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Abstract. Timely and accurate monitoring of pasture
biomass and ground cover is necessary in livestock produc-
tion systems to ensure productive and sustainable manage-
ment. Interest in the use of proximal sensors for monitoring
pasture status in grazing systems has increased, since data
can be returned in near real time. Proximal sensors have the
potential for deployment on large properties where remote
sensing may not be suitable due to issues such as spatial scale
or cloud cover. There are unresolved challenges in gather-
ing reliable sensor data and in calibrating raw sensor data to
values such as pasture biomass or vegetation ground cover,
which allow meaningful interpretation of sensor data by live-
stock producers.

Our goal was to assess whether a combination of proxi-
mal sensors could be reliably deployed to monitor tropical
pasture status in an operational beef production system, as
a precursor to designing a full sensor deployment. We use
this pilot project to (1) illustrate practical issues around sen-
sor deployment, (2) develop the methods necessary for the
quality control of the sensor data, and (3) assess the strength
of the relationships between vegetation indices derived from
the proximal sensors and field observations across the wet
and dry seasons.

Proximal sensors were deployed at two sites in a tropical
pasture on a beef production property near Townsville, Aus-
tralia. Each site was monitored by a Skye SKR-four-band

multispectral sensor (every 1 min), a digital camera (every
30 min), and a soil moisture sensor (every 1 min), each of
which were operated over 18 months. Raw data from each
sensor was processed to calculate multispectral vegetation
indices. The data capture from the digital cameras was more
reliable than the multispectral sensors, which had up to 67 %
of data discarded after data cleaning and quality control for
technical issues related to the sensor design, as well as envi-
ronmental issues such as water incursion and insect infesta-
tions. We recommend having a system with both sensor types
to aid in data interpretation and troubleshooting technical
issues. Non-destructive observations of pasture characteris-
tics, including above-ground standing biomass and fractional
ground cover, were made every 2 weeks. This simplified data
collection was designed for multiple years of sampling at the
remote site, but had the disadvantage of high measurement
uncertainty.

A bootstrapping method was used to explore the strength
of the relationships between sensor and pasture observations.
Due to the uncertainty in the field observations, the rela-
tionships between sensor and field data are not confirma-
tional and should be used only to inform the design of fu-
ture work. We found the strongest relationships occurred dur-
ing the wet season period of maximum pasture growth (Jan-
uary to April), with generally poor relationships outside of
this period. Strong relationships were found with multispec-
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tral indices that were sensitive to the green and dry compo-
nents of the vegetation, such as those containing the band in
the lower shortwave infrared (SWIR) region of the electro-
magnetic spectrum. During the wet season the bias-adjusted
bootstrap point estimate of the R2 between above-ground
biomass and the normalized ratio between the SWIR and red
bands (NVI-SR) was 0.72 (95 % CI of 0.28 to 0.98), while
that for the percentage of green vegetation observed in three
dimensions and a simple ratio between the near infrared and
SWIR bands (RatioNS34) was 0.81 (95 % CI of 0.53 to 1.00).
Relationships between field data and the vegetation index de-
rived from the digital camera images were generally weaker
than from the multispectral sensor data, except for green veg-
etation observations in two and three dimensions.

Our successful pilot of multiple proximal sensors supports
the design of future deployments in tropical pastures and
their potential for operational use. The stringent rules we
developed for data cleaning can be more broadly applied to
other sensor projects to ensure quality data. Although prox-
imal sensors observe only a small area of the pasture, they
deliver continual and timely pasture measurements to inform
timely on-farm decision-making.

1 Introduction

Frequent and accurate monitoring of pastures in livestock
production systems is necessary to facilitate timely and ap-
propriate management decisions. Traditional methods for
measuring pasture biomass (e.g. pasture cuts, visual assess-
ments, and plate meters; Sanderson et al., 2001) are time con-
suming, leading to increased interest in automated monitor-
ing methods. While remote sensing of the landscape from
satellite-based platforms gives extensive spatial coverage, its
usefulness can be limited by irregular availability of suitable
images, which in tropical environments can be further re-
stricted by cloud cover, particularly during the wet season
when pastures are growing. Converting raw satellite images
to a measure that is useful for on-farm decision-making is
also problematic due to the cost and processing requirements
for operational delivery (e.g. Handcock et al., 2008). While
cheap or free satellite images are increasingly accessible,
their ability to be interpreted for on-farm decision-making
is not straightforward (Handcock, 2008). Continual monitor-
ing using proximal sensors has the advantage over satellite
images of capturing rapid changes in the proportions of pho-
tosynthetically active vegetation (PV) (i.e. green) and non-
photosynthetically active vegetation (NPV) (i.e. dead/dry).
Such changes in the feedbase can signal that farm manage-
ment interventions are necessary for better utilization of re-
sources and reducing detrimental environmental impacts due
to overgrazing. For example, at the end of the wet season
in tropical environments, beef producers need to assess how
much green feed remains in the paddock to determine if there

is sufficient feed to carry the herd through the dry season or
if they need to adjust stocking rates (O’Reagain et al., 2014),
provide supplemental feed, or move animals.

With recent advances in wireless sensor networks and im-
proved mobile network coverage, the delivery of monitoring
data from sensors in remote cattle enterprises in a near-real-
time data stream has become feasible. While proximal sen-
sors monitor only a small area or point and do not provide
the extensive coverage of satellite imagery when strategically
placed within the farm, these sensors have the potential to de-
liver continual data on the feedbase and allow more respon-
sive management decisions.

In the present study, proximal sensors refer to in situ sen-
sors placed within several metres of the surface to be mon-
itored or in the shallow subsurface environment, providing
repeat measurements at discrete intervals over periods of
days to years. This distinguishes fixed proximal sensors from
those which are mobile via robotic or aerial platforms (e.g.
von Bueren et al., 2015; Hamilton et al., 2007), vehicle-
mounted sensors (e.g. King et al., 2010), or hand-held such
as field spectroradiometers (e.g. Peddle et al., 2001). While
each of these moveable sensor types has their own advan-
tages, such as covering large areas for the mobile sensors
or having targeted measurements, in the case of hand-held
sensors, none have the ability for easy long temporal cov-
erage, which is provided by fixed proximal sensors. Auto-
mated proximal sensors are of particular interest in extensive
grazing enterprises in remote regions where access to repeat
monitoring is costly and difficult, yet where remote sensing
is not suitable due to issues such as scale or cloud cover.

There has been recent growth in the use of in situ proxi-
mal environmental sensors for a wide range of monitoring,
including soils (Allen et al., 2007; Zerger et al., 2010), eco-
logical studies (Collins et al., 2006; Hamilton et al., 2007;
Szewczyk et al., 2004), temperate pastures (Zerger et al.,
2010; Gobbett et al., 2013), forests (Eklundh et al., 2011),
and subalpine grasslands (Sakowska et al., 2014) to com-
plement measurements made from flux towers (Balzarolo et
al., 2011; Gamon, 2015). Networks to support the improve-
ment of such sensors have recently been developed, such as
through SpecNet (http://specnet.info) and the projects pre-
sented in the current special issue. Recent work on the use of
digital cameras for repeat monitoring of vegetation includes
using the camera images to estimate foliage cover in the for-
est understorey (Macfarlane and Ogden, 2012), forest phe-
nology (Sonnentag et al., 2012), and gross primary produc-
tion (GPP) of forests, grassland, and crops (Toomey et al.,
2015).

Previous research using proximal sensing of pastures,
aimed at assisting decision-making in livestock production
has employed handheld active multispectral sensors to mea-
sure green herbage mass and predict pasture growth rate
(Trotter et al., 2010), plant height (Payero et al., 2004), nutri-
ent composition using a handheld hyperspectral device (Pul-
lanagari et al., 2012), pasture variability using multiple sen-
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sors (Serrano et al., 2016), forage biomass (Flynn et al.,
2008), and forage quality (Zhao et al., 2007). While these
sensing devices can aid in farm decision-making, such as
grazing and livestock nutritional management, they are time
consuming for the producer to implement, which reduces
the frequency with which they are used. If proximal sensors
were deployed permanently in pastures, they could provide
frequent information on temporal changes for timely man-
agement. These sensors may prove useful in livestock pro-
duction under grazing conditions when decisions have to be
made frequently (e.g. cell or rotational grazing) or at critical
decision-making periods such as during transitions between
seasons

Converting sensor data to quantitative biophysical values,
such as pasture biomass and groundcover, allows easier inter-
pretation by livestock producers to make management deci-
sions. Once calibration relationships are established, the data
obtained from proximal sensors, such as spectral reflectance,
can be related to biophysical values. An example is the well-
established field of multispectral sensing using vegetation in-
dices (e.g. Tucker, 1979). Vegetation indices are frequently
calibrated to the biophysical properties of the vegetation such
as leaf area index (Turner et al., 1999), biomass (Pearson
et al., 1976; Handcock et al., 2008), percentage vegetation
cover (Lukina et al., 1999), or the fraction of photosynthet-
ically active radiation absorbed by a canopy (Richardson et
al., 2007; Myneni and Williams, 1994; Guerschman et al.,
2009).

Our goal was to assess whether a combination of proxi-
mal sensors could be reliably deployed to monitor tropical
pasture status in an operational beef production system, as a
precursor to designing a full sensor deployment. We made a
pilot deployment of sensors at two nodes located on tropical
pastures in a beef production system. At each node a Skye
SKR four-band multispectral sensor, a digital camera, and
a soil moisture sensor were operated over 18 months. The
multispectral sensor data were calibrated using repeated vi-
sual observations of pasture characteristics supplemented by
data from digital cameras, soil moisture sensors, and weather
data. We also developed methods for the management of
multiple proximal sensors deployed in this environment and
the quality control of such data, which extends to previous
work in temperate pastures (Gobbett et al., 2013). We use
this pilot deployment to illustrate the following:

1. practical issues around the sensor deployment,

2. methods necessary for the quality control of the sensor
data, and

3. the strength of the relationships between vegetation in-
dices derived from the proximal sensors and field obser-
vations of pasture status between the wet and dry sea-
sons.

2 Methods

2.1 Field site and sensor nodes

The sensors were deployed at the Commonwealth Scien-
tific and Industrial Research Organisation’s (CSIRO) Lans-
down Research Station, located 50 km south of Townsville,
Queensland, Australia (19◦39′42′′ S and 146◦51′12′′ E, ele-
vation 63 m). Paddocks used in this study contained pastures
dominated by Urochloa spp., Chloris spp., and Stylosanthes
spp. Data were collected over 545 days between 23 Septem-
ber 2011 and 21 March 2013.

Based on daily precipitation and temperature data col-
lected by the Bureau of Meteorology (BoM) from the Wool-
shed station (approximately 45 km NW of the study site),
the tropical climate in the study region is characterized by a
wet season from November to April where monsoonal storms
bring intermittent periods of heavy rainfall, and a winter dry
season with little or no rainfall. The average annual rainfall
of 1139 mm falls mainly during the wet season, and the aver-
age monthly temperature range is 20.8 to 28.5 ◦C in January
and 10.4 to 21.8 ◦C in July.

Each of the two sensor nodes (Fig. 1) were mounted with
the same array of equipment (i.e. multispectral sensor, digital
camera, soil moisture sensor, wireless networking infrastruc-
ture) and provided spatially coincident data with both high
temporal and spatial resolution. The nadir-pointing sensors
were located at a height of 2.5 m above the ground. At this
height the downward-pointing multispectral sensor had a 25◦

field of view (FOV) sensing approximately 0.97 m2 of the
area at ground level, although this area changes across the
season with vegetation height. The digital camera’s FOV was
approximately 2.8 m× 2.0 m at ground level and would have
been able to capture the 1× 1 m area with a vegetation height
up to approximately 1.5 m. See Balzarolo et al. (2011) for a
discussion of optical sensor configurations.

The nodes were approximately 200 m apart in areas of the
paddock visually assessed to be similar at the time of instal-
lation. One node was unfenced, permitting access to the area
under the node by cattle grazing in the paddock. The sec-
ond node was enclosed by a 30 m× 30 m fence, which ex-
cluded cattle from grazing within the enclosure, but allowed
access by kangaroos and other small herbivores. The decision
to place only one of the nodes within a grazing exclosure was
made to improve the likelihood that the vegetation observed
in each node would be at different heights. Although the pad-
docks were grazed by beef cattle for short periods during the
sensor deployment, due to the lack of feed in the paddocks
at those times and the low grazing pressures there ultimately
was no discernible difference in vegetation height before and
after the grazing.

Each node included a solar-powered sensor hub which
relayed captured sensor data to a wireless sensor network
(WSN) installed on the research farm via an internet connec-
tion to a centralized enterprise database. All equipment was
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Figure 1. The unfenced node with (a) the paired multispectral
sensors with the cosine diffusion filter fitted only to the upward-
pointing sensor, (b) the digital camera, (c) the solar panel power
supply, and (d) relay hardware to send data to the WSN.

temporarily removed for a week during a controlled property
burn in mid-December 2011.

2.2 Soil moisture sensors

A Decagon 5TM soil moisture sensor (Decagon Devices,
USA) was installed at each node to monitor the volumetric
water content (VWC) of the soil. The VWC is the volume
of water per unit of total volume, determined by measuring
the dielectric constant of the soil, as well as soil temperature
from a thermistor. The 5TM sensors were buried at a depth
of 15 cm under the soil surface below the multispectral sen-
sors. This depth was used to capture soil moisture near the
surface, yet reduce the possibility of damage from trampling
by cattle. The 5TM sensors recorded soil moisture and soil
temperature readings at 1 min intervals. We extracted an av-
erage of VMC for the period between 12:00 and 13:00 (all
times are local time) for each day, resulting in a time series
of daily VWC (i.e. SoilMoisture) and soil temperature data
during the study period.

2.3 Weather data

The nearest BoM weather stations were at Woolshed, Char-
ters Towers Airport (both inland), and Townsville Airport
(coastal), approximately 45 km NW, 70 km SW, and 45 km N
of the study site respectively. Daily maximum ambient tem-
perature averaged for the two inland stations had a strong re-
lationship with temperature data from 12:00 from the 5TM
soil moisture sensors, so these data sets were used inter-
changeably. The 5TM soil moisture sensors were addition-
ally used as the main source of soil moisture data.

At the time of this study a new meteorological station at
the Lansdown Research Station had recently been installed,
but the data were not available for the study period. The na-
tional interpolated climate surfaces from BoM were thought
to be too coarse for our small study site as precipitation
events are typically spatial heterogeneous. Instead, a com-
parison of data from nearby BoM stations with the in situ
soil moisture sensors at our nodes showed a strong correla-
tion with the average of the precipitation recorded at Char-
ters Towers Airport and Townsville Airport stations (Pear-
son product–moment correlation coefficient of 0.61 during
the wet season period of data collection).This average pre-
cipitation was therefore used as the best option, as the only
alternative was to use an interpolated data set.

The start and end of the wet season were determined us-
ing a method designed for the northern Australian climate
(Lo et al., 2007) in which the start of the wet season is de-
fined as the date after 1 September when 50 mm of precipi-
tation has accumulated. Bureau of Meteorology precipitation
data from the Townsville Airport station were used to define
the start and end of the wet and dry seasons, as this station
had the most complete time series of the nearby stations. Us-
ing this method, the 2011/2012 wet season at our study site
started on the 5 December 2011 and the 2012/2013 wet sea-
son started on 1 January 2013.

2.4 Digital cameras and the VegMeasure
semi-automated classification

Digital cameras were deployed at the study site to provide
an automated assessment of ground cover (see Zerger et al.,
2012) to serve as a visual cross-check of the multispectral
data and assist in identifying surface water. At each of the
two nodes we deployed a Pentax Optio WG-1 digital camera
in a downward-pointing position, centred on the area sensed
by the Skye sensors so that the images overlapped the FOV
of the multispectral sensors.

This camera model was selected as it was inexpen-
sive, weatherproof, and had an inbuilt intervalometer to
enable automatic shooting at fixed intervals. At 2.5 m the
13.8 megapixel digital cameras recorded images with an ap-
proximate resolution of 0.6 mm at the ground. The cameras
were configured with flash off, sensitivity at ISO 200, auto-
focus, and automatic white balance enabled. The decision to
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use an automatic white balance was based on similar studies
(e.g. Macfarlane and Ogden, 2012), although other studies
have used a manual/fixed white balance in order to minimize
changes in illumination (e.g. Toomey et al., 2015; Sonnentag
et al., 2012). Digital images (approximately 1 to 4 MB each)
were captured every 30 mins and were manually downloaded
at approximately 2-week intervals.

The images from the cameras contained uncalibrated red,
green, and blue (RGB) spectral bands. There has been ex-
tensive work on automated and semi-automated classifica-
tion of such time series of digital photographs for the pur-
poses of vegetation monitoring (e.g. Ewing and Horton,
1999; Karcher and Richardson, 2005; Bennett et al., 2000).
As the focus of the current study was on the calibration
of the multispectral sensor data, we chose to use a semi-
automated method, VegMeasure (Johnson et al., 2003), to
extract a green cover fraction from the time series of digital
camera images at each node. VegMeasure has been utilized
and validated in a number of studies (e.g. Booth et al., 2005;
Louhaichi et al., 2001) and provides a rapid method for clas-
sifying a series of images into green and non-green using the
green leaf algorithm (GLA). The GLA also acts as an alter-
native sensor measurement of green fraction to that derived
from the multispectral data set.

The GLA protocol requires deriving a single threshold
value from a single image, which is then applied across the
whole time series of camera images. The GLA applies the
following spectral band ratio (Louhaichi et al., 2001):

(G−R)+ (G−B)
(G+R+G+B)

, (1)

where G is the digital number of the green band, R is the
digital number of the red band, and B is the digital number
of the blue band. The proportion of the pixels in each image,
in which the band ratio exceeds a user-defined threshold, is
reported as the GLA.

For each day in the study period, the camera image taken
nearest in time to 12:00 was selected to minimize shadows
and to ensure as consistent an illumination as possible, and
the time series was quality controlled for days when there
was site maintenance work under the node. One photo with
a mix of PV and NPV vegetation was manually selected as a
calibration image (14 May 2012, 12:13:55, on the unfenced
node). To derive a threshold value for the GLA, one hundred
random points were identified using the “calibrate thresh-
old” function in the VegMeasure software, and assigned to
two classes: “white”, which is green vegetation, and “black”,
which is non-green vegetation and background material in-
cluding litter and soil. The resulting GLA threshold of 0.095
was verified using a random selection of images and was then
applied across the whole time series of camera images to ex-
tract the green proportion. The single threshold value used in
deriving the GLA is a necessary feature of using the GLA,
as well as having been applied in other vegetation studies (as
cited).

2.5 Multispectral sensors

We used a paired sensor set-up (Fig. 1) with the downward-
pointing sensor having a conical field of FOV of 25◦ as in-
dicated by the manufacturer, allowing it to sense reflected
light only from the ground directly beneath the sensor. The
upward-pointing sensor was fitted with a cosine diffusing fil-
ter to alter its FOV to a full hemispherical view, permitting
the albedo of the surface to be assessed relative to the inci-
dent solar radiation. Sensors were checked and cleaned fort-
nightly and the sensor station was coated with insecticide to
deter crawling and flying insects.

The multispectral sensors mounted on each of the two
nodes were paired Skye SKR-1850 four-band weatherproof
sensors (Skye-Instruments, 2012b), which were calibrated
individually by Skye, with band choices based on our specifi-
cations. Each sensor was configured with bands in the green
(0.545 to 0.547 µm), red (0.644 to 0.646 µm), near infrared
(NIR) (0.834 to 0.837 µm) and the lower SWIR (1.028 to
1.029 µm) spectral range (wavelengths in brackets indicate
band widths). These bands were chosen as the NIR region of
the electromagnetic spectrum is widely used in monitoring
vegetation “greenness” from multispectral sensors (Tucker,
1979), and the SWIR region is sensitive to plant moisture
content (Tucker, 1980). Both the SWIR and upper NIR spec-
tral data can be used to help differentiate PV from both NPV
and soil (Asner, 1998), and broad-band SWIR indices have
been used to capture seasonally varying NPV proportions re-
sulting from repeat grazing of pastures by livestock (Hand-
cock et al., 2008). We were not able to choose the fourth
sensor to be in the 1.55–1.75 µm range recommended by
(Tucker, 1980), but were limited to using the longest wave-
length possible for this sensor configuration to try and cap-
ture senescing vegetation. The band choice was verified be-
fore sensor creation by comparing the band to reflectance
for green and dry pastures from the Advanced Spaceborne
Thermal Emission and Reflection (ASTER) spectral library
(Baldridge et al., 2009). This comparison confirmed that,
while the discrimination between green and dry pastures is
not as distinct at 1.029 µm compared to that at 1.55–1.75 µm,
there was still enough potential for discrimination to confirm
this wavelength choice for the fourth band.

2.6 Vegetation indices

The NIR region is sensitive to vegetation “vigour” or “green-
ness”, and vegetation indices, such as the widely used nor-
malized difference vegetation index (NDVI) (Tucker, 1979),
utilize the NIR spectral range. A variety of vegetation indices
are possible from combinations of the four broad spectral
bands of our Skye sensors. Due to the algebraic complexity
of calculating indices from this particular Skye sensor model
(see the description in the paragraph below), our index choice
was limited to simple ratios and normalized difference band
ratios (Jackson and Huete, 1991), which we derived to high-
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Table 1. Vegetation indices calculated from the multispectral sensor data. ρ = reflectance (0 to 1).

Index Name Equation Reference Application for this study

NDVI (ρNIR− ρred)/(ρNIR+ ρred) Tucker (1979) Vegetation vigour
RatioNS34 ρNIR/ρlowerSWIR e.g. Handcock et al. (2008) Proportion of PV and NPV/soil
NVI-GR (ρgreen− ρred)/(ρgreen+ ρred) Jackson and Huete (1991) Vegetation greenness
gNDVI (ρNIR− ρgreen)/(ρNIR+ ρgreen) Gitelson et al. (1996) Vegetation vigour and greenness
NVI-SR (ρlowerSWIR− ρred)/(ρlowerSWIR+ ρred ) Jackson and Huete (1991) NPV/soil

light seasonal aspects of the green and dry mix of the tropical
pastures (Table 1).

The Skye sensors returned a calibrated numeric output
for each spectral band every minute, and data volumes were
small enough to be transmitted in near real time via the WSN.
After calibrating raw sensor data using individual Skye sen-
sor calibration coefficients, vegetation indices were calcu-
lated. The Skye SKR-1850 sensor does not permit the cal-
culation of reflectance directly from the raw current. Instead,
Skye provides formulae which use the measured sensitivities
of the individual sensors to calculate ratio-style indices such
as NDVI (Skye-Instruments, 2012a). These indices are math-
ematically equivalent to those calculated from reflectance.
Using the NDVI example from Skye, we developed formulae
for the vegetation indices shown in Table 1.

2.7 Quality control of the sensor data

We illustrate the types of processing required for high-
frequency multispectral time series with an example of a typ-
ical diurnal time series of multispectral data with a reading
every minute (Fig. 2). Both raw sensor current and the cal-
culated NDVI values are typically low during the night-time
hours. The period of rapidly increasing sensor values at dawn
is extremely noisy due to variable early morning illumination
and the scattering of sunlight through a thicker atmosphere
at low elevations. At dusk this pattern of sensor values is
reversed (data not shown), which is also seen in Weber et
al. (2008, Fig. 3a). Apart from the spike in high NDVI when
a green leaf was held in front of the sensor (approximately
13:00), the middle part of the day is the period of relatively
stable values of NDVI, with only random variations that oc-
cur due to the noise in the raw current or from ephemeral
variations in illumination such as from sun glint.

For the entire time series of multispectral sensor data taken
every minute, a time series of daily values was determined by
selecting the vegetation index values from the middle part of
the day (12:00 to 13:00) and calculating the median value to
reduce noise due to small fluctuations in illumination. Data
from a particular day were discarded if they met any of the
four categories of filtering criteria listed in Table 2. Data were
not discarded under conditions where changes in the spec-
tral values were considered to be a signal rather than noise.
For example, rapid increases in NDVI values over time corre-
sponded to rapid growth at the start of the wet season, so were
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Figure 2. Example of the diurnal cycle of sensor data during the
dry season when a large green leaf was held up to the multispectral
sensors on the fenced node to test its response (4 October 2011).
Note that for the NDVI (a) night-time values, (b) the ramp-up after
dawn (approx. 06:30), (c) the relatively stable value for the middle
part of the day, (d) the spike in NDVI when the sensors recorded an
elevation of NIR reflectance in response to green vegetation being
held up to the sensor.

not filtered. Questionable multispectral data were also visu-
ally verified against the digital camera images. In developing
these filtering rules, the vegetation indices stood as proxy for
their individual constituent bands since, as discussed, it was
not possible to use spectral reflectance from the Skye SKR-
1850 sensors directly. Table 2 is divided into four different
filtering categories as follows.

The first category of filtering criteria (Table 2a) were de-
veloped to screen the daily multispectral data series for large
fluctuations such as data outliers, spikes, high noise levels,
data out of range, clipping, and calibration issues, which
can commonly result from anomalies at the sensor or dur-
ing data transmission (Collins et al., 2006; Ni et al., 2009).
For example, the night-time raw current reading should re-
main relatively constant, excluding minor night-time light
reflections or electronic noise. Large deviations from night-
time baseline current values indicate a technical issue. Such
issues were identified from the night-time (00:00 to 01:00)
median value of raw current by flagging where one or more
of the multispectral sensor bands in the paired node had a
night-time reading greater than 10 000 mV or where these
values were greater than 3 standard deviations from the band
mean value. The daytime (12:00 to 13:00) median value of
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Table 2. Criteria for filtering multispectral data for a day. Daily data were removed if they met any one of the following criteria.

Filtering category Data source Criteria for deleting that day’s data.

(a)

Spike in readings or readings
out of range, such as from a sen-
sor issue

Night-time (00:00 to 01:00) median
value of raw current.

One or more of the multispectral sensor bands
in the paired node has a night-time median
value of raw current > 10 000 mV
One or more of the multispectral sensor bands
in the paired node has (raw current) > 3 SD from
the band mean value.

Daytime (12:00 to 13:00) median
value of indices.

Data out of range (i.e. NDVI between 0 and 0.1)
(Holben, 1986; Jackson and Huete, 1991).
RatioNS34 drops to zero but within 1 day re-
turns to the previous value.

(b)

Physical/logistical Project metadata. Work being done in the area under the node,
sensors have been removed for maintenance or
because the paddocks are being burned etc.

Daytime (12:00 to 13:00) median
value of raw current.

There are no data during the midday period
from one or more of the sensors, which would
restrict the calculation of a full suite of indices.

(c)

Appropriate data for the envi-
ronment

Daytime (12:00 to 13:00) median
value of indices.

NDVI < 0 (not likely in tropical pastures).

RatioNS34 > 2, indicating a technical error as
pastures should not have values in this range.
(gNDVI < 0 or NVI-GR >−0.10) and the date
and weather data indicates that is in the dry sea-
son (i.e. the changing values are unlikely to be
due to surface water).

(d)

Masking valid spectral data Digital camera images, project meta-
data, and soil moisture data.

Surface water was identified by a combination
of data sources and masked as it confounded the
pasture signal.

the multispectral indices was also used to identify data qual-
ity issues, for example where NDVI was not between 0 and
0.1. This threshold value of NDVI was chosen based on typ-
ical values for this environment (Holben, 1986; Jackson and
Huete, 1991) and would have to be adjusted if the sensors
were deployed elsewhere, for example to monitor snow and
ice, which may have negative NDVI values. Data were also
masked when the daytime RatioNS34 dropped to zero but
within 1 day had returned to its previous value. All instances
where the RatioNS34 remained at zero for more than 1 day
were visually cross-checked with the deployment records to
see if this indicated sensor failure or some other issue such
as an insect infestation.

The second category of filtering criteria (Table 2b) is for
logistical and physical issues. For example, the data for a day
was screened if there was a maintenance ladder underneath
the sensor. When a sensor was swapped for new equipment,

it was required that a new baseline current value be used in
calculations that use raw current. A flag was also set to in-
dicate days for which there was no data during the midday
period from one or more of the sensors, which would restrict
the calculation of a full suite of indices.

The third category of filtering criteria (see Table 2c) cov-
ers filtering rules based on the expected spectral response of
tropical pastures, for example, if NDVI was less than zero.
This flag is a companion test to the range tested in Table 2a,
as it flags NDVI ranges that may indicate catastrophic failure
of the sensor resulting in values extremely out of range. All of
these cases were visually examined through the photographs
and by inspecting the sensor infrastructure during site visits.
Other indices were also used for testing data out of range.
For example, if RatioNS34 values were greater than 2, it in-
dicated a technical error as pastures should not have values
in this range. This filtering rule would need to be adjusted if
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the sensors were deployed to a different environment. When
values of gNDVI were less than 0 or values of NVI-GR were
greater than −0.10, and the date and weather data indicated
that the readings were made in the dry season, this again in-
dicated values that were out of range rather than due to wet
season surface water.

The fourth category of filtering criteria (Table 2d) covered
filtering rules where valid spectral signals were excluded, not
because they were errors, but because they covered physical
conditions which were not applicable to our goal of monitor-
ing pastures. For example, surface water under the vegetation
due to heavy rainfall was identified by visual inspection of
the camera images combined with the soil moisture data and
filtered because it was not a valid measurement of the pasture
status, even though it was a valid sensor signal.

2.8 Field observations of vegetation made under the
sensor nodes

In designing the field sampling for this project, it was nec-
essary to balance the project goals with staff resources and
logistics of travelling to the remote site every 2–3 weeks for
the multiple years of the sensor deployment. All field ob-
servation methods were designed to be quickly completed
by field technicians during these visits, while also maintain-
ing the technical infrastructure of the sensor deployment.
This trade-off between time and resources (Catchpole and
Wheeler, 1992) resulted in field observations successfully be-
ing obtained over the multiple years of the study, but also
resulted in a large degree of uncertainty in the field observa-
tions.

During the study period there were 32 visits to the study
site to make field observations. All the measurements were
made by the same two field technicians, with the major-
ity (71 %) by one technician. Where possible, measurements
were repeated by both of the main technicians or other staff
(6 days). For the 45 % of days where more than one techni-
cian made measurements, the data from that day was aver-
aged. Visual examination of the raw field data noted no sys-
tematic differences between the data collected by the differ-
ent field technicians, so measurements were not further con-
trolled for operator differences. All observations were made
within the sensors FOV in a 1 m× 1 m area under the sensors
identified by small pegs hidden by the vegetation.

2.8.1 Pasture biomass

In temperate pastures, biomass is commonly measured using
destructive sampling, with the vegetation cut from a sample
quadrat being dried and weighed (Catchpole and Wheeler,
1992). For pastures where the spatial variability is high, such
as at our study site, destructive sampling is also not recom-
mended (Tothill and Partridge, 1998) because of the diffi-
cultly in making biomass cuts in dense vegetation. Destruc-
tive sampling of the area under the sensors was also not

desirable as this would have restricted the range of pasture
biomass measurements to only low values, and the pastures
would not regrow rapidly enough for accurate visual assess-
ment of biomass if they were cut to ground level. An alterna-
tive approach to destructive sampling at nearby locations was
also not suitable as the tropical pastures are naturally hetero-
geneous at the local scale, and the area around the sensors
will be highly variable in both biomass and species compo-
sition. We therefore limited sampling to the FOV of the mul-
tispectral sensors.

An alternative to destructive sampling for assessing pas-
ture biomass in tropical pastures is the non-destructive
BOTANAL dry-weight ranking method (t’Mannetje and
Haydock, 1963; Friedel et al., 1988), which can be used to
estimate pasture composition as well as the pasture yield
(Tothill et al., 1992; Orchard et al., 2000). A key technique
in the BOTANAL method is that visual estimates are veri-
fied against pasture cuts from which a calibration relation-
ship is developed. However, the BOTANAL assessment was
determined as being too time consuming for the long dura-
tion of the pilot study, and we instead developed a less time-
intensive set of field observations, which are described be-
low.

For our quick field assessment of above-ground stand-
ing biomass (weight of above-ground vegetation dry mat-
ter (DM) per unit of area) (kg DM ha−1), we used non-
destructive visual assessment within the sensor FOV to pas-
ture photo standards (FutureBeef, 2016). These pasture photo
standards were developed as the industry standard for beef
producers to assess pasture status (Department of Resources
Northern Territory Australia and Meat and Livestock Aus-
tralia, 2012). For field observations of above-ground standing
biomass (called TotalBiomass henceforth) which were less
than 3000 kg DM ha−1, the predominant pasture photo stan-
dards used were those for a mixed pasture of “eucalyptus box
and stylo”, with the “eucalyptus box” used for pastures above
3000 kg DM ha−1. When the vegetation was clearly between
two photo standards, the observation was visually interpo-
lated (FutureBeef, 2016)

On days where we had a second field technician repeat the
observation, the average difference between the two observa-
tions of TotalBiomass was 570 kg DM ha−1, but ranged from
zero to as much as 2400 kg DM ha−1. When these operator
differences are combined with the wide spacing of biomass
in the reference photographs, as well as any additional un-
certainty introduced by the visual nature of the assessment,
the total uncertainty in the TotalBiomass is high and must
be used with caution. Recommendations for alternative sam-
pling methods for future work will be made in the discussion
section.

2.8.2 Fractional cover

The mix of PV and NPV in the vegetation is an important fac-
tor in monitoring pasture changes over time. TotalBiomass

Biogeosciences, 13, 4673–4695, 2016 www.biogeosciences.net/13/4673/2016/



R. N. Handcock et al.: A pilot project combining multispectral proximal sensors 4681

was not divided into PV (i.e. green) and NPV (i.e. dead/dry)
biomass components as the pasture reference photographs
used for assessing these tropical pastures are not suitable for
such an application. We instead made visual assessments of
fractional cover measurements as a way of capturing the PV
and NPV components of the pastures. The fraction of bare
ground and the fractional coverage by PV and of NPV are
widely used for assessing landscape degradation (Richard-
son et al., 2007; Myneni and Williams, 1994; Guerschman
et al., 2009), although for a non-expert in remote sensing the
fractional cover is a less familiar measurement than Total-
Biomass to interpret and use.

The visual field assessments of fractional coverage were
made in two dimensions from above, across a 1 m by 1 m
area under the sensor’s FOV as follows:

%TotalVegetation2D+%BareGround+%Litter2D= 100% (2)

where %BareGround is the percentage bare ground as seen
in 2-D, %Litter2D is the percentage of litter which is not at-
tached to any plant, and TotalVegetation2D % is the percent-
age of vegetation still attached to the plant, including both
green (PV) and dry (NPV) vegetation as both typically re-
main on the plant during at least the early dry season. We also
visually assessed the percentage of just the visible green pro-
portion of the vegetation, as seen in two dimensions, looking
down at the plot (%Green2D), and three dimensions, looking
at the whole plants within the plot (%Green3D). While not
as useful as actual measurements of green biomass, these 2-
D and 3-D visual assessments give the nearest approximation
of green vegetation without destructive samplings and sepa-
rating green and dry material. On days where we had a sec-
ond field technician repeat the observation, the average dif-
ference between the two observations of %BareGround was
11 % (range 1–35 %), of %Litter2D was 6 % (range 0–30 %),
of %Green3D was 12 % (range 0–50 %), and of %Green2D
was 5 % (range 0–30 %).

2.8.3 Vegetation height

The 1 m x 1 m area under the sensor FOV was divided
into four quadrants, and vegetation height (Vegetation-
Height, centimetres) was measured using a ruler for each
quadrant. Vegetation height was also measured across the
sampling area as a whole, by assessing the height at which
95 % of the vegetation was below. The final VegetationHeight
value was the average of the five measurements.

2.9 The relationship between sensor and field data

The goal of this part of the project was to assess whether the
sensors were able to deliver a reliable source of data that can
be calibrated to biophysical values. Our goal was not to de-
velop definitive relationships for prediction purposes, as the
quality and volume of the field data is not sufficient for that
purpose. We instead assess only the strength of the relation-

Table 3. Of the 33 days of field data collections, the number of days,
(a) of field sampled data matching the filtered sensor data at each
node, and (b) matching filtered data combined for both nodes from
each of the wet and dry seasons.

Digital cameras Multispectral sensors

(a)

Unfenced node 31 24
Fenced node 32 18

(b)

Wet season 25 12
Dry season 38 30
All year 63 42

ship between the sensor and field data, and do this separately
for data from the wet and dry seasons and across the whole
year. We use these results to recommend when and how data
should be collected in a full sensor deployment for on-farm
monitoring.

Data from the two nodes were combined as there were
no discernible differences between the fenced and unfenced
samples due to grazing of the pastures by cattle. Of the orig-
inal 33 days of field measurements from across the whole
project, Table 3a shows the number of days on which the
field sampled data matched the filtered sensor data at each
node. Data subsets were also created for the wet season pe-
riod from January to April (days 1 to 130 of the year), and
the dry season (May to December) (Table 3b). The remain-
der of the field samples were made during periods in which
the sensor data were filtered using the rules in Table 2 and so
could not be used for further analysis.

The final group of independent variables included vegeta-
tion indices derived from the filtered daily data set from the
multispectral sensors (i.e. NDVI, gNDVI, NVI-GR, NVI-SR,
and RatioNS34) and the digital cameras (i.e. GLA). The de-
pendent variables were the visual biophysical measurements
and other observations of the pasture status made at the field
sites (TotalBiomass, %BareGround, %Litter2D, %TotalVeg-
etation2D, %Green2D, %Green3D, and VegetationHeight).

2.10 Model development

A common problem in calibrating and validating models be-
tween remote sensing and field data is the small number of
field samples and the inherent variability in biophysical data,
resulting in models that are not robust (Richter et al., 2012;
Harrell Jr. et al., 1996). Richter et al. (2012) provide a good
overview of statistical techniques useful for such data sets,
including the use of cross validation and bootstrapping meth-
ods for model development and validation. Bootstrapping is
a non-parametric method that does not assume normality of
the data set, making it suitable for developing robust esti-
mates of the population from limited sample data such as in
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the present study. The estimated model coefficients are as-
sumed to be the best estimates of the population values (Har-
rell Jr. et al., 1996), of which our field observations are just
one sample of the entire population. The advantage of the
bootstrapping method is that the entire data set can be used to
assess the model performance in the one process, rather than
having to split it to create a validation subsample (Harrell Jr.
et al., 1996). The distribution of model parameters resulting
from the bootstrapping allows the confidence intervals and
standard errors of the model parameters to be estimated (Pe-
ters and Freedman, 1984).

In the bootstrapping method, a sample is drawn from the
original data set with replacement, meaning that each indi-
vidual datum is selected from the whole data set and so could
be drawn multiple times. For each sample, the desired model
is fitted between the dependent and independent variables,
and their model coefficients are determined. The sampling
and modelling process is repeated many times, with 200 be-
ing the minimum recommended by Steyerberg et al. (2001).
The result is a distribution of the selected model parameters
from which the robust estimates of the model parameters and
confidence intervals can be made.

The bootstrapping approach is particularly suited to our
pilot study because we are interested in the strength of the
relationships between the sensor data rather than their form.
The approach also addresses the main issue with the visual
assessment of pasture status, which is the high degree of un-
certainty in that data. The bootstrap method replicates all un-
certainty in the analysis, including operator error, uncertainty
in the field observations, and that from the flexibility of the
statistical model, allowing the confidence intervals around
the model parameters to be assessed (Davison and Hinkley,
1997). The method is robust in cases where one variable has
missing data, such as when the filtering of our spectral data
resulted in field data which did not have matching sensor
data.

We therefore applied a bootstrapping method to assess the
strength of the relationship between the sensor and field data
and the uncertainty around the model parameters. All analy-
sis was made using the R statistical package (R-Core-Team,
2013). We used the mgcv library in R (Wood, 2011) to fit
generalized additive models (GAM) (Hastie and Tibshirani,
1990) with a maximum possible dimension of four. GAMs
do not assume a linear relationship, but instead use a non-
parametric method to fit a model with the highest dimension
possible given constraints of small data sets and missing data.
The bootstrap was implemented using the boots library in R
(Davison and Hinkley, 1997) with 2000 model runs and a
“pivotal” method. This bootstrapping method was applied to
all combinations of observations of pasture status and a sin-
gle independent sensor variable.

Figure 3. Time series of NDVI values from the unfenced node
showing the raw and screened NDVI and the accumulated precipita-
tion since 1 September (millimetres) from Townsville Airport BoM
weather station. The black dashed vertical line indicates the timing
of the controlled burn and the blue lines the start of the wet seasons.

3 Results

3.1 Multispectral sensor data

As the multispectral measurements were made every minute,
the data collection from the two nodes represents a possi-
ble 1 569 600 sets of the 8 raw current values. As a result of
the rigorous data cleaning using the criteria in Table 2, for
the 545 days of data collected at each node, 48 % of days
of data from the unfenced node and 63 % of days of data
from the fenced node were discarded. This large number of
filtered days of data reflects the experimental nature of the
pilot deployment of the sensors, which resulted in technical
and environmental issues with the sensor deployment. How-
ever, the rigorous data cleaning we applied was necessary to
ensure quality data for model development.

Figure 3 illustrates this data cleaning by showing the time
series of NDVI values from the unfenced node, before (raw)
and after filtering. In comparison to the digital cameras, the
design of the housing for the Skye SKR-1850 sensors led to
significant problems with insects such as mud wasps nesting
in the sensor tubes (Fig. 4a–b), spiders building webs across
the sensor openings, and water ingress below the cosine cor-
rection filters, which were fitted to the upward-pointing sen-
sors.

3.2 Field observations

The field observations made at each of the two nodes (Fig. 5)
illustrate the rapid vegetation growth at the start of the wet
season followed by senescence during the dry season. During
the 2011–2012 wet season the TotalBiomass observed at the
two nodes had similar values (Fig. 5a), despite the recognized
uncertainty in these measurements. Having initially similar
pasture biomass was not unexpected as the nodes were sited
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Figure 4. Skye multispectral sensors showing (a) mud wasps and
(b) wasp larvae in sensor tubes.

in an area of the paddock with similar vegetation. Although
we had fenced one node with the intention of increasing the
range of pasture height being monitored, due to the limited
feed availability in the paddocks and the low grazing pres-
sure, these grazing events had negligible impact on the pas-
tures and were not considered further in the analysis. At the
end of the 2011–2012 wet season the TotalBiomass observed
at each node became markedly dissimilar, with differences
of almost 2000 kg DM ha−1 between the nodes, and as ex-
pected the difference continues during the rest of dry season
as there is no rain to promote vegetation growth. This differ-
ence in the pasture biomass between the nodes illustrates the
heterogeneous nature of these pastures, where a small change
in the type, size, shape, and density of the vegetation grow-
ing under a node resulted in large biomass differences. It also
highlights why pasture measurements made in the area sur-
rounding the node may not be representative of what the sen-
sor FOV observes.

The time series of VegetationHeight (Fig. 5b) shows a sim-
ilar pattern to TotalBiomass, but the differences between the
nodes are less distinct. VegetationHeight also exhibits more
variability between measurements despite being a quanti-
tative measurement made with a ruler rather than a visual
estimate. In contrast, the observations of %Green2D and
%Green3D (Fig. 5c and d) are comparatively similar between
the two nodes, except for the period of June to July 2012. As
shown in the images in Fig. 6, the vegetation is tall, mixed,
senesced, and increasingly lodged (i.e. no longer erect), re-
sulting in increased variation in the observed values between
the nodes.

3.3 Time series of digital camera images and GLA

Over the 545-day study period, the digital cameras captured
22 642 images at the unfenced node and 23 210 from the
fenced node. Data capture from the cameras was more re-
liable than for the multispectral sensors with the loss of only
13 days of data from the unfenced node (3 %) and 10 days
of data from the fenced node (2 %), both due to data card
failure. A month of digital camera images was also lost in a

post-capture storage malfunction, so is not counted as being
a deployment-related data loss.

Figure 6 shows a time series of images from the digital
camera at the fenced node, with each week represented by
one image taken at approximately 12:00. The seasonal pro-
gression of vegetation is clearly illustrated by these images,
from the new green growth of the vegetation at the start of
the wet season, followed by senescence during the move into
the dry season, and the sudden removal of all vegetation fol-
lowing the 2011 controlled burn. The camera images again
illustrate how, as the wet season progresses, the tall grasses
dominate the canopy followed by the gradual drying of the
canopy in the transition into the dry season.

Figure 7 shows the daily time series of GLA calculated
from digital camera images at each node. These results show
that the digital cameras and GLA can successfully capture
the seasonal changes in green vegetation, corresponding with
the rapid growth of green vegetation at the start of the wet
season followed by a decrease to zero during the dry season.

3.4 The relationship between sensor data and field
observations

Table 4 and Fig. 8 show the bias-adjusted bootstrap point
estimates and the lower and upper bound of the 95 % piv-
otal bootstrap confidence intervals for the distributions of
R2. These distributions are from bootstrapping the GAMs
for all combinations of sensor-derived indices and field ob-
servations, which were made of all data, as well as for the
data subsets from the wet or dry seasons. As the bias-adjusted
bootstrap point estimates of R2 are a more conservative es-
timate than the mean R2 of the modelled distribution, there
are times when its value is negative or less than the lower
bound of the 95 % pivotal bootstrap confidence interval. This
occurred most frequently for the dry season data for which
the model fits are generally poor (Table 4). The graphs in
Fig. 8 clearly show how the various uncertainties in the study,
and in particular the high uncertainty in the field observa-
tions, has resulted in wide confidence intervals for many of
the models explored using the bootstrapping methodology.

The relationships between sensor and field observations
for the whole year and dry season period generally performed
poorly compared to those from the wet season. These results
are not unexpected as the vegetation between the wet and dry
season in this environment is distinctly different. The excep-
tions were for %Green3D (Fig. 8e) and %Green2D (Fig. 8f),
which for all sensor-derived indices except RatioNS34 had
strong relationships to data from the whole year and dry sea-
son. The bootstrapping analysis for %Green2D was not able
to determine model parameters due to the boundary condi-
tions inherent in those subsets of data values.

Across all time periods, the strongest relationships be-
tween the multispectral sensor and pasture observations
were for the wet season data for %Green3D (Fig. 8e) and
%Green2D (Fig. 8f). For all variables, %Litter2D (Fig. 8c)
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Table 4. Bias-adjusted bootstrap point estimates of R2 (in parenthesis, the lower and upper bound of the corresponding 95 % pivotal
bootstrap confidence intervals) for all GAM combinations of sensor-derived indices. (a) TotalBiomass, (b) %BareGround, (c) %Litter2D,
(d) %TotalVegetation2D, (e) %Green3D, (f) %Green2D, and (g) VegetationHeight. See Fig. 8 for graphs comparing these results. NA= not
available.

Dependent variable Independent variable All data Wet season Dry season

(a)

TotalBiomass GLA 0.07 (0.00, 0.19) 0.21 (0.00, 0.51) −0.02 (0.00, 0.14)
RatioNS34 0.15 (0.00, 0.38) 0.18 (0.00, 0.65) 0.02 (0.00, 0.28)
NVI-SR 0.08 (0.00, 0.30) 0.72 (0.28, 0.98) 0.07 (0.00, 0.28)
NVI-GR 0.21 (0.00, 0.43) 0.14 (0.00, 0.63) 0.17 (0.00, 0.40)
NDVI 0.16 (0.00, 0.36) 0.49 (0.00, 0.87) −0.03 (0.00, 0.13)
gNDVI −0.04 (0.00, 0.10) 0.58 (0.00, 0.93) −0.11 (−0.03, 0.0)

(b)

%BareGround GLA 0.03 (0.00, 0.10) 0.26 (0.00, 0.58) 0.05 (0.00, 0.13)
RatioNS34 0.11 (0.00, 0.25) 0.20 (0.00, 0.65) 0.04 (0.00, 0.22)
NVI-SR 0.10 (0.00, 0.28) 0.53 (0.00, 0.88) 0.17 (0.00, 0.34)
NVI-GR 0.13 (0.00, 0.33) −0.05 (0.00, 0.53) 0.26 (0.00, 0.45)
NDVI 0.18 (0.00, 0.37) 0.45 (0.00, 0.79) 0.13 (0.00, 0.31)
gNDVI 0.01 (0.00, 0.13) 0.65 (0.09, 0.92) −0.06 (0.00, 0.03)

(c)

%Litter2D GLA 0.24 (0.06, 0.39) 0.31 (0.00, 0.57) 0.11 (0.00, 0.30)
RatioNS34 −0.01 (0.00, 0.13) 0.06 (0.00, 0.54) −0.08 (−0.03, 0.00)
NVI-SR 0.07 (0.00, 0.25) −0.10 (0.00, 0.55) −0.09 (0.00, 0.04)
NVI-GR 0.19 (0.00, 0.42) 0.09 (0.00, 0.64) 0.10 (0.00, 0.31)
NDVI 0.18 (0.00, 0.42) 0.05 (0.00, 0.64) −0.01 (0.00, 0.21)
gNDVI 0.13 (0.00, 0.36) −0.25 (0.00, 0.57) −0.06 (0.00, 0.09)

(d)

%TotalVegetation2D GLA 0.17 (0.00, 0.31) 0.52 (0.17, 0.75) 0.07 (0.00, 0.20)
RatioNS34 0.04 (0.00, 0.19) 0.27 (0.00, 0.69) −0.11 (−0.02, 0.00)
NVI-SR 0.12 (0.00, 0.31) 0.56 (0.00, 0.92) 0.02 (0.00, 0.20)
NVI-GR 0.22 (0.00, 0.46) 0.12 (0.00, 0.63) 0.19 (0.00, 0.41)
NDVI 0.22 (0.00, 0.44) 0.49 (0.00, 0.87) 0.06 (0.00, 0.24)
gNDVI 0.06 (0.00, 0.25) 0.47 (0.00, 0.89) −0.03 (0.00, 0.08)

(e)

%Green3D GLA 0.87 (0.80, 0.93) 0.77 (0.64, 0.87) 0.77 (0.57, 0.91)
RatioNS34 0.10 (0.00, 0.35) 0.81 (0.53, 1.00) 0.01 (0.00, 0.26)
NVI-SR 0.77 (0.60, 0.88) 0.59 (0.13, 0.87) 0.66 (0.37, 0.83)
NVI-GR 0.66 (0.40, 0.84) 0.44 (0.00, 0.80) 0.51 (0.06, 0.80)
NDVI 0.66 (0.41, 0.84) 0.59 (0.15, 0.86) 0.40 (0.00, 0.72)
gNDVI 0.66 (0.43, 0.82) 0.68 (0.27, 0.89) 0.41 (0.01, 0.67)

(f)

%Green2D GLA 0.86 (0.79, 0.92) (NA) 0.76 (0.52, 0.92)
RatioNS34 0.05 (0.00, 0.30) (NA) −0.07 (0.00, 0.16)
NVI-SR 0.72 (0.55, 0.84) (NA) 0.58 (0.23, 0.77)
NVI-GR 0.65 (0.36, 0.84) (NA) 0.44 (0.00, 0.75)
NDVI 0.64 (0.39, 0.83) (NA) 0.42 (0.00, 0.74)
gNDVI 0.63 (0.35, 0.79) (NA) 0.39 (0.00, 0.69)

(g)

VegetationHeight GLA 0.24 (0.01, 0.41) 0.41 (0.00, 0.71) 0.09 (0.00, 0.23)
RatioNS34 0.15 (0.00, 0.34) 0.31 (0.00, 0.77) 0.10 (0.00, 0.32)
NVI-SR 0.33 (0.07, 0.52) 0.66 (0.19, 0.95) 0.28 (0.00, 0.50)
NVI-GR 0.27 (0.00, 0.49) 0.49 (0.00, 0.90) 0.22 (0.00, 0.44)
NDVI 0.25 (0.00, 0.45) 0.61 (0.12, 0.95) 0.06 (0.00, 0.27)
gNDVI 0.06 (0.00, 0.23) 0.42 (0.00, 0.83) −0.05 (0.00, 0.05)
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Figure 5. Field observation time series from the two nodes of (a) TotalBiomass, (b) VegetationHeight, (c) %Green3D, and (d) %Green2D.
The black dashed line indicates the timing of the controlled burn and the blue lines the start of the wet seasons.

showed the weakest relationships with the sensor variables,
and %TotalVegetation2D (Fig. 8d) showed only weak rela-
tionships. For the other pasture observations there were good
relationships with at least one sensor variable. For exam-
ple, the bias-adjusted bootstrap point estimates of R2 for the
wet season data between TotalBiomass and NVI-SR were
0.72 (95 % CI of 0.28 to 0.98) (Fig. 8a), %BareGround
and gNDVI were 0.65 (95 % CI of 0.09 to 0.92) (Fig. 8b),
%Green3D and RatioNS34 were 0.81 (95 % CI of 0.53 to
1.00) (Fig. 8e), and VegetationHeight and NVI-SR were 0.66
(95 % CI of 0.19 to 0.95) (Fig. 8g). Excluding the relation-
ships for %Litter2D, for four of the other pasture observa-
tions, the NVI-SR index had the strongest relationships to
four different pasture characteristics, with RatioNS34 for one
variable (%Green3D, Fig. 8e) and gNDVI for one variable
(%BareGround, Fig. 8b).

Across almost all time periods, the relationship between
the image-derived GLA were weaker than those from the
multispectral sensor data. The one example in which the
GLA outperformed the multispectral sensors was also the
strongest relationship in all data and periods, being for data
from the whole year, and between %Green3D (Fig. 8e)
and %Green2D (Fig. 8f). These results show that the GLA
method to extract green fractions from the digital camera im-
ages was very successful in this environment.

4 Discussion

The tropical pasture conditions in the present study presented
unique technical issues that had to be overcome as part of the
deployment of proximal sensors, including marked wet and
dry seasons, high humidity, rapidly growing vegetation, fire,
and insects.

4.1 Assessing pasture status

In this study, the time series of images from the digital cam-
eras and multispectral sensors at each node clearly captured
the changes in the tropical pastures from the period of green-
up at the start of the wet season, the period of green vege-
tation growth during the wet season, and the gradual senes-
cence and drying off of the vegetation. Even given the obvi-
ous limitations with the observations of pasture status in this
study, it is clear that there are stronger relationships during
the wet season than during the dry season or for the whole
year. The generally poor relationships between the sensor
and field observations outside of the wet season are not sur-
prising since NPV is difficult to discern in the NIR spectral
region. The SWIR band of our multispectral sensors was also
in the lower part of the SWIR range (1.029 µm), which is not
as responsive to dry vegetation as the longer SWIR region of
the visible to near-infrared (i.e. 1.55–1.75 µm), which Tucker
(1980) recommends for the remote sensing of plant canopy
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Figure 6. Time series of a year of images from the digital camera at the fenced node, with each week represented by one image from
approximately noon. The red line indicates the controlled burn in December 2011. Missing July images are due to a post-capture storage
malfunction unrelated to the image capture. An animation of camera images is available (Handcock, 2016).
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Figure 7. Time series of the green leaf algorithm (GLA) calculated
from digital camera images at each node, using a daily image from
approximately 12:00. The black dashed vertical line indicates the
timing of the controlled burn and the blue lines the start of the
wet seasons. See Fig. 5 for a time series of the %Green3D and
%Green2D field data.

water status. Even if the issues with the field data quality are
overcome in a future deployment, it is unlikely that the re-
lationships between field and sensor data will improve for
the dry season unless the choice of spectral bands in a future
deployment was made to improve sensitively to NPV.

4.2 Fractional cover

The results of using the bootstrapping method to explore
the relationship between the pasture observations shows that
the various measures of fractional cover could be success-
fully predicted from various indices calculated from either
the multispectral sensors or the digital camera data. These
results are encouraging for additional studies exploring these
relationships further.

These results also showed the GLA derived from the digi-
tal images to be a useful parameter, with strong relationships
to the field observations of %Green3D and %Green2D. They
also support the utility of including a SWIR band in the mul-
tispectral sensors, with data from our multispectral band in
the lower SWIR giving encouraging results.

The vegetation indices from the multispectral sensors were
a better predictor of %BareGround than the GLA from the
digital cameras. These results indicate that while both sensor
types are suitable for monitoring aspects of fractional cover
in this tropical pasture system, alternative indices extracted
from the digital cameras would need to be explored to im-
prove how well %BareGround can be monitored. Both sen-
sors view the canopy in two dimensions, with the GLA fo-
cussed on the green proportion of the canopy while the band
choice for multispectral indices can be made to capture both
PV and NPV.

Fractional cover has the potential to be a valuable part of
a multiple data source approach to providing on-farm data
to farmers for sustainable pasture management. Although
fractional cover is widely used in landscape degradation
studies, particularly in regional monitoring (Richardson et
al., 2007; Myneni and Williams, 1994; Guerschman et al.,
2009), it is a more recent measurement compared to pasture
biomass, which has long been used in livestock production
systems. Fractional cover is therefore a less familiar mea-
surement than biomass to interpret and use. However, as frac-
tional cover measurements become more widely available
(e.g. Guerschman et al., 2009) and examples of its use in op-
erational farm management increase, it is likely that this will
change, as occurred when NDVI started to be used in agricul-
ture. Sensor nodes that monitored fractional cover could be
strategically placed in sensitive areas to monitor areas that
are becoming overgrazed, for example to signal an alert to
move livestock.

4.3 Data interpretation at different times of the year

Although the period at the end of the wet season is critical
for on-farm decision-making, we recommend that to improve
understanding of the rate of change of the pasture conditions,
monitoring also be made throughout the wet season that pre-
cedes it and into the start of the dry season. One of the bene-
fits of a data flow from proximal sensors is to understand the
rate of seasonal changes and identify any periods in which
the pasture conditions change rapidly or suddenly in response
to weather or environmental events.

From this pilot project it is still unclear whether pasture
biomass could be predicted with sufficient accuracy in this
environment to allow the measurements to be used opera-
tionally in on-farm decision-making. However, the results of
the present study are encouraging enough to show that fur-
ther work is warranted. Assuming that the issues with the
field data quality can be addressed in future work, it is ex-
pected that the relationships between field and sensor data
will improve.

This study was run for less than 2 years, and covers only
the limited range of pasture conditions resulting from inter-
annual variability in climate and differing grazing and pas-
ture management. If further studies do not show consistent
relationships between sites and years, one option for calibra-
tion would be to have the farmer performing a controlled set
of calibration measurements once or twice during the grow-
ing season to calibrate a particular sensor deployment. Hav-
ing to make pasture measurements would require additional
time from labour-poor beef producers. However, by gather-
ing this data at the geographical location of the deployed sen-
sors, these measurements would alleviate the cost of a much
larger project. This larger project would require gathering
the volume of calibration data required to develop models
that would be robust for different geographical locations and
different weather conditions between years, and address any
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Figure 8. Bias-adjusted bootstrap point estimates of R2 and corresponding 95 % pivotal bootstrap confidence intervals for GAM combina-
tions of sensor-derived indices. (a) TotalBiomass, (b) %BareGround, (c) %Litter2D, (d) %TotalVegetation2D, (e) %Green3D, (f) %Green2D,
and (g) VegetationHeight. See Table 4 for the values.

recalibration requirements of the physical sensor over time.
Alternatively, the time series of vegetation index data from
the sensors could be used without calibration to a quantita-
tive value, which would still provide data to indicate sudden
changes in vegetation growth.

4.4 Accuracy of the field data

It is clear that the accuracy of field observations of pas-
ture status could be improved for future sensor deployments
aimed at developing qualitative relationships between sensor
and field data. In the context of the present study, the un-
certainty in our field observations does not change the main
outcomes of the project, which are to illustrate practical is-
sues around the sensor deployment, and the methods neces-
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sary for the quality control of the sensor data, necessary for
designing future deployments.

We recommend that future deployments use non-
destructive sampling methods such as BOTANAL, which in-
cludes a protocol for assessing and maintaining the accuracy
of visual measurements of pasture biomass and composition
(Tothill et al., 1992; Orchard et al., 2000). Alternatively, vi-
sual assessments could be calibrated by developing a site-
specific set of reference photographs at different times in the
growing season. The reference photos would be calibrated
using pasture cuts (if possible for the vegetation type) and
used for repeat training of field staff. This method has the
advantage of controlling the data range and the biomass in-
terval between photo standards. Pasture assessments of this
type are time intensive, which could be mitigated by target-
ing data collections at key times during the year. It would also
be useful to make additional measurements in the vicinity of
the node FOV to assess the spatial variability of pastures in
the surrounding area.

4.5 Data filtering

In the extensive database cleaning illustrated in Fig. 3 and
Table 2, we focussed on post collection filtering methods, as
the experimental nature of our deployment meant that data
could not be screened in real time. In an operational system
additional rules and approaches could be implemented on the
node, such as for sensor data cleaning and outlier detection
(e.g. Basu and Meckesheimer, 2007; Huemmrich et al., 1999;
Liu et al., 2004), and including implementing data quality
control algorithms within the WSN (e.g. Collins et al., 2006;
Jeffery et al., 2006; Zhang et al., 2010). In addition to the
data-cleaning rules we developed, and as the field deploy-
ment progressed, we modified the sensor maintenance proto-
cols and infrastructure. This knowledge can also be used in
future deployments.

Due to our stringent data-cleaning protocols, a large
amount of data from the multispectral sensors was excluded
by a combination of automatic and manual methods. In fu-
ture deployments additional automatic data filtering could be
implemented, for example using spectral information to fil-
ter data when surface water is present. Developing automatic
filtering rules for surface water was not considered neces-
sary in our study as visual examination of the digital camera
images identified only 9 days of surface water at the fenced
node and 20 days at the unfenced node. The data were ex-
cluded manually, particularly as this surface water occurred
when there was water incursion into the sensor housing and
the whole data period was suspect. For sensor deployments
in conditions with more surface water, such as in areas of
flood irrigation, having an automatic rule for surface water
detection would be useful.

4.6 Comparing camera and multispectral sensors

We found the digital cameras to be more robust than the
multispectral sensors in terms of data flow, with up to 63 %
of days of data from our Skye sensors being discarded dur-
ing data quality control. Although the stringent filter criteria
(Table 2) may have resulted in some “clean” data being ex-
cluded, this was balanced against the greater impact of hav-
ing untrustworthy data for modelling. The long periods of er-
roneous multispectral data showed that this Skye SKR-1850
sensor model was unreliable in the environment. In compar-
ison to the digital camera, the design of the Skye sensors led
to significant problems, including insect infestations in the
sensor tubes and water ingress below the cosine correction
filters which were fitted to the upward-pointing sensors.

While we were able to mitigate the effects of these issues
by regular maintenance of the sensors and post-acquisition
data cleaning, we found that the Skye SKR-1850 sensor
model was not stable enough in our tropical environment for
an operational deployment on a farm. For example, we had a
complete failure of one sensor which had water incursion into
the sensor enclosure at the point where the wiring attached
to the sensor, despite sealant being applied to the connection
and the connections being regularly monitored. Given that
we had a spare sensor that could be used as a replacement,
the decision was made to swap the sensors out to ensure con-
tinuity of data collection, while the sensor was returned to
the manufacturer for examination.

The new and improved designs for the Skye sensor hous-
ing are likely to address many of these issues by having
a covered sensor face and also being able to calculate re-
flectance directly (e.g. the SKR 1860D 4 channel sensor de-
sign. Skye-Instruments (2013). Repeating this study with the
newer sensor design would allow the focus of future stud-
ies to be on gathering multispectral measurements, not on
checking and managing the technical aspects of the field
deployment or on post-collection data filtering. In situa-
tions where only the earlier model Skye sensors are avail-
able for use, it may be possible to use a method employed
by Harris et al. (2014), who were able to overcome simi-
lar limitations of earlier models of a SKR-1800 sensor by
using a cross-calibration method between the upward- and
downward-pointing sensors to retrieve reflectance. While not
recommended by the manufacturer, such a method would be
useful for deployments in which the calibration certificates
had expired or where reflectance is a requirement.

Cross calibration of sensors could also be useful in sit-
uations in which there is a mix of sensor types deployed
to capture spatial variability in the landscape. The grow-
ing availability of lower-cost sensors provides an alternative
to expensive but highly calibrated sensors such as the Skye
SKR-1850, with arrays of lower-cost sensors relying on mul-
tiple sensor redundancy rather than absolute sensor accuracy.
Multispectral sensors have the potential to be deployed rela-
tively inexpensively if these technical issues can be resolved.
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In our pilot study the digital camera images were down-
loaded manually but, as described by Gobbett et al. (2013) in
an operational system, the cameras could be solar powered
and deliver data across a network that had sufficient band-
width, particularly if daily image capture rather than capture
every 30 min was found to be adequate. Testing the technol-
ogy around sending image data across the network in this
way was not the focus of this pilot deployment, but we illus-
trate the utility of such an approach by our transmission of
the multispectral and soil moisture sensor data via a WSN.

We showed that a single image selected in the middle of
the day was sufficient for seasonal monitoring, but that cam-
era images from other times of the day were also useful for
investigating unexpected data from the other sensors. The se-
lection of camera images from the middle of the day was
made to minimize illumination changes between images and
used an automated white balance setting on the camera fol-
lowing that used in, e.g. Macfarlane and Ogden (2012). Other
studies have used a manual/fixed white balance in order to
minimize changes in illumination (Toomey et al., 2015; Son-
nentag et al., 2012) and its use is recommended by the Phe-
nocam network (http://phenocam.sr.unh.edu/webcam/). This
aspect could be investigated further in future deployments, as
it may enable even stronger correlations to be derived from
the digital imagery.

There were benefits to having both multispectral sensors
and digital cameras as they complement each other in data
interpretation. In an operational setting with cost constraints,
a single digital camera could be used to give visual feedback
on pasture status to the producer while using a wide deploy-
ment of spectral sensors as the main data source. In our study,
the separate soil moisture sensors at each node were used
to aid in data interpretation. Additional precipitation infor-
mation could also be provided by the addition of a low-cost
rainfall sensor to alleviate the necessity of using rainfall data
from non-local meteorological stations.

4.7 Overcoming the limitations of proximal sensors in
heterogeneous pastures

We have been explicit in this study about not expecting to
capture the heterogeneity of tropical pastures with just the
two sensors used in the pilot deployment, as assessing the
spatial heterogeneity of the pastures was not the project’s
goal. The two nodes were intentionally placed in an area of
the paddock which was as similar as possible at deployment,
and the fencing of one node was aimed only at providing
a range of pasture heights. An important question about the
use of proximal sensors mounted on static nodes is whether
the spatial heterogeneity of the pastures is adequately cap-
tured by the small area on the ground that the sensors ob-
serve, assuming an appropriate number of sensors are de-
ployed. The small FOV of an individual sensor is in contrast
to the spatially extensive data obtained from satellite and air-
borne sensing platforms, and more recently from mobile plat-

forms such as ground vehicles (e.g. King et al., 2010), heli-
copters, unmanned aerial vehicles (UAV) (e.g. von Bueren
et al., 2015), and robotic set-ups to move sensors (Hamilton
et al., 2007). In an operational deployment of sensors it may
not be necessary to spatially sample the landscape exhaus-
tively, as occurs from an imaging platform such as a satellite;
the landscape only needs to be sampled with the number of
nodes and their spatial arrangement should be suitable for
capturing the spatial pattern in the particular landscape. This
includes considerations such as whether the spatial pattern in
the pastures is relatively stable, as is more common in tem-
perate pastures, or is more clumped and heterogeneous, as
is common in tropical pastures. Spatially heterogeneous pas-
tures can also result from pasture management such as re-
seeding. The assessment of landscape spatial pattern at mul-
tiple scales is a broad topic; a good overview can be found
in McCoy (2005) and a more detailed example in Chen et
al. (2012).

Options for addressing these spatial sampling concerns of
point-based proximal sensors in an operational system in-
clude placing multiple sensors strategically in key paddock
zones such that the sensors capture the range of paddock vari-
ability. Remote sensing images, even if captured only once or
twice per year, could be used to aid in the delineation of suit-
able zones in conjunction with local farmer knowledge. Data
from this set-up could then be aggregated up to the scale of
a farm management unit to create a robust time series of ob-
servations. Alternatively, the sensors could be mounted on
a mobile platform that monitors the pastures along a series
of waypoints at set times of the day. Unlike the set revisit
times of satellite-based remotely sensed images, helicopters,
and UAVs have the potential to capture data under a more
flexible acquisition schedule. However, data from these non-
satellite platforms have more complex processing require-
ments due to the stability of the imaging platform and the
capture of strips of image data in separate flight lines. In-
creasingly, these processing limitations of mobile platforms
are being mitigated by advances in automating image pro-
cessing (Colomina and Molina, 2014), but they still have
the limitation of providing intermittent rather than continu-
ous monitoring. More importantly, while capturing raw data
from these systems is relatively easy, creating an operational
system to convert the data to something the producer can use
for decisions making is complex.

While there are limitations to using point-based sensors
for monitoring heterogeneous tropical pastures, this is bal-
anced by the benefits of having a near-real-time continu-
ous data stream for monitoring. For example, an ideal pas-
ture monitoring system would combine data from multiple
sources; proximal sensing data for repeated and continu-
ous monitoring of the pastures, and remote sensing images
collected at a limited number of times when a spatial as-
sessment of pastures is required. An automatic sensor sys-
tem could also be set up to trigger a notification to a smart
phone or tablet when a critical threshold in feed availability
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or bare ground has been reached. These data sources could
also be combined with other precision farm management
technologies, such as walk over weighing (González et al.,
2014), and emerging low-power sensor network systems (e.g.
http://www.taggle.com.au). For these combined sensor tech-
nologies to be used on-farm outside of the current research
pilot deployment would require future technical development
to streamline their installation and operational use.

5 Conclusions

This project has demonstrated the successful deployment of
multiple proximal sensors to monitor tropical pastures in an
operational beef production system over 18 months. In our
pilot deployment we had a number of technical issues that
limited the amount of sensor data that was of suitable qual-
ity for comparison to the field observations. Due to the un-
certainty in the field observations, the relationships devel-
oped between sensor and field data are not confirmational
and should be used only to inform the design of future work.

The design of a new sensor deployment would depend on
the project goals. For example, to deliver operational data
to farmers for decision-making, to validate satellite images,
to test the design of sampling schemes using many low-cost
sensors or to use proximal sensors for monitoring an area for
degradation. As a result of this pilot project, we recommend
a number of considerations for a full deployment of multiple
proximal sensors for monitoring tropical pastures.

Sensor choice: Utilising a multispectral sensor construction
such as the Skye SKR 1860D sensor (Skye-Instruments,
2013) will mitigate many of the technical issues we
had with the multispectral sensor. The gross failure of
our multispectral sensor model due to moisture entry
was exacerbated by the tropical conditions, but these
issues are likely to be mitigated by newer model sen-
sors. Using multispectral sensors with an improved de-
sign should also provide more robust data collection and
require less stringent data filtering.

Including a multispectral sensor band in the upper
SWIR range would help capture the changing balance
between PV and NPV across the season.

We found the digital cameras to be more robust at
acquiring data compared to the multispectral sensors.
However, the multispectral sensors captured more char-
acteristics of the pastures than just the green vegetation
component. We therefore recommend having a system
with both sensor types, with the additional benefit of as-
sisting in data interpretation and troubleshooting tech-
nical issues.

The soil moisture sensors provided valuable informa-
tion about the soil moisture status. Having an on-site
weather station would also benefit data analysis, partic-
ularly for rainfall which is highly localized. A single

weather station or rain gauge should be sufficient if the
area where the sensors are deployed is small enough to
not have widely varying rainfall.

Sensor deployment: Issues such as insects and dust are
common to sensor deployments in all environments,
and while mitigated by sensor maintenance, they would
need to be addressed in an automated fashion if multiple
autonomous sensors are to be deployed over long time
periods.

Regular maintenance, whether manual or automated,
should include recalibration of sensors due to degrada-
tion over time, and the cross-calibration needs of de-
ployments of multiple sensors.

Ideally there would be a number of sensors deployed
which capture the pasture heterogeneity of a particular
deployment.

There are also many technical choices that could be ex-
plored in a larger project, such as transferring image
data across the WSN or processing data at the sensor
node.

Data processing and filtering: Data processing steps such
as noise filtering and the necessity of calibration
are common to all spectral sensor deployments, and
should be considered part of the operational deployment
methodology.

Focussing data extraction on the middle part of the day
is recommended to reduce differences in illumination.
Reducing the period when the sensors are acquiring data
will also minimize the volume of data to be collected,
as well as the corresponding energy, data storage, and
transfer requirements of the deployment.

Optimizing resources: For future sensor deployments in
tropical pastures for on-farm decision-making, we rec-
ommend limiting data acquisition to the critical periods
of vegetation growth during the wet season and into the
start of the dry season, which will also simplify the de-
ployment resource requirements.

Field data collections: We recommend the use of a non-
destructive sampling method such as BOTANAL, which
includes a protocol for assessing and maintaining ac-
curacy of visual measurements of pasture biomass and
composition (Tothill et al., 1992; Orchard et al., 2000).
Such a method would improve the accuracy and preci-
sion of the field data, although at a much higher resource
requirement. This time requirement may be mitigated if
the data collections are focussed at a shorter period dur-
ing the year, rather than across the whole year such as
in this current study.

Overall, we found that the limitations of proximal sensors
mounted on static nodes are balanced by their ability to mon-
itor continually and deliver near-real-time data without being
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affected by clouds and their potential for being deployed au-
tonomously in remote locations in an extensive grazing sys-
tem. These results show that proximal sensors, particularly
when multiple sensors are combined in the same deployment,
have the ability to provide a valuable alternative to physi-
cal assessments of pasture. Continuous monitoring permits
the rapid identification of changing conditions and informed
and timely management on-farm decision-making. Our pilot
project supports the design of future deployments in this en-
vironment and their potential for operational use.

6 Data availability

An animation of 545 days of daily digital camera images
from the fenced node is available (Handcock, 2016).

The Supplement related to this article is available online
at doi:10.5194/bg-13-4673-2016-supplement.
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