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Abstract. Terrestrial ecosystems of northern Eurasia are

demonstrating an increasing gross primary productivity

(GPP), yet few studies have provided definitive attribution

for the changes. While prior studies point to increasing tem-

peratures as the principle environmental control, influences

from moisture and other factors are less clear. We assess how

changes in temperature, precipitation, cloudiness, and for-

est fires individually contribute to changes in GPP derived

from satellite data across northern Eurasia using a light-use-

efficiency-based model, for the period 1982–2010. We find

that annual satellite-derived GPP is most sensitive to the tem-

perature, precipitation and cloudiness of summer, which is

the peak of the growing season and also the period of the

year when the GPP trend is maximum. Considering the re-

gional median, the summer temperature explains as much as

37.7 % of the variation in annual GPP, while precipitation and

cloudiness explain 20.7 and 19.3 %. Warming over the period

analysed, even without a sustained increase in precipitation,

led to a significant positive impact on GPP for 61.7 % of the

region. However, a significant negative impact on GPP was

also found, for 2.4 % of the region, primarily the dryer grass-

lands in the south-west of the study area. For this region, pre-

cipitation positively correlates with GPP, as does cloudiness.

This shows that the south-western part of northern Eurasia is

relatively more vulnerable to drought than other areas. While

our results further advance the notion that air temperature is

the dominant environmental control for recent GPP increases

across northern Eurasia, the role of precipitation and cloudi-

ness can not be ignored.

1 Introduction

Several analyses of normalized difference vegetation index

(NDVI) data derived from satellite remote sensing have

pointed to a positive trend in gross primary productivity

(GPP) and leaf area index (LAI) of the northern high latitudes

in the recent decades (Myneni et al., 1997; Carlson and Rip-

ley, 1997; Zhou et al., 2001; Guay et al., 2014). Warming has

also occurred over this time. Global mean surface air tem-

peratures increased by 0.2 to 0.3 ◦C over the past 40 years,

with warming greatest across northern land areas around 40–

70◦ N (Nicholls et al., 1996; Overpeck et al., 1997). Precip-

itation increases have also been observed over both North

America and Eurasia over the past century (Nicholls et al.,

1996; Groisman et al., 1991). Urban et al. (2014) describe the

co-occurrence of these climatic and ecosystem changes. Here

we investigate increasing GPP of terrestrial ecosystems of

northern Eurasia and determine the relative attribution aris-

ing through changes in several geophysical quantities, here-

inafter referred to as “environmental variables”, as they po-

tentially drive observed temporal changes in vegetation pro-

ductivity.

GPP is a physical measure of the rate of photosynthesis,

or the rate at which atmospheric CO2 is fixed by autotrophic

(generally green) plants to form carbohydrate molecules.

Photosynthesis, being a biological process, is regulated by

several environmental factors. Productivity is highest at the

optimum temperature, though this optimum can be modified

by cold or warm acclimation (Larcher, 1969, 2003). Water

availability also affects plant hydraulics and chemistry by
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Figure 1. Simplified land cover for northern Eurasia for year 2007

overlaid with the spatial distribution of the 10 flux tower sites whose

GPP (gross primary productivity) data were used to validate the

GPP data derived from satellite NDVI (normalized difference veg-

etation index). For our statistical analysis, we show the distribution

of two fundamental types of vegetation types: (i) herbaceous, i.e.

without woody stems, which includes tundra in the north and grass-

lands (Eurasian Steppe) to the south, and (ii) wooded, i.e. plants

with wood as its structural tissue, which includes the boreal forests

appearing in the middle and extending from the western to the east-

ern boundary. This land cover map has been derived from the Mod-

erate Resolution Imaging Spectroradiometer (MODIS) Type 5 land

cover product (Friedl et al., 2002). The details of the flux tower sites

are listed in Table 2.

controlling the nutrient uptake through shoot transportation

(Sharp et al., 2004; Stevens et al., 2004). Increasing atmo-

spheric CO2 concentration increases GPP by biochemical

fertilization for C3 plants and increasing water use efficiency

for both C3 and C4 plants (Bowes, 1996; Rötter and Geijn,

1999).

There is both direct and indirect evidence of increasing

productivity across the northern high latitudes. Flask- and

aircraft-based measurements show that the seasonal ampli-

tude of atmospheric CO2 concentration across the Northern

Hemisphere has increased since the 1950s, with the greatest

increases occurring across the higher latitudes (Graven et al.,

2013). This trend suggests a considerable role of northern

boreal forests, consistent with the notion that warmer tem-

peratures have promoted enhanced plant productivity during

summer and respiration during winter (Graven et al., 2013;

Kim et al., 2014; Myneni et al., 1997). Observed at eddy co-

variance sites, net ecosystem exchange (NEE), the inverse

of net ecosystem productivity (NEP), is a strong function

of mean annual temperature at mid- and high latitudes, up

to the optimum temperature of approximately 16 ◦C, above

which moisture availability overrides the temperature influ-

ence (Yi et al., 2010). Other studies have found vulnerabili-

ties in ecosystems of North America as well as Eurasia from

warming-related changes in hydrological patterns (Parida

and Buermann, 2014; Buermann et al., 2014), thereby high-

lighting the importance of precipitation. With warming, low-

temperature constraints to productivity have relaxed (Nemani

et al., 2003; Zhang et al., 2008; Yi et al., 2013). Tree-ring data

suggest that black spruce forests have experienced drought

stress during extreme warmth (Walker et al., 2015). Over

northern Eurasia, precipitation trends have complicated the

relationship between temperature and productivity, as the in-

creasing moisture constraints have made northern Eurasia

more drought-sensitive (Zhang et al., 2008; Yi et al., 2013).

Increasing atmospheric CO2 concentration is another factor,

as CO2 fertilization has been demonstrated through obser-

vations, models, and FACE (free-air CO2 enrichment) ex-

periments (Ainsworth and Long, 2005; Hickler et al., 2008;

Graven et al., 2013). Cloudiness or shade can strongly in-

fluence vegetation productivity (Roderick et al., 2001), par-

ticularly over northern Eurasia (Nemani et al., 2003). Distur-

bances through forest fires also affect vegetation productivity

by destroying existing vegetation and allowing for regener-

ation (Goetz et al., 2005; Amiro et al., 2000; Reich et al.,

2001).

The role of temperature and precipitation in the positive

trend of GPP of northern high latitudes, especially northern

Eurasia, has not been firmly established. Few studies have

examined the effect of CO2 concentration, cloudiness, and

forest fires. Of these environmental variables, CO2 concen-

tration is unlike the others, given its long atmospheric life-

time (∼ 100–300 years; Blasing, 2009). Thus, CO2 concen-

tration is assumed to be more spatially uniform. As a result,

any statistical analysis using this variable will not be compa-

rable with the other variables. We consequently do not anal-

yse the influence of CO2 concentration. While some studies

have focused on terrestrial ecosystems of the pan-Arctic (Ur-

ban et al., 2014; Myneni et al., 1997; Guay et al., 2014; Kim

et al., 2014) or the high latitudes of North America (Goetz

et al., 2005; Buermann et al., 2013; Thompson et al., 2006),

few studies have investigated the relative role of different en-

vironmental variables on increasing GPP of northern Eurasia.

Therefore, we assess in this study how vegetation productiv-

ity trends in northern Eurasia are influenced by the environ-

mental variables air temperature, precipitation, cloudiness,

and forest fire. Objectives are to (1) calculate the long-term

trend of both GPP and the environmental variables, (2) assess

the magnitude of the effect of the environmental variables

on GPP, (3) identify the seasonality of the variables, and (4)

identify the regions of northern Eurasia where the variables

boost or reduce GPP. Exploiting the availability of long-term

time series observation-based data we perform a spatially ex-

plicit grid point statistical analysis to achieve the above ob-

jectives.

2 Data and methods

2.1 Data

2.1.1 Land cover

The study domain is the Northern Eurasia Earth Science Part-

nership Initiative (NEESPI) region (Groisman and Bartalev,
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Table 1. Biome property look-up table (BPLUT) for GPP algorithm with ERA-Interim and NDVI as inputs. The full names for the University

of Maryland land cover classes (UMD_VEG_LC) in the MOD12Q1 data set are evergreen needleleaf forest (ENF), evergreen broadleaf forest

(EBF), deciduous needleleaf forest (DNF), deciduous broadleaf forest (DBF), mixed forests (MF), closed shrublands (CS), open shrublands

(OS), woody savannas (WS), savannas (SVN), grassland (GRS), and croplands (Crop).

UMD_VEG_LC ENF EBF DNF DBF MF CS OS WS SVN GRS Crop

FPAR_scale 0.8326 0.8565 0.8326 0.8565 0.84455 0.7873 0.834 0.8437 0.8596 0.8444 0.8944

FPAR_offset 0.0837 −0.0104 0.0837 −0.0104 0.03665 −0.0323 −0.0107 −0.0183 −0.0044 −0.0297 −0.0517

LUEmax 0.001055 0.00125 0.001055 0.00125 0.001138 0.00111 0.00111 0.001175 0.001175 0.0012 0.0012

(kgC m−2 d−1 MJ−1)

Tmn_min (◦C) −8 −8 −8 −6 −7 −8 −8 −8 −8 −8 −8

Tmn_max (◦C) 8.31 9.09 10.44 9.94 9.5 8.61 8.8 11.39 11.39 12.02 12.02

VPDmin (Pa) 500 1800 500 500 500 500 500 434 300 752 500

VPDmax (Pa) 4000 4000 4160 4160 2732 6000 4455 5000 3913 5500 5071

2007), defined as the area between 15◦ E longitude in the

west, the Pacific coast in the east, 45◦ N latitude in the south,

and the Arctic Ocean coast in the north. The total area of

this region is 22.4 million km2. Land cover distribution for

the region is drawn from the Moderate Resolution Imaging

Spectroradiometer (MODIS) MCD12Q1 Type 5 land cover

product for the year 2007, available online at https://lpdaac.

usgs.gov/data_access/data_pool from Land Processes Dis-

tributed Active Archive Center (LP DAAC), Sioux Falls,

South Dakota, USA. The product provides global land cover

at 1 km spatial resolution, produced from several classifica-

tion systems, principally that of the International Geosphere-

Biosphere Programme (IGBP). Friedl et al. (2002) describe

the supervised classification methodology which leveraged

a global database of training sites interpreted from high-

resolution imagery. The GPP products used in this study (de-

scribed below) use a static land cover (LC) classification to

define biome response characteristics over the study record.

Thus the effect of each environmental variable accounts only

for changes in NDVI and does not track potential changes

in land cover type. While the GPP products use the standard

IGBP MODIS global land cover classification, for our statis-

tical analysis we simplify the LC distribution into two fun-

damental types. One is “herbaceous”, without woody stems,

found in the tundra to the north and grasslands to the south,

one of the driest biomes of northern Eurasia. The second is

“woody vegetation”, plants with woody stems, located within

the area of boreal forests extending from west to east across

much of the centre of the domain (Fig. 1).

2.1.2 Vegetation productivity – long-term data

GPP represents the total amount of carbon fixed per unit area

by plants in an ecosystem utilizing the physiological pro-

cess of photosynthesis (Watson et al., 2000). GPP is one of

the key metrics useful in assessments of changes in vege-

tation productivity. It is also a standard output of process-

based vegetation models. The GPP fields used in this study

represent model estimates driven by satellite data. The GPP

model used is based on a light use efficiency (LUE) model

that prescribes theoretical maximum photosynthetic conver-

sion efficiency for different land cover classes. LUE is re-

duced from potential (LUEmax) rates for suboptimal environ-

mental conditions determined as the product of daily envi-

ronmental control factors defined for the different land cover

types using daily surface meteorological inputs from ERA-

Interim reanalysis data. Daily surface meteorology inputs to

the model include incident solar radiation (SWrad), minimum

and average daily air temperatures (Tmin and Tavg), and atmo-

spheric vapour pressure deficit (VPD). GPP is derived on a

daily basis as (Running et al., 2004; Zhang et al., 2008)

GPP= ε×FPAR×PAR, (1)

ε = εmax× Tf×VPDf, (2)

where ε is a LUE parameter (g C MJ−1) for the conversion of

photosynthetically active radiation (PAR, MJ m−2) to GPP.

FPAR is estimated from NDVI using biome-specific em-

pirical relationships emphasizing northern ecosystems (Yi

et al., 2013). Several studies demonstrated the linear rela-

tionship between NDVI and FPAR through field measure-

ments and theoretical analysis (Fensholt et al., 2004; Myneni

and Williams, 1994; Ruimy et al., 1994; Sellers, 1985).Two

sets of NDVI records are obtained for this study and used to

derive alternative FPAR and GPP simulations: (i) the third

generation Global Inventory Modeling and Mapping Stud-

ies (GIMMS3g; Zhu et al., 2013; Pinzon and Tucker, 2010),

downloaded from https://nex.nasa.gov/nex/ (referred to as

GIMMS-GPP), and (ii) the Vegetation Index and Phenol-

ogy (VIP) database (Didan, 2010; Barreto-Munoz, 2013),

downloaded from http://phenology.arizona.edu/ (University

of Arizona’s Vegetation Index and Phenology Lab; referred

to as VIP-GPP). The 16-day NDVI records are first inter-

polated to a daily time step using temporal linear interpo-

lation to estimate daily FPAR following previously estab-

lished methods (Yi et al., 2013). The use of daily NDVI

and FPAR inputs rather than coarser (8-day or 16-day) tem-

poral composites reduces potentially abrupt step changes in

the model calculations due to temporal shifts in the coarser

time series canopy inputs. Moreover, the daily interpolation

was found to improve simulations of GPP seasonality es-
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pecially during spring and autumn transitional periods over

northern land areas (Yi et al., 2013). PAR is estimated as a

constant proportion (0.45) of incident shortwave solar radi-

ation (SWrad). εmax is the potential maximum ε under opti-

mal environmental conditions. Tf and VPDf are scalars that

define suboptimal temperature and moisture conditions rep-

resented by respective daily Tmin and VPD inputs. Tf and

VPDf are defined using a linear ramp function (Yi et al.,

2013; Heinsch et al., 2006), as well as minimum and max-

imum environmental constraints defined for different biome

types (Tmn_min and Tmn_max, VPDmin and VPDmax). Table 1

summarizes the biome property look-up table (BPLUT) used

to define the environmental response characteristics in the

model. These GPP data sets are currently available through a

public FTP directory (ftp://ftp.ntsg.umt.edu/pub/data/HNL_

monthly_GPP_NPP/).

The GPP data are derived at a daily time step and have

been aggregated to a monthly time step for this study. Spa-

tial resolution is 25 km, with a temporal range from 1982

to 2010, restricted to the northern high latitudes (> 45◦ N).

In many of the statistical analyses to follow we use the

ensemble mean of the two satellite-derived GPP data sets,

henceforth denoted as “GPPsat”. Winter is characterized

by extremely low productivity, and technical constraints of

optical–IR remote sensing due to low solar illumination and

persistent cloud cover make for a particular challenge in esti-

mating vegetation indices and consequently computing GPP

across the high latitudes (Pettorelli et al., 2005). Given the

limited confidence in GPP data over winter (driven mainly

by the uncertainty in winter NDVI) we focus on the remain-

der of the year in our analysis.

Accuracy of the GIMMS-NDVI data set has been exam-

ined in several recent studies. Analysing trends in growing-

season start over the Tibetan Plateau, Zhang et al. (2013)

found that GIMMS NDVI differed substantially over the pe-

riod 2001–2006 from SPOT-VGT and MODIS-NDVIs, in-

dicating significant uncertainty among NDVI retrievals from

different satellite sensors and data records. The GIMMS3g

data set is based on the NOAA-AVHRR (Advanced Very

High Resolution Radiometer) long-term time series record,

which is comprised of AVHRR2 and AVHRR3 sensors on

board the NOAA-7 through to NOAA-19 satellites span-

ning multiple overlapping time periods; this leads to potential

artifacts from cross-sensor differences and inter-calibration

effects influencing long-term trends in the AVHRR NDVI

time series (Pinzon and Tucker, 2014). The Vegetation Index

and Phenology (VIP) NDVI data set applies a different data

processing scheme from that of GIMMS3g (Fensholt et al.,

2015), and involves an integration and calibration of over-

lapping AVHRR, SPOT, and MODIS sensor records for gen-

erating consistent NDVI (Didan, 2010). The ensemble mean

and variance of alternate GPP calculations derived using the

GIMMS3g and VIP NDVI records was used as a metric of

uncertainty in the regional productivity trends and underly-

ing satellite observation records.

2.1.3 Flux tower data

To verify the satellite-based GPP estimates we use gap-filled

daily tower GPP data at 10 flux tower sites distributed across

northern Eurasia, available for different periods of time. De-

tails of the individual towers are provided in Table 2. The

data, generated using the eddy covariance measurements ac-

quired by the FLUXNET community, were collected from

http://www.fluxdata.org/ for the “free fair-use” data subset.

The spatial distribution of the flux towers used in this study

is shown in Fig. 1. Unless otherwise noted, we use seasonal

totals of the daily gap-filled tower GPP data. Monthly and

seasonal values were aggregated from the daily data.

We also use monthly GPP data computed using

FLUXNET observations of carbon dioxide, water and energy

fluxes upscaled to the global scale for additional verification

of the satellite-derived GPP record for the entire study area,

on a per grid cell basis. Upscaling of the FLUXNET observa-

tions was performed using a machine learning technique and

model tree ensembles (MTE) approach from the Max Planck

Institute of Biogeochemistry, Jena, Germany, and available

online at https://www.bgc-jena.mpg.de/geodb/projects/Data.

php. Description and benchmarking of this data set can be

found in Jung et al. (2009) and Jung et al. (2011). Of the two

versions available, we use the one which incorporates flux

partitioning based on Reichstein et al. (2005).

2.1.4 Temperature, precipitation, and cloudiness

Monthly values of 2 m air temperature (in ◦C), precipita-

tion (in mm), and cloudiness (in %) are taken from monthly

observations from meteorological stations, extending over

the global land surface and interpolated onto a 0.5◦ grid

(Mitchell and Jones, 2005). The data set, CRU TS 3.21, is

produced by the Climatic Research Unit of the University of

East Anglia in conjunction with the Hadley Centre (at the UK

Met Office) and is available at http://iridl.ldeo.columbia.edu/

SOURCES/.UEA/.CRU/.TS3p21/.monthly/ (Jones and Har-

ris, 2013).

Although the LUE-based GPP model does not use precip-

itation as an input, we assume that precipitation is a useful

metric of water supply to vegetation and thus analyse it as

one of the environmental variables affecting GPP. Here we

use monthly values of temperature, precipitation, and cloudi-

ness for the period of 1982 to 2010, since this is the common

period for which both GPPsat and the environmental variable

data are available. Seasonal means for spring (March, April,

May), summer (June, July, August), and autumn (September,

October, November) are derived from the monthly values. As

explained in Sect. 2.1.2, lower reliability and availability of

satellite NDVI observations and associated GPP data for the

winter months lead us to focus on the spring, summer, and

autumn seasons.
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Table 2. Details of the flux towers whose GPP data have been used to validate the satellite NDVI-based GPP data. The spatial distribution of

these flux towers is shown in Fig. 1.

FLUXNET site code Site name Period Lat, long IGBP land cover Dominant PFT Principal investigator

RU-Cok Chokurdakh/Kytalyk 2003–2005 70.83, 147.49 Open shrublands Shrub Han Dolman,

Free Univ. Amsterdam

RU-Fyo Fedorovskoje 1998–2006 56.46, 32.92 Mixed forests Evergreen needleleaf trees Andrej Varlagin,

Russian Academy of Sciences

RU-Ha1 Ubs Nur- Hakasija 2002–2004 54.73, 90.00 Grasslands Grass Dario Papale,

University of Tuscia

RU-Zot Zotino 2002–2004 60.80, 89.35 Woody savannas Evergreen needleleaf trees Corinna Rebmann, Max Planck

Institute for Biogeochemistry

FI-Hyy Hyytiala 1996–2006 61.85, 24.29 Evergreen needleleaf forest Evergreen needleleaf trees Timo Vesala,

University of Helsinki

FI-Kaa Kaamanen wetland 2000–2006 69.14, 27.30 Woody savannas Grass Tuomas Laurila, Finnish

Meteorological Institute

FI-Sod Sodankyla 2000–2006 67.36, 26.64 Evergreen needleleaf forest Evergreen needleleaf trees Tuomas Laurila, Finnish

Meteorological Institute

CZ-BK1 Bily Kriz- Beskidy Mountains 2000–2006 49.50, 18.54 Evergreen needleleaf forest Evergreen needleleaf trees Marian Pavelka

HU-Bug Bugacpuszta 2002–2006 46.69, 19.60 Croplands Cereal crop Zoltan Nagy,

Szent István University

HU-Mat Matra 2004–2006 47.84, 19.73 Croplands Cereal crop Zoltan Nagy,

Szent István University

2.1.5 Fire

Fire is represented by proportional burnt area (% of each

grid cell) estimates from the Global Fire Emissions Database

(GFED) Monthly Burned Area Data Set Version 3.1 released

in April 2010. This product was developed on a global scale

at a 0.5◦ spatial resolution and covers the period from 1997

to 2011. The GFED is an ensemble product of burn areas

derived from multiple satellite sensors, though primarily em-

phasizing MODIS surface reflectance imagery (Giglio et al.,

2010).

2.2 Methods

2.2.1 Spatial interpolation

Data not on a 0.5◦ grid were interpolated to that resolution

using spherical version of Shepard’s traditional algorithm

(Shepard, 1968; Willmott et al., 1985). This method takes

into account (i) distances of the data points to the grid lo-

cation, (ii) the directional distribution of stations in order

to avoid overweighting of clustered stations, and (iii) spatial

gradients within the data field in the grid point environment.

2.2.2 Verification

The GIMMS-GPP and VIP-GPP simulations are evaluated

against co-located tower-based GPP observations for model

grid cells corresponding to each of the ten regional flux tower

locations (Table 2). The evaluation is carried out using five

different approaches:

1. Pearson’s product moment correlation, which is a mea-

sure of the linear dependence between simulated

(GIMMS-GPP and VIP-GPP) and observed (tower-

based GPP) values and its value ranges from −1 to +1,
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Figure 2. Relationship between the annual GPP recorded at the

flux tower sites and the corresponding values of the satellite-derived

GPP. The black solid line is the line of best fit and helps better un-

derstand the relationship between the two. The dashed line is the

1 : 1 line and demonstrates how much the relationship between the

two sets of values deviates from the 1 : 1 perfect relationship.

where 0 is no correlation and −1/+ 1 is total negative

or positive correlation respectively.

2. Percent bias, which measures the average tendency of

the simulated values to be larger or smaller than the cor-

responding observations. The optimal value is 0.0 with

low-magnitude values indicating accurate model sim-

ulations. Positive values indicate overestimations and

vice versa (Yapo et al., 1996; Sorooshian et al., 1993).

3. The Nash–Sutcliffe efficiency (NSE) coefficient, which

is a normalized statistic that determines the relative

magnitude of the residual variance compared to the

measured data variance (Nash and Sutcliffe, 1970). The

statistic indicates how well the plot of observed vs. sim-

ulated data fits the 1 : 1 line. Nash–Sutcliffe efficiencies

range from −∞ to 1. An efficiency of 1 corresponds to

a perfect match of model-simulated GPP to the observed

www.biogeosciences.net/13/45/2016/ Biogeosciences, 13, 45–62, 2016
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Table 3. Validation of GIMMS3g and VIP-GPP data sets along with their ensemble mean using flux tower GPP from 10 flux tower sites

across northern Eurasia. The spatial distribution of the flux tower sites is shown in Fig. 1. Validation was carried out using the following

approaches. (1) Pearson’s product moment correlation, which is a measure of the linear dependence between the simulated and observed

GPP and its value ranges from −1 to +1, where 0 is no correlation and −1/+ 1 is total negative or positive correlation. (2) Percent bias,

which measures the average tendency of the simulated values to be larger or smaller than their observed ones. The optimal value is 0.0,

with low-magnitude values indicating accurate model simulations. Positive values indicate overestimations and vice versa (Yapo et al., 1996;

Sorooshian et al., 1993). (3) Nash–Sutcliffe model efficiency coefficient (Nash and Sutcliffe, 1970), values of which range from −∞ to

1. An efficiency of 1 corresponds to a perfect match of model-simulated GPP to the observed data. An efficiency of 0 indicates that the

model predictions are as accurate as the mean of the observed data, whereas an efficiency less than zero occurs when the observed mean is

a better predictor than the model or, in other words, when the residual variance (between modelled and observed values) is larger than the

data variance (between observed values and the observed mean). Essentially, the closer the model efficiency is to 1, the more accurate the

model is.

Correlation (R) GIMMS-GPP VIP-GPP GPPsat

(ensemble mean)

Annual 0.71 0.68 0.70

Spring 0.82 0.81 0.81

Summer 0.72 0.64 0.69

Autumn 0.64 0.67 0.66

Percent bias GIMMS-GPP VIP-GPP GPPsat

(ensemble mean)

Annual −16.9 % −19.7 % −18.3 %

Spring −9.1 % −17.3 % −13.2 %

Summer 1.9 % −2.1 % −0.1 %

Autumn −35.1 % −28.3 % −31.7 %

Nash–Sutcliffe efficiency GIMMS-GPP VIP-GPP GPPsat

(ensemble mean)

Annual 0.36 0.29 0.33

Spring 0.64 0.57 0.61

Summer 0.46 0.40 0.44

Autumn 0.13 0.27 0.21

data. An efficiency of 0 indicates that the model predic-

tions are as accurate as the mean of the observed data,

whereas an efficiency less than zero occurs when the ob-

served mean is a better predictor than the model or, in

other words, when the residual variance (between mod-

elled and observed values) is larger than the data vari-

ance (between observed values and the observed mean).

Essentially, the closer the model efficiency is to 1, the

more accurate the model is.

4. A scatter plot, which demonstrates using Cartesian co-

ordinates the correlation between satellite-derived GPP

and tower-derived GPP at the respective sites for the re-

spective time periods. This along with the line of best fit

helps determine how well the two data sets agree with

each other.

5. Spatially explicit, pixel-by-pixel validation using the

upscaled GPP data from FLUXNET observations (de-

scribed in Sect. 2.1.3) using correlation and difference

maps for the entire period.

2.2.3 Trend analysis

Temporal changes for each environmental variable are de-

termined using linear regression. Both annual and seasonal

time integrations are examined. Trends are deemed statis-

tically significant at the 95 % level. For each variable, we

compute the trend per decade (10 yr−1) from the monthly

values (month−1). Other studies have implemented a simi-

lar methodology to identify trends (Piao et al., 2011; de Jong

et al., 2011; Forkel et al., 2013; Goetz et al., 2005). In order

to determine whether the temporal rate of change differs for

different periods of the study period we plot the percentage

difference of the annual means (of the regional average) from

that of the first 5-year mean.

For the entire period of study, a few of the variables as-

sessed show strong trends. Moreover, we assume the vari-

ables to be linearly associated. This introduces the issue of

collinearity, as a consequence of which the study of influence

of one variable on another becomes less precise. Therefore,

in order to make accurate assessments of correlation between

two variables, correlation analysis has only been carried out
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Figure 3. Spatially explicit validation of GPPsat using upscaled FLUXNET observations. Panel (a) is the correlation map and displays the

statistically significant (95 % level) correlations between the two sets of values of annual GPP for the period of 1982–2010. Panel (b) is the

difference between the 29-year mean of GPPsat and upscaled FLUXNET database, with negative values demonstrating an underestimation

of GPPsat and vice versa.

after long-term trends (for period 1982–2010) have been re-

moved and consequently only the interannual variability is

preserved.

2.2.4 Correlation

We use the Pearson product–moment correlation coefficient

(represented as R), one of the more popular measures of de-

pendence between two variables and which is sensitive only

to a linear relationship between two variables. This metric

is defined from +1 (perfect increasing linear relationship) to

−1 (perfect decreasing linear relationship or “inverse corre-

lation”) and as the value approaches zero, the relationship

becomes uncorrelated (Dowdy and Wearden, 1983). When

a single variable is affected by more than one independent

factor, simple correlation is inappropriate. We perform par-

tial correlation to better assess the relationship between two

variables after eliminating the influence of other variables.

2.2.5 Attribution

The primary objective of this study is to determine the mag-

nitude and spatio-temporal variations in trends for environ-

mental conditions (variables) which have contributed to the

increase in GPP of northern Eurasia indicated from the satel-

lite records. Ideally one would study the direct influence of

one condition on another in experiments in which all other

possible causes of variation are eliminated. However, since

this study involves only large-scale observational data and

not process-based models or laboratory-based experiments,

there is no control over the causes of variation. Investigations

into the structure and function of terrestrial ecosystems, like

those for many elements of the biological sciences, involve

quantities which are often correlated. In some cases, the de-

rived relationship may be spurious. The coefficient of deter-

mination (represented as R2) is a common measure to esti-

mate the degree to which one variable can be explained by

another (percentage; Wright, 1921), while correlation anal-

ysis (R) can explain this dependence of one variable on an-

other keeping the sign of the relationship (±) intact (Aldrich,

1995).

3 Results and discussion

3.1 Verification of satellite-derived GPP

The GIMMS-GPP and VIP-GPP, as well as their ensemble

mean (GPPsat), are individually verified against the flux-

tower-based GPP data using Pearson’s correlation coeffi-

cient, percent bias, and the Nash–Sutcliffe normalized statis-

tic. Scatter plots (Fig. 2) show that GPP derived from the

satellite NDVI records is generally higher than the tower-

based GPP at the flux tower sites that have comparatively

lower productivity (and vice versa). Moreover, the agree-

ment is stronger at lower-productivity sites than at higher-

productivity sites. Though Table 3 lists all of the verifica-

tion statistics, we focus primarily on the annual GPPsat re-

sults for the rest of the study. The correlation coefficients are

all positive and high (0.7 for annual GPPsat); percent bias

is predominantly negative (18.3 %); and since all the values

of the Nash–Sutcliffe efficiencies are above zero (0.33), we

conclude that the satellite NDVI-derived values are a more

accurate estimate of GPP than the observed mean for the

respective flux tower sites. Spatially explicit verification of

GPPsat reveals that the correlation is high and statistically

significant for almost the entire study area (Fig. 3a). GPPsat

shows a general underestimation in the boreal forests of the

western parts of northern Eurasia and overestimation in the

Eurasian steppes to the south of the study area (Fig. 3b).

Satellite-derived vegetation indices have been evaluated

using a variety of techniques. Using tree-ring width measure-

ments as a proxy for productivity, Berner et al. (2011) exam-

ined its relationship with NDVI from AVHRR instruments

and found the correlation to be highly variable across the

sites, though consistently positive. Remarkably strong corre-
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Figure 4. Change in annual GPP for GPPsat over the period 1982–2010. Panel (a) is the trend map for GPPsat, i.e. the ensemble mean (of

two GPP data sets). Shades of green represent a positive trend and shades of red represent a negative trend. The trends have been derived from

a linear least-squares fit to the GPP time series for GIMMS3g and VIP data sets. Trend values represent the rate of change of productivity per

decade (g C(Carbon) m−2 month−1 10 yr−1). Panel (b) is the uncertainty map (uncertainty due to the use of two GPP data sets) represented

by computing the coefficient of variation (CV). Darker values represent higher uncertainty and vice versa. Panel (c) shows yearly change

in the regional average GPP for the data sets derived from the GIMMS3g (red) and VIP (blue) NDVI data sets. The interannual variation is

smoothed using a smoothing spline using a smoothing parameter of 0.8.

lations were observed in comparisons of GIMMS3g NDVI to

aboveground phytomass at the peak of summer at two repre-

sentative zonal sites along two trans-Arctic transects in North

America and Eurasia (Raynolds et al., 2012). From com-

parison of production efficiency model-derived NPP (Zhang

et al., 2008) to the stand level observations of boreal aspen

growth for the 72 CIPHA (Climate Impacts on Productivity

and Health of Aspen) sites, the correlation was found to be

positive. LUE algorithms similar to the one used in this study

for the generation of GPP data sets from satellite NDVI pro-

duce favourable GPP results relative to daily tower observa-

tions, with a strong positive correlation (Yi et al., 2013; Yuan

et al., 2007; Schubert et al., 2010). Evaluating the uncertain-

ties in the estimated carbon fluxes computed using a similar

LUE-based GPP model, Yi et al. (2013) concluded that the

uncertainty in LUE (ε) characterization is the main source

of simulated GPP uncertainty. GPP simulation errors under

dry conditions are increased by an insufficient model vapour

pressure deficit (VPD) representation of soil water deficit

constraints on canopy stomatal conductance and ε (Leuning

et al., 2005; Schaefer et al., 2012). It was also found that the

GPP model does not consider the response of ε to diffuse

light due to canopy clumping (Chen et al., 2012) and shaded

leaves (Gu et al., 2002).

3.2 Temporal changes in GPP

Across the study domain, regionally averaged GPPsat ex-

hibits a trend of 2.2 (±1.4) gCm−2 month−1 decade−1. Fig-

ure 4a displays the annual GPP trend map. Increases are
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noted across most of the region except for a small area in

the north-central part of the region, just east of the Yenisey

River. The largest increases are located in the western and

south-eastern part of the region. Over half (69.1 %) of the

study area exhibits a statistically significant positive trend

(95 % significance level), while 0.01 % of the area has a sta-

tistically significant negative trend. Uncertainty in the en-

semble mean GPP is illustrated by the coefficient of varia-

tion map (Fig. 4b). The highest uncertainty is noted in the

north-central and the south-western part of the region. The

yearly increase in annual GPP for both GIMMS-GPP (red)

and VIP-GPP (blue; Fig. 4c) reveal the difference between

the two data sets, which is highest at the beginning of the

study period. The nature of increase in GPP is also different

for the two data sets, with the rise in one being more linear

than the other. A possible explanation for the differences in

the two data sets is discussed in Sect. 2.1.2. Examining the

seasonality of GPP trends (of GPPsat; Fig. 5), we find that

the summer trend is greatest among all other seasons. This

implies that the response of GPP to environmental changes

is greatest at the peak of the growing season. While the pro-

ductivity of the region is predominantly increasing, there are

clearly certain areas each season with decreasing productiv-

ity.

The GPP increase described here is consistent with the re-

sults of Sitch et al. (2007), who also noted considerable inter-

annual and spatial variability, with many areas demonstrating

decreased greenness and lower productivity. Using a process-

based model (LPJ-DGVM) to perform a retrospective anal-

ysis for the period of 1982–1998, Lucht et al. (2002) found,

after accounting for the carbon loss due to autotrophic respi-

ration, that boreal zone NPP increased by 34.6 g C m−2 yr−1,

which is comparable to our estimate. The higher GPP trend in

summer (Fig. 5), especially over the northern Eurasia portion

of the domain, suggests that the vegetation of this region is

predominantly cold-constrained, a finding described in other

recent studies (Yi et al., 2013; Kim et al., 2014).

3.3 Temporal changes in the environmental variables

The regionally averaged air temperature increase is nearly

monotonic and the distributions displayed in Fig. 6a show

that the region has a predominantly positive trend for all

parts of the growing season. Warming is highest in autumn.

A statistically significant increase in temperature is noted

for approximately half of the region. The greatest increases

are found in the north-eastern and south-western parts of the

region (maps not shown). Unlike temperature, precipitation

does not exhibit a sustained increase over the study period.

While the regional median trend for precipitation is highest

for spring (Fig. 6b), the range of trends for this region, from

minimum to maximum, is highest for summer. The fraction

of the region experiencing significant increases in annual pre-

cipitation is about 3 times the area experiencing significant

decreases. The significant positive trends are located in the
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Figure 5. Box plot showing grid distributions of seasonal

GPP trends for GPPsat. The GPP trends are expressed in

g C m−2 month−1 10 yr−1. The black band and middle notch rep-

resent the 2nd quartile or median; box extents mark the 25th (1st

quartile) and 75th (3rd quartile) percentiles. Whiskers extend from

the smallest non-outlier value to the largest non-outlier value. The

colours, green, red, orange, and grey represent spring, summer,

autumn, and annual seasonal trends respectively. As described in

Sect. 2.1.2, GPP trends for winter have not been assessed in this

study.

north-eastern and western parts (mainly boreal forests) of

the domain, while significant negative trends are located in

the west-central (boreal forests) and south-eastern (steppes)

parts of the region (maps not shown). Along with the regional

averages of other environmental variables, Table 4 reveals

the regional average of cloudiness, which shows a negative

trend. However, similar to precipitation, the spatial standard

deviation is very high, implying a high spatial variability

in cloudiness trends across the region. Unlike precipitation,

a greater fraction of the region is experiencing significant de-

creasing cloudiness or a significant clear-sky trend (Fig. 6c).

Compared to the rest of the region, annual cloudiness shows

higher negative trends in the southern parts of the study area

(maps not shown). Burnt area exhibits significant trends, both

positive and negative, over only 1 % of the region, with the

total yearly burnt area for the study area increasing from 15.9

to 17.1 million hectares from 1997 to 2010. The negative

trend of the regional mean (Table 4; Fig. 6d) is not signifi-

cant.

Recent studies have reported similar changes in these en-

vironmental variables. For the period of 1979 to 2005, Tren-

berth et al. (2007) found temperature trends over the region

range from 0.3 to 0.7 ◦Cdecade−1, and for most regions of

the higher latitudes, especially from 30 to 85◦ N, significant
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Table 4. Trend statistics for annual monthly averages of environmental variables. The first and second columns list the fraction of the region

with significant (95 % significance level) positive trends and negative trends respectively. The third column is the regional mean trend of the

variables per decade. The fourth column is the coefficient of variation, estimated as the distribution mean divided by the standard deviation.

Environmental Positive trend Negative trend Trend 10 yr−1 Coefficient

driver (% of area) (% of area) (regional mean) of variation

Temperature 50.9 % 0 % 0.39 ◦C 0.53

Precipitation 15.2 % 4.5 % 0.61 mmmonth−1 3.0

Cloudiness 7.9 % 16.9 % −0.18 % of grid cell 4.2

Burnt area 0.7 % 0.3 % −0.88 ha 20.6
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Figure 6. Change in the environmental variables over the period of

study represented by seasonal trends. Panels (a–c) show distribu-

tion of 2 m air temperature, precipitation, and cloud cover respec-

tively for the period 1982–2010, and panel (d) illustrates seasonal

trends of total burnt area for the period 1997–2011. The tempera-

ture, precipitation, and cloud cover data are taken from the Climatic

Research Unit (CRU TS 3.21) data set (Harris et al., 2014). Burnt

area data from the Global Fire Emissions Database (GFED; Giglio

et al., 2010).

positive precipitation trends have occurred. Contrary to the

cloud cover trend we find here, studies reported in AR4 sug-

gest an increase in total cloud cover since the middle of the

last century over many continental regions, including the for-

mer USSR and western Europe (Sun et al., 2001; Sun and

Groisman, 2000). The large spatial variability in the gridded

cloud cover trends (Table 4) may explain the disagreement.

Burnt area data, representing fire disturbance, is dissimilar

from the other environmental variables in that it spans only

14 years of the 29-year study record, and it is spatially non-

uniform, involving only a fraction of the total study area.

This limitation makes it difficult to assess impacts on veg-

etation productivity (Balshi et al., 2007). While the model

used to generate the satellite NDVI-derived GPP data does

not account for CO2 fertilization directly, the fertilization ef-

fect may be partially represented through associated changes

in NDVI. As stated in Sect. 1, we do not analyse atmospheric

CO2 concentration due to its spatial homogeneity.

3.4 Attributing GPP changes to environmental

variables and assessing seasonality

Annual GPP is affected by more than one environmental vari-

able. To study the impact of an individual environmental vari-

able, we eliminate the impact of other variables by perform-

ing partial correlations. With the temporal range of the fire

data (GFED) being a fraction of that of the other environ-

mental variables, it is not possible to compute the partial cor-

relation. Consequently, we are unable to assess the effects

of only fire by eliminating the effects of the other variables.

Moreover, fires have been found to be significantly correlated

with annual GPP (GPPsat) for only a small fraction (1.7 to

3.4 % depending on season) of the entire study area. The im-

pact of fires on annual GPP for the region is therefore ignored

in this study.

The regional median partial coefficient of determination

(R2) for significant values (Table 5) suggests that the sum-

mer values of the environmental variables have the highest

influence on annual GPPsat. The contrast between summer

and the other seasons is strongest for temperature, highlight-

ing the importance of summer temperatures to annual pro-

ductivity. Figure 7 reveals that the relationships between an-

nual GPP and the environmental variables are not completely

explained by simple correlation (R2), as the distributions of

partial correlations provide more information about the in-

teraction. Considering only significant correlations (Fig. 7),

we find that increasing temperatures predominantly increase

GPP. The relationship between precipitation or cloudiness

and GPP, on the other hand, leads to a predominantly bi-

modal distribution, with both positive and negative effects.

Other than spring, areas demonstrating significant negative

partial correlations appear to be larger than the areas of sig-

nificant positive partial correlations. Among the environmen-

tal variables assessed, temperature has the highest partial co-

efficient of determination (Table 5). Moreover, unlike pre-

cipitation and cloudiness, temperature has a predominantly
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Figure 7. Bean plots of the multi-modal distribution for significant

(95 % significance) partial correlation between annual de-trended

GPP (GPPsat) and the values of each de-trended environmental

variable after eliminating the influence of the other variables. A

bean plot is an alternative to the box plot and is fundamentally a

one-dimensional scatter plot. Here it is preferred over a box plot

as it helps to show a multi-modal distribution. The thickness of a

“bean” is a function of the frequency of the specific value – that is,

the thicker a “bean” is for a value, the relatively higher the number

of grid points having that value. The values shown are the Pearson’s

correlation coefficients which are based on the linear least-squares

trend fit. Correlation values range from −1 to +1. Values closer to

−1 or +1 indicate strong correlation, while those closer to 0 indi-

cate weak correlation. The colour of the box indicates the season of

the environmental variable being investigated (annual: grey; spring:

green; summer: red; autumn: amber). The short horizontal black

lines for each “bean” is the median of that distribution.

positive relationship with annual GPP. These relationships

imply that, over recent decades, low temperatures have been

the major constraint for GPP in northern Eurasia.

Similar results were reported by Yi et al. (2014), who

concluded that satellite-derived vegetation indices show an

overall benefit for summer photosynthetic activity from re-

gional warming and only a limited impact from spring pre-

cipitation. The dominant constraint of temperature was de-

scribed by Zhang et al. (2008), who found the same con-

straint to be decreasing. However, our results contrast with

those of Piao et al. (2011), who concluded that at the con-

tinental scale of Eurasia, vegetation indices in summer are

more strongly regulated by precipitation, while temperature

is a relatively stronger regulator in spring and autumn. Re-

garding the dominance of temperature as a regulator, Yi et al.

(2013) concluded that, over the last decade, Eurasia has been

more drought-sensitive than other high-latitude areas.

Table 5. Medians of the distributions of the relative partial signif-

icant contribution (R2 – 95 % significance) of each de-trended en-

vironmental variable (except fire) of each season to the interannual

variability in de-trended annual GPP (GPPsat). In each case the to-

tal contribution may not add up to 100 %. In these cases the factors

behind the unexplained attribution are not identified.

Environmental variable Annual Spring Summer Autumn

Temperature 26.1 % 26.5 % 37.7 % 19.9 %

Precipitation 22.9 % 20.7 % 20.7 % 17.9 %

Cloudiness 18.9 % 18.3 % 19.3 % 18.8 %

Since GPP trends are highest in summer (Fig. 5), the peak

of the growing season, we are interested more in the im-

pact of the environmental variables during summer on an-

nual GPP since the terrestrial vegetation is likely to be more

responsive to variations in summer environmental conditions

relative to other seasons. Spatial analysis helps to elaborate

on the results shown in Table 5 and Fig. 7. Assessing the par-

tial significant correlation of annual GPP and summer tem-

perature (Fig. 8a; Table 6), we find that areas with a positive

correlation (62 % of the area) are concentrated to the north

and east of the region, which include both tundra and bo-

real forest areas. Negative correlations occur across 2 % of

the region, largely in the south within the Eurasian steppes.

For other parts of the year (maps not shown for spring and

autumn correlations but distributions represented in Fig. 7),

significant negative correlations become more spatially dis-

perse, while significant positive correlations are limited to

the centre and west of the region for spring, becoming more

disperse in autumn. Determining the partial correlation be-

tween annual GPP and summer precipitation, Fig. 8b reveals

that the areas of significant positive correlations (4 % of area)

are scattered over the southern part of the study area (steppes

vegetation), while the significant negative correlations (16 %

of area) are scattered across the north (tundra and boreal).

Correlations for spring precipitation with annual GPP (maps

not shown) are predominantly positive, while that for autumn

precipitation is predominantly negative. The spatial correla-

tions for summer cloudiness and summer precipitation are

similar (Fig. 8c), though the area under significant corre-

lation is comparatively less. Negative correlation areas are

about 9 times more extensive than positive correlation areas

(Table 6). Compared to summer, the area under significant

positive correlation is higher for spring, while the area under

negative correlation is higher for autumn (maps not shown).

The negative correlations for temperature and positive cor-

relations for precipitation and cloudiness in the southern

grasslands (Eurasian steppes) are not surprising, as these

grasslands are relatively dry compared to other biomes in the

broader region. In this part of the study area, increasing tem-

peratures in summer may lead to greater water stress (Gates,

1964; Wiegand and Namken, 1966; Jackson et al., 1981).

Decreasing precipitation would increase water stress. More-
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Figure 8. Spatial distribution of statistically significant (95 % significance level) partial correlation between de-trended annual GPP (GPPsat)

and de-trended summer values of environmental variables (a) temperature, (b) precipitation, and (c) cloud cover. Negative correlations are

shown with shades of red and positive correlations are shown in shades of blue.
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Figure 9. Box plots of the distribution for correlation between de-

trended values of each environmental variable. The location of the

box and in particular the median on the y axis, on either side of the

zero line, reveals the predominant sign of the correlation.

over, increasing cloud cover would tend to lead to a higher

probability of rain (Richards and Arkin, 1981), thus reliev-

ing water stress induced by warming in this relatively dry

area. The cause of the negative correlations in the north is

unclear. The relationship may be attributable to the predomi-

nantly positive relationship between cloud cover (equivalent

to inverse of sunshine duration) and precipitation (Sect. 3.5).

In the light-limited and relatively colder north, an increase

in cloud cover could, on the one hand, cause a decrease in

direct radiation and increase in diffuse radiation, which may

increase GPP through higher LUE (Alton et al., 2007; Gu

et al., 2002; Williams et al., 2014; Roderick et al., 2001).

However, an increase in cloud cover could decrease total so-

lar radiation and, in turn, productivity (Nemani et al., 2003;

Shim et al., 2014).

Recent studies have shown similar relationships to those

found here. Zhang et al. (2008) showed that, across the

pan-Arctic basin, while productivity increased with warm-

ing, increasing drought stress can offset some of the poten-

tial benefits. However, Yi et al. (2013) concluded that while

GPP was significantly higher during warm years for the pan-

Arctic, the same was not true for the Eurasian boreal forests,

which showed greater drought sensitivity. Positive impacts

of warming on GPP have been suggested in warming exper-

iments (Natali et al., 2013). However, decreasing growing-
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Table 6. Connection between annual GPP of northern Eurasia

(GPPsat) and summer values of environmental variables shown as

percentage of the study area with statistically significant (95 % sig-

nificance level) positive and negative partial correlation coefficients.

Environmental GPP (ensemble mean)

variable positive negative

Temperature 61.7 % 2.4 %

Precipitation 3.9 % 15.9 %

Cloudiness 1.3 % 9.5 %

season forest productivity, represented as a decline in “green-

ness” across northern Eurasia, may be a reflection of contin-

ued summer warming in the absence of sustained increases

in precipitation (Buermann et al., 2014; Zhou et al., 2001).

3.5 Relationships among individual environmental

variables

Environmental variables are not independent of one another.

We examine correlations among the de-trended individual

variables to better understand their interactions. Figure 9

shows distributions of the correlations. The temperature–

precipitation correlation is predominantly negative, indicat-

ing that increases in precipitation did not accompany recent

warming. Significant negative trends are located in the south-

ern parts of the study area (steppes) as well as the boreal

forests at the western and eastern ends of the region. These

changes may be leading to increasing water stress, evidence

of which is noted in a subset of the region. Indeed, approx-

imately 2.4 % of the area in the southern parts of the study

area (Fig. 8a) shows significant negative partial correlation

between annual GPP (GPPsat) and summer temperature. The

relationship between temperature and cloud cover is simi-

larly predominantly negative. Spatially, however, the signifi-

cant negative correlations are located in the central and west-

ern parts of the region. Grid-cell-wise correlations between

precipitation and cloud cover are predominately positive,

with the significant correlations spread out across the region.

As described in Sect. 3.4, the correlations between precipi-

tation and cloud cover help to explain why spatial distribu-

tions of the correlation coefficients of precipitation and cloud

cover with GPP are similar. Wang et al. (2014) documented

a positive relationship between sunshine duration (equiva-

lent to the inverse of cloud cover) and vegetation greenness.

While increasing cloud cover leads to an increased probabil-

ity of precipitation, and thus reduces water stress, it also re-

duces the sunshine duration and hence GPP. According to Ta-

ble 4, regional mean precipitation has a positive trend, while

cloudiness has a negative trend. However, Fig. 9 reveals the

predominantly positive correlation between these two vari-

ables. This apparent contradiction is because the long-term

trends are calculated for the actual values, while the correla-

tion analysis is performed after de-trending (removing long-

term trends) the variables.

Consistent with our results, Thompson et al. (2006) found

that, in the boreal and tundra regions of Alaska, NPP de-

creased when it was warmer and dryer and increased when

it was warmer and wetter. They also described how colder

and wetter conditions also increased NPP. Yi et al. (2013)

concluded that while, globally, annual GPP for boreal forests

is significantly higher in warmer years, the relationship does

not hold true for Eurasian boreal forests, which they identify

to be more drought-sensitive. For this reason, regional GPP

variations are more consistent with regional wetting and dry-

ing anomalies, as we note for the south-western part of the

study region. In this study we assessed only GPP. Other car-

bon cycle processes such as autotrophic and heterotrophic

respiration and disturbances may not be responding in a sim-

ilar manner. Additional studies are required before extrapo-

lating these results to other carbon cycle components.

4 Conclusions

The ensemble mean of the GPP data sets derived from

GIMMS3g and VIP NDVI data indicates that vegetation pro-

ductivity generally increased across northern Eurasia over

the period 1982 to 2010, with a significant increase for as

much as 69.1 % of the region. A significant decrease in GPP

occurred across only 0.01 % of the region. We note some dis-

agreement in the nature and magnitude of the increasing GPP

among the two data sets. The regional mean trend for the en-

semble mean GPP is 2.2 (±1.4) g C m−2 month−1 decade−1.

The regional analysis is consistent with results of prior

studies which have suggested that air temperature is the

dominant environmental variable influencing productivity in-

creases across the northern high latitudes. Examining partial

coefficients of determination (R2), we find that the summer

values of temperature, precipitation, and cloudiness have the

highest influence on annual GPP. Considering the regional

median of partial significant R2 values, summer air temper-

ature explains as much as 37.7 % of the variation in annual

GPP. In contrast, precipitation and cloudiness explain 20.7

and 19.3 % respectively. A significant positive partial corre-

lation between summer air temperature and annual GPP is

noted for 61.7 % of the region. For 2.4 % of the area, specifi-

cally the dryer grasslands in the south-west, temperature and

GPP are inversely correlated. Precipitation and cloudiness

during summer also impart a significant influence, showing

areas with both positive and negative significant partial corre-

lation with annual GPP. Fire has a very small effect, with only

up to 3.4 % of the region showing significant correlation, and

consequently the impact of fire on GPP was ignored for the

subsequent analysis. The spatial analysis reveals that the sta-

tistical relationships are not spatially homogeneous. While

warming likely contributed to increasing productivity across

much of the north of the region, the relationship reverses in
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the southern grasslands, which are relatively dry. That region

exhibits increasing GPP, but with warming accompanying

increased moisture deficits potentially restricting continued

productivity increase. This result demonstrates that vegeta-

tion has been resilient to drought stress, which may be in-

creasing over time.

We recommended that this study be followed up with ex-

periments conducted using process-based models in which

a single forcing variable independent of the others is ma-

nipulated. If feasible, multiple models should be used in or-

der to quantify the uncertainty due to differences in model

parameterization. Depending on emissions, population, and

other forcing scenarios, rates of change in the environmen-

tal drivers such as air temperature and precipitation may be

different than those found in this study. Thus it is critical

to examine future scenarios of change across the region to

better understand terrestrial vegetation dynamics under the

respective model simulations. Environmental drivers influ-

ence other elements of the carbon cycle beyond the individ-

ual plant. In order to determine how terrestrial carbon stocks

and fluxes have changed in the recent past, or may change

in the near future, all aspects of the carbon cycle should be

investigated in the context of changes in overarching climate

influences.
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