
http://dx.doi.org/10.3334/CDIAC/00001_V2010
http://dx.doi.org/10.1111/gcb.12982
http://dx.doi.org/10.1029/2010GB003938
http://dx.doi.org/10.1029/2008JG000723
http://dx.doi.org/10.5194/bg-8-2195-2011
http://dx.doi.org/10.5194/bg-8-2195-2011
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