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Abstract. Coccolithophore contributions to the global ma-
rine carbon cycle are regulated by the calcite content of their
scales (coccoliths) and the relative cellular levels of photo-
synthesis and calcification rates. All three of these factors
vary between coccolithophore species and with response to
the growth environment. Here, water samples were collected
in the northern basin of the South China Sea (SCS) dur-
ing summer 2014 in order to examine how environmental
variability influenced species composition and cellular lev-
els of calcite content. Average coccolithophore abundance
and their calcite concentration in the water column were
11.82 cells mL−1 and 1508.3 pg C mL−1, respectively, dur-
ing the cruise. Water samples can be divided into three floral
groups according to their distinct coccolithophore communi-
ties. The vertical structure of the coccolithophore community
in the water column was controlled by the trophic conditions,
which were regulated by mesoscale eddies across the SCS
basin. The evaluation of coccolithophore-based calcite in the
surface ocean also showed that three key species in the SCS
(Emiliania huxleyi, Gephyrocapsa oceanica, Florisphaera
profunda) and other larger, numerically rare species made al-
most equal contributions to total coccolith-based calcite in
the water column. For Emiliania huxleyi biometry measure-
ments, coccolith size positively correlated with nutrients (ni-
trate, phosphate), and it is suggested that coccolith length is
influenced by light and nutrients through the regulation of
growth rates. Larger-sized coccoliths were also linked sta-
tistically to low pH and calcite saturation states; however, it
is not a simple cause and effect relationship, as carbonate
chemistry was strongly co-correlated with the other key en-
vironmental factors (nutrients, light).

1 Introduction

Coccolithophores are an important component of marine
phytoplankton communities, contributing globally to both
the organic carbon pump (biological carbon pump) and the
(calcium) carbonate (counter) pump. Coccolithophores may
contribute 10 to 20 % of total chlorophyll a, and primary
production and 30 to 60 % of calcium carbonate (calcite or
particulate inorganic carbon) in the water column in non-
bloom conditions (Poulton et al., 2006, 2007, 2010, 2014),
although higher contributions of organic carbon (> 40 %)
do occur in coccolithophore blooms (Poulton et al., 2013).
Coccolith-based calcite can contribute up to 80 % to deep-
sea carbonate fluxes (Sprengel et al., 2000, 2002; Young
and Ziveri, 2000). High concentrations of the cosmopoli-
tan coccolithophore species Emiliania huxleyi can gener-
ate large quantities of cells and detached coccoliths (e.g.,
∼ 2000 cells mL−1 and 3× 105 coccoliths mL−1; Balch et
al., 1991), which are detectable from space (Cokacar et al.,
2004; Raitsos et al., 2006); for example, the Great Calcite
Belt in the Southern Hemisphere is attributed to high partic-
ulate inorganic carbon from coccolithophores (Balch et al.,
2011, 2014). To assess the contribution of coccolithophores
to the carbon cycle, two relevant issues are worthy of at-
tention: (1) coccolithophore species composition and calcite
concentration in the water column and (2) their calcification
responses to oceanic environmental factors.

The South China Sea (SCS) is the largest marginal sea in
the west Pacific Ocean, covering an area of 3.5× 106 km2

(Wang et al., 2014). Phytoplankton production and surface
circulation in the northern basin of the SCS are greatly in-
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fluenced by the East Asian monsoon system. In the north-
ern part of SCS, during the summer season (June to Au-
gust), the surface water is oligotrophic and well stratified,
and a stable mixed layer is developed. The mean chloro-
phyll a concentration and primary production in the euphotic
zone is 0.08± 0.03 mg m−3 and < 30 mg C m−2 d−1, respec-
tively (Chen, 2005; Chen et al., 2006), with the nitricline at
a depth of ∼ 60 m (Chen et al., 2006). During the winter
season (December to February), surface waters are produc-
tive and well mixed due to the strong seasonal wind stress.
Mean chlorophyll a concentrations and primary production
are 0.65± 0.17 mg m−3 and 550 mg C m−2 d−1, respectively
(Chen, 2005; Chen et al., 2006), with the nitricline much
shallower at around 5 to 20 m (Chen et al., 2006). Some pre-
liminary work on coccolithophore biogeography has been
reported in the SCS (Okada and Honjo, 1975; Chen et al.,
2007a; Sun et al., 2011); however, these studies are confined
to surface waters or sporadic sampling sites and lack any coc-
colith weight estimation.

Mesoscale eddies are typical physical oceanographic fea-
tures in the SCS (Wang et al., 2003) and significantly influ-
ence the structure of the upper water column. Cyclonic ed-
dies in the SCS can cause the thermocline to shallow and
thin, while anticyclonic eddies have the opposite effect (Chen
et al., 2011). Eddy activity in the SCS is related to local wind
stress curl, intrusion of the Kuroshio Current, and coastal
baroclinic jets (Wang et al., 2003; Hu et al., 2011). Cold-
water cyclonic eddies can elevate the nutricline into subsur-
face waters and drive enhanced phytoplankton production at
levels exceeding those in the winter. For example, the av-
erage integrated primary production inside eddies in spring
and in winter is 1090 and 550 mg C m−2 d−1, respectively
(Chen, 2005; Chen et al., 2007b). Modeling studies have re-
ported that cyclonic eddies are significant nutrient sources
fueling the biological carbon pump in the SCS (Xiu and
Chai, 2011). Pigments determined by high-performance liq-
uid chromatography have also shown that phytoplankton as-
semblages relate to mesoscale eddies in the SCS (Huang et
al., 2010; Wang et al., 2016); however, how coccolithophore
communities respond to these regular oceanographic phe-
nomena is still unclear.

Decreasing ocean pH (termed ocean acidification), in re-
sponse to increasing atmospheric and seawater CO2 levels,
is a major concern for marine calcifiers such as coccol-
ithophores, as lower pH levels (and calcium carbonate sat-
uration levels, �C) may lead to calcite dissolution and/or
make the process of calcite formation (calcification) more
difficult (Riebesell et al., 2000; Beaufort et al., 2011). Con-
flicting results concerning coccolithophore calcification have
been reported from both experimental and field studies (e.g.,
Riebesell et al., 2000; Iglesias-Rodriguez et al., 2008; Riebe-
sell and Tortell, 2011; Meyer and Riebesell, 2015). A re-
cent study by Bach et al. (2015) found that laboratory find-
ings could be reconciled when an optimum-type response to
bicarbonate ion availability and pH was considered. In the

field, different communities may respond to different combi-
nations of elevated pH and/or nutrient availability, empha-
sizing the importance of species composition to commu-
nity responses and to the multivariate nature of the growth
environment (Poulton et al., 2011, 2014). Species-specific
responses to ocean acidification are evident from labora-
tory work (Langer et al., 2006, 2009) and in the geological
record (Gibbs et al., 2013; O’Dea et al., 2014), with regional
oceanographic settings also having an important influence
(Beaufort et al., 2011; Meier et al., 2014). Hence, it is nec-
essary to understand how coccolith (e.g., E. huxleyi strains
in the SCS) size and morphology respond to environmental
factors in the oligotrophic and marginal SCS.

In the present study, we performed an in situ investigation
of coccolithophores (species composition, coccolith biom-
etry) in the upper water column of the SCS in relation to
the prevailing environmental conditions. The aims of this re-
search were (1) to examine coccolithophore biogeography
more clearly alongside their calcite concentration in the up-
per water column and (2) to determine how coccolith mor-
phology (i.e., E. huxleyi) responds to environmental vari-
ability (light, nutrients, and carbonate chemistry) in a low-
latitude marginal sea.

2 Materials and methods

2.1 Field sampling

A total of 72 water samples from 15 stations were collected
during the R/V Dongfanghong II cruise of the National Sci-
ence Foundation (2014). At most stations, five depths were
sampled: 25, 50, 75, 100, and 150 m (Table 1). Water sam-
ples were not collected in the upper 5 m as this was extremely
nutrient depleted, with especially low chlorophyll a con-
centrations (http://oceancolor.gsfc.nasa.gov/cms/) in sum-
mer (Fig. 1). For each water sample, 3 L was collected via a
conductivity–temperature–depth (CTD) rosette sampler and
filtered through 0.45 µm pore size 47 mm diameter nitrocel-
lulose membrane filters (Sartorius®) under gentle pressure.
The filters were rinsed to remove residual saline seawater,
dried on an electric heat platform (65 ◦C, 10–15 min) and
then stored in Petri dishes wrapped with aluminum foil and
stored frozen (−20 ◦C).

2.2 Coccolithophore and coccolith counts

A small piece (∼ 0.5× 0.5 cm) of each filter was cut out
and mounted on glass slides using Norland Optical Ad-
hesive (No. 74). Coccolithophore cell counts and species
identification was undertaken using cross-polarized light
microscopy (Olympus BX51). In samples with abundant
coccolithophore cells, individual cells (coccospheres) were
counted from at least 100 fields of view (FOVs, diameter
of each FOV is 220 µm) up to a total of 150 to 400 coc-
cospheres. For samples with low abundance, around 50 ex-
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Figure 1. (a) Sampling stations in the South China Sea, superimposed on the Aqua-MODIS (4 km) monthly average (May to August 2014)
surface chlorophyll a (mg m−3). (b) Map of sea level anomaly (SLA) and geostrophic flow on 28 June 2014. The positive SLA with clockwise
flow indicates anticyclonic eddies (AEs), and the negative SLA with anticlockwise flow indicates cyclonic eddies (CEs).

Table 1. Sampling dates, location, depth, and mixed layer depth (MLD) at each station.

Station Date (yyyy/m/dd) Longitude Latitude Sampling depth MLD
(GMT+8) (m) (m)

D9 2014/6/25 7:11 119 18 25, 50, 75, 100, 150 34
F1 2014/6/26 3:38 118 18 25, 50, 75, 100, 150 24
G2 2014/6/26 14:36 117 18 25, 45, 75, 100, 150 12
H3 2014/6/27 15:08 116 18 25, 60, 75, 100, 150 11
I1 2014/6/20 0:52 115 19.5 25, 50, 100 16
I2 2014/6/20 20:50 115 19 25, 50, 75, 100, 150 16
I3 2014/6/29 9:23 115 18 25, 50, 75, 100, 150 23
J1 2014/6/29 20:35 114 18 25, 50, 75, 100, 150 26
X3 2014/6/30 6:58 113 18 25, 50, 75, 100, 150 30
X4 2014/6/30 18:01 112 18 25, 50, 75, 100, 150 35
X5 2014/7/1 5:10 111 18 25, 50, 75, 100, 150 17
I4 2014/7/9 8:23 115 17 25, 50, 75, 100, 150 18
I5 2014/7/9 1:54 115 16 25, 50, 75, 100, 150 (< 25)
I6 2014/7/8 17:53 115 15 25, 50, 75, 100 (> 25)
I7 2014/7/7 22:33 114.67 14 25, 50, 75, 100, 150 20

tra FOVs were examined, which suggests a detection limit
of ∼ 0.27 cells mL−1 at a 95 % probability level (Bollmann
et al., 2002). For counts and morphological measurements
of detached coccoliths, a second piece of each filter was
cut out (∼ 0.5× 0.5 cm) and mounted on an aluminum stub
with double-sided conductive carbon tape and coated with
gold (see Poulton et al., 2011). A Leo 1450VP Scanning
Electron Microscopy (Carl Zeiss) with SmartSEM (V5.1)
software was then used to automatically capture images of
consecutive FOVs from a 12× 12 FOV (each FOV was
4.054× 10−3 mm2) grid at a magnification of ×5000, pro-
viding 144 images for analyses of detached coccolith count-
ing and biometry. Coccolithophore species identification by
light microscopy and scanning electron microscopy (SEM)

followed Frada et al. (2010), Young et al. (2003), and the
Nannotax3 website (http://ina.tmsoc.org/Nannotax3/). Coc-
cosphere and coccolith abundance was calculated using the
following Eq. (1):

coccosphere or coccolith abundance

(cells coccoliths−1 mL−1)=N × S/(A × V ), (1)

where N is the number of coccospheres or coccoliths
counted, S is the filtered area (45 mm diameter) on each fil-
ter, A is the area inspected (A= number of FOV× area of
1 FOV), and V is the filtered water volume (mL).

www.biogeosciences.net/13/4843/2016/ Biogeosciences, 13, 4843–4861, 2016
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2.3 Coccosphere and coccolith biometry and calcite
estimates

Two distinguishable morphotypes of E. huxleyi (type A and
type C) were observed in the SEM images, with type A be-
ing the majority morphotype of total E. huxleyi cell counting.
The type C coccospheres were only found sporadically in
some samples. Hence, the measurements of E. huxleyi biom-
etry including distal shield length (DSL) and coccospheres
diameter (CD) were based only on morphotype A in this
study. A total of 2560 E. huxleyi detached coccoliths (for
DSL) and 102 intact coccospheres (for DSL and CD) were
measured across the study sites.

In addition to E. huxleyi, coccolith lengths of all species
were measured to estimate bulk coccolith calcite concentra-
tion in the water column. Individual coccolith calcite con-
tent (calcite mass) was calculated using Eq. (2) adapted from
Young and Ziveri (2000):

m(pgC, CaCO3)= 2.7 × ks × DSL3, (2)

where 2.7 is the density of calcite (pg C µm−3), ks is a shape
constant determined for different species (Young and Ziveri,
2000), and DSL is the distal shield length of each coccol-
ith (µm). For whole coccospheres, the calcite content was
estimated by multiplying the calcite mass of a single coc-
colith (lying flat on the upper side of the coccosphere) with
an estimate of the number of coccoliths in the coccosphere
(e.g., 16 to 48 coccoliths in an E. huxleyi coccosphere in
this study). Numbers of coccoliths per coccosphere in the
present study were also estimated with reference to Boeckel
and Baumann (2008). All the biometry work was carried out
on the basis of SEM images using ImageJ software (http:
//rsb.info.nih.gov/ij/), following Poulton et al. (2011).

Three coccolithophore species (Gladiolithus flabellatus,
Calciosolenia murrayi, and Algirosphaera robusta) present
in the SCS do not have ks values in Young and Ziveri (2000)
or in similar coccolith calcite estimates (e.g., Knapperts-
busch and Brummer, 1995; Beaufort and Heussner, 1999).
For the body coccolith of G. flabellatus, a ks value is esti-
mated as 0.0016, adjusted from Florisphaera profunda (0.04)
and based on their similar rectangle shapes. For C. mur-
rayi, the rhomboid-shaped coccosphere is dimorphic, hav-
ing both body coccoliths and narrow coccoliths around the
apical opening (Young et al., 2003). Body coccolith lengths
in C. murrayi range from 2.2 to 2.6 µm, with the mean
length / width ratio∼ 3.045 in our samples, and the thickness
is about 0.2 µm (from Malinverno, 2004). From these mor-
phological parameters, the ks value we estimated is 0.027.
For A. robusta, each coccolith contains two parts: a base and
a protrusion. The former is similar to a small Syracosphaera
coccolith, with a ks value of 0.015 (Young and Ziveri, 2000)
and for the latter ks value we calculated a cylindroid-like vol-
ume which we estimated as 0.045. Combining these two es-
timates gave a ks value of 0.06 for A. robusta in this study.

2.4 Environmental parameters

Seawater temperature, salinity, and chlorophyll fluorescence
were taken from the CTD. For stations I4, I5, I6, and I7, CTD
problems led to discontinuous temperature and salinity data.
Mixed layer depths (MLDs) were taken as the depth where
the temperature difference was > 0.5 ◦C with respect to sur-
face waters (< 5 m; Painter et al., 2010), while for stations
I4 to I6, the MLDs were only roughly determined according
to vertical temperature profiles (see Fig. 2b). Euphotic zone
depth is defined as the depth to which 1 % of surface irra-
diance penetrates. Photosynthetically active radiation (PAR)
through the water column is calculated following Eq. (3):

PARZ = PAR0 × exp(−Kd × Z), (3)

where Kd, the vertical diffuse attenuation coefficient, is esti-
mated by the following Eq. (4) from Wei (2005):

Kd = 0.027+ 0.252 × cp, (4)

where cp is the beam attenuation recorded by the CTD. Iden-
tification of eddy activity was according to the temperature
sections (Fig. 2) and altimeter data on sea level anoma-
lies (SLAs) and geostrophic flow from the AVISO website
(http://www.aviso.altimetry.fr/en/home.html).

Macronutrient (nitrate+ nitrite, phosphate) concentrations
were determined immediately on board with colorimetric
methods, using a Technicon AA3 Auto-Analyzer (Bran-
Lube). The detection limits for nitrate+ nitrite and phos-
phate are 0.1 and 0.08 µmol L−1, respectively. Seawater car-
bonate parameters (total alkalinity (AT) and dissolved inor-
ganic carbon (CT)) were determined following the updated
Joint Global Ocean Flux Study protocols (Dickson et al.,
2007). Water samples for measurements were poisoned with
saturated mercuric chloride solution and stored in the dark
before analysis. CT was measured on board within 2 days of
sampling and AT was measured within 2 months. CT was
measured by collecting and quantifying the CO2 released
from the sample upon acidification with a nondispersive in-
frared detector (LI-COR® 7000). AT was measured by po-
tentiometric Gran titration. The accuracies of the AT and CT
measurements were calibrated against the certified reference
materials provided by A. G. Dickson of the Scripps Insti-
tution of Oceanography. Carbonate ion concentration, car-
bonate calcium saturation (�C), and pH were calculated by
CO2SYS excel macro (Pierrot et al., 2006) from nutrients,
CT, AT, temperature, and salinity.

2.5 Statistical analysis

Multivariate data analysis was performed to further examine
the coccolithophore composition across the study sites us-
ing the PRIMER-E (v. 6.0) program (Clarke and Warwick,
2001). Before analysis, the sites of zero coccolithophore
abundance and those at 150 m were removed and the abso-
lute coccolithophore abundance data were then treated by
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Figure 2. Temperature (◦C) profiles in zonal (a) and meridional (b) sections. Variation of isotherm indicates anticyclonic eddies (AEs) and
cyclonic eddies (CEs), respectively. Profiles are drawn with Ocean Data View software (Schlitzer, 2015).

square-root transformation. With these abundance data, a
Bray–Curtis similarity matrix was constructed and analyzed
via hierarchical cluster analysis (HCA) together with non-
metric multidimensional scaling (nMDS).

Principal component analysis was also performed based
on the z-score normalized environmental parameters to eval-
uate the main controlling factors. Pearson’s product-moment
correlations and Spearman’s rank correlation were used
to examine potential relationships between coccolithophore
data and environmental factors. One-way ANOVA was per-
formed to assess the coccolith length differences between
samples. These statistical analyses were carried out using the
PAST software (Hammer et al., 2001).

3 Results

3.1 Physicochemical settings

A conspicuous deep chlorophyll a maximum (DCM) was
present throughout, ranging from ∼ 50 to 75 m in depth
(Fig. 3). Total nitrogen and phosphate concentrations were
below the limit of quantitation in the upper 25 m. A nitrogen
concentration of 1 µmol L−1 was defined as the threshold of
the nitricline and also the nutricline (Mullin, 1998), which
was within the range of < 50 to 75 m (Fig. 3). All stations
were stratified, with shallow mixed layers, ranging from 11
to 35 m. According to the vertical temperature profiles, SLA
map, and geostrophic flows (Figs. 1b and 2), two anticyclonic
eddies (labeled herein as AEs) and one cyclonic eddy (CE)
were present across the 18◦ N section, with stations X4, X3,
and J1 located in AE1, F1, and D9 located in AE2, and I3

and H3 located in CE. The nutricline and DCM changed with
the variability of oceanographic settings; e.g., they shallowed
in the CE stations and deepened in the AE stations (Fig. 3).
Euphotic zone depths ranged from 90 to 100 m, except at sta-
tions I1 and I2, where the euphotic zone depth was ∼ 70 m.
The detailed SLA and geostrophic flow maps during sam-
pling dates can be found in the Supplement.

3.2 Coccolithophore community

The average coccolithophore cell abundance was
11.82 cells mL−1, ranging from < 0.27 to 83.67 cells mL−1

across the sampling sites. The highest cell abundance was
found at station I3 at a depth of 50 m. At each station, the
lowest cell abundances were found at 25 and/or 150 m,
whereas the depth with the highest abundances was at 50
and/or 75 m, in close proximity to the DCM. A total of
17 coccolithophore taxa were counted (Table 2) across the
study sites.

The nMDS ordination (Fig. 4) shows that at a level of
40 % (dis)similarity in the HCA (see Supplement), three
groups of water samples occurred: Group 1 mainly contained
E. huxleyi and Umbellosphaera irregularis, with the low-
est average cell concentrations of all the groups identified
(8.57 cells mL−1), and represented the shallowest samples
(25 and 50 m). Most of the samples were located at 25 m
and some at 50 m, (Fig. 5) and were representative of olig-
otrophic conditions in the upper mixed layer. Group 2 was
dominated by E. huxleyi, with the highest average cell con-
centration (27.38 cells mL−1) of all the groups. Samples in
this group were usually located at depths between 45 and

www.biogeosciences.net/13/4843/2016/ Biogeosciences, 13, 4843–4861, 2016
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75 m (Fig. 5), around 25 m below the MLD and represent-
ing the DCM, with elevated nutrients. Group 3 included taxa
representing the lower photic zone (A. robusta, F. profunda),
with E. huxleyi also abundant in most samples. Samples in
Group 3 were found at 75 and 100 m depth (Fig. 5), in which
mean cell concentrations were 17.43 and 9.04 cells mL−1,
respectively.

3.3 Estimates of coccolith and coccosphere calcite

The mean concentration of detached coccoliths was 158 coc-
coliths mL−1, with a range of 0 to 673 coccoliths mL−1. The
highest detached coccolith concentration was observed at
station F1 at 75 m, corresponding to the highest cell num-
ber (22.87 cells mL−1) at this station. However, this pat-
tern was not common at some stations. For example, the
second-highest detached coccolith concentration (623 coc-
coliths mL−1) was found at station D9 at 150 m, the eastern-
most station sampled (Fig. 1), where coccosphere concentra-

tion was low (1.87 cells mL−1). It is unlikely that such high
abundances of detached coccoliths in deep layers of the water
column could be produced in situ when cell abundances are
so low, and hence these features may indicate either lateral
or vertical transport.

Based on coccosphere and detached coccolith con-
centrations, estimated total calcite concentrations ranged
from ∼ 0 to 5258.1 pg C mL−1, with a cruise average of
1508.3 pg C mL−1. Estimated total calcite concentrations
roughly mirrored detached coccolith concentrations (Fig. 6;
Spearman’s rank correlation, rs = 0.81, p< 0.01, n= 67),
highlighting the contribution of detached coccoliths to par-
ticulate calcite in the water column. Our estimated cal-
cite concentrations were in the same range as those esti-
mated by Beaufort et al. (2008) in the southeast Pacific
(2224 pg C mL−1 on average). The cruise average calcite
concentrations based on three important coccolithophore
species (E. huxleyi, Gephyrocapsa oceanica, and F. pro-
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Table 2. Coccolithophore species composition in Group 1, Group 2, and Group 3. R: mean relative abundance; F : occurrence frequency.
Bold numbers indicate the representative species in their groups.

Group 1 Group 2 Group 3

R F R F R F

Algirosphaera robusta 0.39 23.53 2.22 66.67 19.78 92.86
Florisphaera profunda 0.35 17.65 1.34 41.67 43.81 100.00
Gladiolithus flabellatus 0.00 0.00 0.00 0.00 1.66 60.71
Emiliania huxleyi 36.97 94.12 66.84 100.00 22.65 92.86
Gephyrocapsa oceanica 2.29 41.18 10.23 91.67 1.65 46.43
Gephyrocapsa ericsonii 6.20 52.94 6.20 50.00 2.61 32.14
Umbellosphaera irregularis 34.35 94.12 0.86 41.67 0.24 7.14
Umbellosphaera tenuis 2.14 47.06 0.10 16.67 0.00 0.00
Discosphaera tubifera 4.41 82.35 0.11 8.33 0.00 0.00
Rhabdosphaera clavigera 0.82 23.53 0.04 8.33 0.00 0.00
Calcidiscus leptoporus 0.82 17.65 1.53 58.33 0.96 35.71
Oolithotus fragilis 3.64 35.29 6.95 83.33 3.87 78.57
Helicosphaera carteri 1.05 58.82 0.21 25.00 0.03 3.57
Syracosphaera spp. 3.92 94.12 1.56 83.33 1.55 53.57
Umbilicosphaera sibogae 0.45 17.65 0.71 33.33 0.22 14.29
Calciosolenia spp. 0.49 23.53 0.48 58.33 0.41 21.43
Michaelsarsia spp. 1.71 35.29 0.61 41.67 0.54 25.00
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Figure 4. Nonmetric multidimensional scaling (nMDS) ordination
of stations at different depths, based on Bray–Curtis similarity. The
0.13 stress of two-dimensional ordination can provide a good inter-
pretation for community groups (Clarke and Warwick, 2001). The
blue dashed lines indicate different divisions at 40 % (dis)similarity;
the divisions are determined by cluster analysis, using the same re-
semblance as nMDS. CE: cyclonic eddy; AE: anticyclonic eddy.

funda) which dominate surface sediments (Cheng and Wang,
1997; Fernando et al., 2007) and deep-sea coccolith fluxes
(Jin et al., unpublished) in the SCS were 273.0, 112.1, and
391.3 pg C mL−1, respectively. Their average relative con-
tributions to water-column calcite were also estimated: E.
huxleyi (17.04 %), G. oceanica (7.00 %), and F. profunda
(24.42 %) contributed to around half of water-column cal-

cite concentrations (Fig. 7). The depth distribution of these
species contributions to total calcite matched well with their
average depth distribution across the study area: E. huxleyi
and G. oceanica contributions were highest in the upper wa-
ter column (25 and 50 m), and F. profunda contributions were
highest at depths of 75 and 100 m.

3.4 Emiliania huxleyi biometry

From all the samples analyzed, the average DSL of E. hux-
leyi type A was 2.96 µm, with an overall standard deviation
of 0.39 µm. Pearson’s product-moment correlations showed
the relationships between average DSL, nutrients (nitrite +
nitrate, phosphate), carbonate chemistry (pH, �C and AT),
and temperature (T ) (n= 29, Table 3). Statistically signif-
icant (p< 0.01) correlations were found between DSL, to-
tal nitrogen (nitrite+ nitrate), and phosphate (positive) and
between pH and �C (negative), whereas no correlation oc-
curred between DSL, AT, and T . The mean coccosphere di-
ameter of E. huxleyi across all those measured was 6.41 µm,
with a standard deviation of 0.95 µm. The average number of
coccoliths estimated per coccosphere was 32, with an over-
all range of 16 to 48. CD showed a statistically significant
positive relationship with DSL (Pearson’s r = 0.71, p< 0.01,
n= 102) and coccolith number per sphere (N ) (Pearson’s
r = 0.87, p< 0.01, n= 102), and the correlation was also sig-
nificant between DSL and N (Pearson’s r = 0.51, p< 0.01,
n= 102). A linear regression gave a coccosphere diameter
of CD= 0.205 ×DSL+ 1.664 (R2

= 0.49, p< 0.01), and a
binary regression equation also gave a coccosphere diame-
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ter of CD= 1.205 ×DSL+ 0.106×N + 0.096 (R2
= 0.85,

p< 0.01).

4 Discussion

4.1 Coccolithophore biogeography in the South China
Sea

In the context of the coccolithophore biogeographical zones
of Winter et al. (1994), the coccolithophore assemblages in-
vestigated in the SCS belong to the tropical zone, comprising
E. huxleyi, G. oceanica, Gephyrocapsa ericsonii, Oolithotus
fragilis, U. irregularis, F. profunda, and A. robusta. Retic-
ulofenestra sessilis was also sporadically found at 75 m depth
at sampling stations, and this species is reported to be ex-
clusively found in lower photic water of the tropical zone,
where it may form symbioses with diatoms (i.e., Thalas-
siosira species) (Winter et al., 1994; Young et al., 2003; Jor-
dan, 2012). The coccolithophore flora of the SCS is similar
to the “high temperature” and “warm oligotrophic” assem-
blages in the equatorial Pacific Ocean (Hagino et al., 2000).

The two dominant species in our samples from the SCS
were E. huxleyi and F. profunda, species representative of
the upper and lower photic zone floral groups (Winter et al.
1994). These floral groups both live within the euphotic zone

(> 1 % surface irradiance), which is about 100 m in summer
in the SCS. However, in the western Pacific warm pool (strat-
ified waters) and subtropical gyres of the Pacific and Atlantic
oceans, species F. profunda are found much deeper (150 to
250 m) in the water column (Hagino et al., 2000; Boeckel
and Baumann, 2008; Beaufort et al., 2008). These differences
are undoubtedly linked to differences between the SCS and
open ocean in terms of the depths of the thermocline and nu-
tricline, implying that the SCS is relatively eutrophic when
compared with tropical and subtropical settings at a similar
latitude.

4.1.1 Upper photic zone (UPZ) assemblage

In our nMDS analysis, the UPZ assemblage (Winter et al.,
1994) was represented by Groups 1 and 2, found at 25 and
50 m in the SCS. These two groups have different species
composition in our analysis; for example, Group 1 included
umbelliform species, i.e., U. irregularis, which are con-
sidered K selected (specialist) species (Young, 1994), and
this agrees with previous work (e.g., Okada and Honjo,
1975). The UPZ assemblage is commonly observed in well-
stratified, oligotrophic, warm surface waters in the western
Pacific warm pool (Hagino et al., 2000). In the SCS, U. ir-
regularis was mostly found at stations with deep mixed lay-
ers, deep nutriclines, and extremely low nutrients in sur-
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Figure 6. Coccolithophore-based calcite concentration (a) and detached coccolith concentration (b) in zonal and meridional sections.

face waters. In comparison, Group 2 occurred at stations
with shallower mixed layers and nutriclines and hence po-
tentially elevated nutrient supplies, and coccolithophores in
this group were most abundant and diverse, which indicates
that this community was slightly productive when compared
with those in other groups. The E. huxleyi dominance con-
tradicts other studies in the SCS in summer, such as Okada
and Honjo (1975) and Sun et al. (2011), who found that G.
oceanica was the dominant species (30 to 100 % of total cell
numbers) in the western and southern parts of the SCS. Dif-
ferences between this study and others could relate to the
influence of the Asian summer monsoon on the western and
southern SCS, where the southwesterly wind causes a wind-
driven upwelling system off the east coast of Vietnam (Liu et
al., 2002; Xie et al., 2003; Ning et al., 2004). G. oceanica is
considered a more eutrophic and coastal species (Andruleit
and Rogalla, 2002; Andruleit et al., 2003), and hence it con-
tributed less to coccolithophore cells in the central and north-
ern part of SCS, where summer-monsoon-induced upwelling
or water mixing is weak.

Morphotype A was the dominant morphotype of E. hux-
leyi in the SCS. Different morphotypes of E. huxleyi can be
distinguished by coccolith characteristics such as DSL, ele-
ment widths, and features of the central area (e.g., Young et
al., 2003; Hagino et al., 2011) and may be considered dif-
ferent ecotypes with different temperature and nutrient pref-
erences (Cook et al., 2011; Poulton et al., 2011; Hagino et
al., 2011; Saavedra-Pellitero et al., 2014). In general, E. hux-
leyi type A shows a warmer-water preference than type B
and other type B derivatives (C, B/C). In our observations,
type C E. huxleyi coccospheres or coccoliths were only found

Table 3. Pearson’s product-moment correlations (r) between mean
distal shield length (DSL) of E. huxleyi, principal component 1
(PC-1) scores and environmental parameters: nitrate+ nitrite (N),
phosphate (P), pH, total alkalinity (AT), CaCO3 saturation (�C),
and temperature (T ) (n= 29). The principal component analysis is
based on all the environmental parameters, with a PC-1 contribution
of 76.59 % to total variance. ∗ p< 0.05; ∗∗ p< 0.01.

Mean DSL PC-1 (76.59 %)

N 0.601∗∗ −0.967∗∗

P 0.579∗∗ −0.965∗∗

pH −0.526∗∗ 0.804∗∗

AT 0.274 −0.671∗∗

�C −0.395∗ 0.958∗∗

T −0.21 0.842**

sporadically in SEM images, and the predominant occur-
rences of morphotype A could be related to the prevailing
high sea-surface temperature (> 26 ◦C) in the study area. The
southern part of SCS is also within the western Pacific warm
pool, where sea-surface temperature is consistently > 28 ◦C
all year round (Yan et al., 1992).

4.1.2 Lower photic zone (LPZ) assemblage

In the present study, the LPZ was represented by Group 3,
which included typical LPZ species (F. profunda, A. robusta,
and G. flabellatus) and was found between 75 and 100 m.
Group 3 occurred above, at, or near the depth where 1 %
of surface irradiance penetrated (i.e., base of the euphotic
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zone). In other tropical oceans, the LPZ assemblage dwells
deeper than the base of the euphotic zone (Hagino et al.,
2000; Boeckel and Baumann, 2008; Beaufort et al., 2008).
In the northern Arabian Sea, F. profunda inhabits shallower
waters and is found across a wider depth range (10 to 80 m)
(Andruleit et al., 2003). It is worth noting that, as in the SCS,
the Arabian Sea is strongly controlled by a monsoonal sys-
tem (Indian monsoon) and is considered relatively eutrophic
(Andruleit and Rogalla, 2002; Andruleit et al., 2003). Hence,
it can be inferred that neither water depth nor light avail-
ability is a limiting factor for F. profunda (and/or other LPZ
species) in the SCS, but rather nutrient availability is impor-
tant; the nutricline is relatively shallow (50 to 75 m) even in
the oligotrophic summer in the SCS.

4.2 The response of coccolithophores to eddies in the
South China Sea

Mesoscale eddies have a strong influence on productivity and
ecosystem structure in the SCS (Chen et al., 2007b; Lin et al.,
2010; Wang et al., 2016). Previous measurements in the SCS
have shown that integrated primary production in cyclonic
eddies can be 2–3-fold higher relative to the outside of eddies
(Chen et al., 2007b). Modeling results have also highlighted
how new production can be ∼ 30 % higher or lower, relative

to outside of eddies, in cyclonic or anticyclonic eddies, re-
spectively (Xiu and Chai, 2011).

Results from nMDS, HCA, and eddy settings in the 18◦ N
section clearly show that the coccolithophore communities
in the SCS were strongly coupled with eddy occurrences
(Fig. 5). In the cyclonic eddy (I3, H3), Group 2 occurred in
ranges of 25 to 50 m depth and Group 3 occurred within lay-
ers from 75 to 100 m. Comparatively, at stations (X5, G2)
with “normal” (non-eddy) conditions, three groups sequen-
tially occurred in the water column: Group 1 at 25 m, Group
2 at 50 m, and Group 3 between 75 and 100 m depth. In an-
ticyclonic eddies, there were two patterns: one with Group 1
distributed within a wider depth range (from 25 to 50 m) and
Group 3 only within a 100 m layer; the other was that Group
2 was absent, and the maximum coccolithophore abundance
depth was deep and belonged to Group 3, which was dom-
inated by LPZ assemblages (e.g., F. profunda). This varia-
tion highlights the importance of the ecological effects of ed-
dies on the coccolithophore community’s depth distribution
through the water column. As the anticyclonic eddy (cyclonic
eddy) centers lead to convergence (divergence) of the adja-
cent waters, they deepen (shoaling) the nutricline and creat-
ing more oligotrophic (slightly eutrophic) conditions in the
water column which favor distinct coccolithophore assem-
blages (Fig. 8).
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Figure 8. Schematic showing the coccolithophore communities in
an anticyclonic eddy and a cyclonic eddy.

Due the discontinuous sampling dates (Table 1) and low
resolution of environmental data at some stations, the merid-
ional section may not be suitable for assessing the eddy im-
pacts on coccolithophore communities. For example, at I6
and I7, stations were not characteristic of anticyclonic eddies
based on the SLA and geostrophic flow map; however, the
coccolithophore community vertical composition or struc-
ture is similar to those in the anticyclonic eddies. This may
be due to the deeper nutricline in the central basin of the
SCS, even if the water-column structure had not been modu-
lated by eddies in our investigation. Another example is sta-
tions I1 and I2, for which the coccolithophore groups agreed
with those in the cyclonic eddies. Likewise, this was also not
characteristic of the cyclonic eddies, as shown by SLA and
geostrophic flow (Supplement). At stations I1 and I2, the eu-
photic zone depth was relatively shallow (∼ 70 m), with more
light attenuation from suspended particles, which could be
caused by elevated particle production. This finding corre-
sponds to the station locations at the edge of the anticyclonic
eddy where particulate organic carbon (POC) fluxes can be
2–4-fold higher than those in adjacent oligotrophic waters
(Zhou et al., 2013; Shih et al., 2015). For station I4, the case
was similar to I1 and I2, as it was located at the edge of two
large anticyclonic eddies (supplement). The horizontal ad-
vection, for water mass balance, can result in the elevated nu-
tricline in anticyclonic eddy edges and, hence, the enhance-
ment of POC production and export (Zhou et al., 2013).

Station I5 had another distinctive arrangement of species
assemblages, which was the opposite of that found at the
other stations sampled (Fig. 5); Group 2 was found at 25 m
while Group 1 was at 50 m. Examination of the tempera-
ture profile shows that the 29.5 ◦C isotherm was shallow
and domed, while the 22.5 ◦C isotherm was pushed deeper
into the water column (Fig. 2b). Filters collected at 25
and 50 m from I5 also had lots of diatom fragments and
relatively elevated coccolithophore abundances (21.75 and
22.59 cells mL−1 at 25 and 50 m, respectively). We suggest
that this feature may represent a mode-water eddy, as de-
scribed by McGillicuddy et al. (2007) in the northeast sub-
tropical Atlantic Ocean. McGillicuddy et al. (2007) observed
elevated phytoplankton production (i.e., a diatom bloom)
in a mode-water eddy, which led to local changes in the
zooplankton community composition (McGillicuddy et al.,
2007; Eden et al., 2009).

4.3 Calcite concentrations in the South China Sea

The discrete estimates of bulk coccolith calcite roughly
covaried with coccolith and coccolithophore concentration
in the water column, with peak concentrations around the
DCM. Excluding the maximum calcite concentration in the
DCM, another peak was also found in deeper water at some
stations, for example at 150 m in F1 and D9 and 100 and
150 m in I7, where the cell concentrations were low and cal-
cite was nearly entirely contributed by detached coccoliths.
In addition, the relative calcite contribution of different taxa
changed in different trophic levels of the water column. For
example, the relative calcite contribution of the common pla-
colith (i.e., G. oceanica and E. huxleyi) was higher in the
water column with slightly euphotic stations (e.g., stations
with cyclonic eddy, shallow DCM, and nutricline; Fig. 3).
Their contribution decreased and the contribution of F. pro-
funda increased with the deepening of water depth, whereas
the contribution of other species remained constant (Fig. 7b).
In contrast, these placoliths contributed less in water columns
with an oligotrophic station (e.g., stations with anticyclonic
eddy, deep DCM, and nutricline; Fig. 3), and an elevated con-
tribution of other species was found in the upper ∼ 50 m of
the water column (Fig. 7c). E. huxleyi, G. oceanica, and F.
profunda represented around half of the calcite in the wa-
ter column, whereas other species with smaller levels of
abundance contribute to the other 50 % of water-column cal-
cite. The greater contribution of these relatively less abun-
dant species in calcite inventories is partly related to higher
per coccolith calcite contents, due in part to larger coccolith
lengths (Young and Ziveri, 2000); for example, O. fragilis
has > 80 pg C per coccolith, whereas E. huxleyi has ∼ 2 pg
C per coccolith. Relatively rare coccolithophore species with
high coccolith and coccosphere calcite contents are impor-
tant vectors of both upper-ocean calcite production (Daniels
et al., 2014) and deep-sea calcite fluxes (Ziveri et al., 2007).
However, an examination of sediment trap material (500 m
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depth, 1500 m above the sea floor) in the northern SCS basin
shows that these three species (E. huxleyi, G. oceanica, and
F. profunda) dominating upper-ocean calcite inventories all
have an increased contribution to coccolith (> 95 %) and coc-
colith calcite (> 80 %) fluxes (Fig. 7d, Jin et al., unpublished).
The significant loss of the calcite contribution from other
species highlights the discrepancy between coccolith calcite
in the euphotic upper water column and aphotic deep ocean.
Notably, at 150 m for some stations (D9, F1, G2, I5, X3),
these three species can comprise more than 70 to 90 % of cal-
cite inventories and the contribution of G. oceanica exceeds
that of E. huxleyi, which is similar to the fluxes of sediments
of moored traps. One possible reason is that these coccoliths
are attributed to lateral transport of the nepheloid layer orig-
inating from the continental shelf or slope. This is the most
likely case for D9 and F1, as they have such high detached
coccolith concentrations (Fig. 6) and are located in the east-
ernmost part of the 18◦ N section. Alternatively, coccoliths
in the deep layer are a result of vertical sinking. They can
indicate that the higher contribution of these species in the
deep layer may result from their higher production rate in the
photic zone, which cannot be reflected by the snapshot-like
discrete sampling done in our study.

4.4 Environmental influences on Emiliania huxleyi
biometry

Some parameters can describe coccolithophore calcifica-
tion in field or culturing studies. Firstly, coccolith biome-
try, which includes the parameters of coccolith morphology
such as shield length, thickness, and relative tube width (e.g.,
Poulton et al., 2011; Young and Ziveri, 2000; Young et al.,

2014), is directly associated with single-coccolith weight or
calcite content. Our data indicate that the biometry param-
eters of the E. huxleyi coccosphere, i.e., CD, DSL, and N,
are significantly correlated (results 3.4). The linear relation-
ship between DSL and CD (morphotype A cells) was also
reported in field (Triantaphyllou et al., 2010; Henderiks et
al., 2012) and culture samples (Bach et al., 2012; Müller et
al., 2012) (Fig. 9a). As suggested by Müller et al. (2012), it
takes additional time for larger-sized cells to transport coc-
coliths from vesicle to cell surface and hence more time for
coccolith maturation and formation so as to produce a larger-
sized coccolith. By multiplying single-coccolith weight by
the number of coccoliths per coccosphere, we get the cell
calcite content, which mainly ranges from 10 to 70 pg for an
E. huxleyi type A cell in the SCS (Fig. 9b). The DSL / CD
ratios for E. huxleyi type A in the culturing and field sam-
ples are both within their respective ranges, and the former
is obviously higher than the latter (Fig. 9a), which can be at-
tributed to the fact that changes in a sole environmental vari-
ant in sterile culture experiments can remarkably influence
the physiology of coccolith formation, whereas the effects on
coccolith formation can be muted due to the positive or nega-
tive responses to multiple environmental changes in the field
(Müller et al., 2012). With the same DSL, coccosphere diam-
eter in field samples is larger. It also seems that an E. huxleyi
cell in the field can produce more or multilayer coccoliths,
which could be a defense against zooplankton grazing or bac-
terial attack and offer mechanical protection (Young, 1994;
Jaya et al., 2016) in natural conditions. As seen in Fig. 9b, the
coccolith length is likely to be able to reflect the morphology
of a whole coccosphere and its calcite content, i.e., the cel-
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Figure 10. (a) Cell abundance (red triangles) and mean distal shield length (DSL, blue dots; error bar: 1 SD) of E. huxleyi plotted at stations
where there were at least two biometry measurement points. (b) A schematic map showing light and nutrient conditions in relation to
coccolithophore growth rate and cell or coccolith size.

lular particulate inorganic carbon (PIC) content. And further,
the linear relationship between the morphological parameters
makes it possible to reconstruct coccolithophore cell volume
in geological records (Henderiks, 2008).

The second parameter is PIC production rate, i.e., the
calcification rate, which is calculated by the equation
PPIC = growth rate (µ)× cellular PIC content in batch cul-
tures (e.g., Langer et al., 2006, 2009, 2012). Another is cell-
specific calcite production (CP) (e.g., Poulton et al., 2013,
2014; Charalampopoulou et al., 2011, 2016), which is cal-
culated by dividing CP by cell abundance. These two pa-
rameters are obviously related to the cellular PIC content or
single-coccolith calcite content; however, they are not equiv-
alent because both calcification rate and cell-specific CP are
also strongly influenced by coccolithophore or the coccolith
production rate. Hence, the following discussion is based on
the coccolith biometry-related parameters, e.g., coccolith or
coccosphere length, coccolith or coccosphere calcite content
(weight).

4.4.1 Nutrient and light

The statistically significant correlation between the nutri-
ent and mean DSL of E. huxleyi suggests that both nitro-
gen and phosphorus exert a positive influence on coccol-
ith length. However, in nutrient-limited batch cultures, it

has been shown that E. huxleyi morphology displayed di-
vergent responses to different types of resource limitation;
e.g., coccolith or coccosphere length or volume and/or cal-
cite content deceased and increased under nitrogen- and
phosphorus-limited conditions, respectively (Riegman et al.,
2000; Müller et al., 2008, 2012; Oviedo et al., 2014). The in-
creased coccolith or coccosphere size of E. huxleyi was also
found in phosphorus-deficient mesocosm enclosures (Båtvik
et al., 1997; Engel et al., 2005). The interpretation is that ni-
trogen and phosphorus are required for distinctly different
cellular uses: nitrogen for biomass growth and phosphorus
for cell division and organic maturity (e.g., Arrigo, 2005;
Aloisi, 2015). Therefore, under nitrogen limitation, coccol-
ithophores will produce smaller cells with a smaller-sized
coccolith, and on the other hand, phosphorus limitation in-
hibits cell division, whereas biomass in cells still grows, lead-
ing to an increase in coccolith or coccosphere size (Müller
et al., 2008, 2012). Back to the present case, the nutrient
limitation theory indicates that nitrogen should be the main
controlling factor on coccolith size. The positive relation of
DSL and phosphorus may come from the high intercorrela-
tion between the two types of nutrients (Pearson, r = 0.99,
p< 0.01).

Nutrient is an important limiting factor in E. huxleyi
growth (i.e., under laboratory culturing conditions); when
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Figure 11. E. huxleyi type A distal shield length (DSL) in the South
China Sea (black circles) with those in neritic populations (hollow
diamonds) and oceanic populations (hollow triangles) in the North
Sea (Young et al., 2014), plotted versus carbonate calcium satura-
tion (�C).

nutrients are replete, E. huxleyi growth is fast (exponen-
tial phase), with fewer and smaller coccoliths per cell. When
nutrients become limiting, E. huxleyi growth slows (sta-
tionary phase), and larger and multilayer coccospheres are
produced (Gibbs et al., 2013). Besides nutrients, it is sug-
gested that light should also be a limiting factor for E.
huxleyi production and calcification in natural community
(e.g., Poulton et al., 2007, 2010, 2014; Charalampopoulou
et al., 2011). With a closer inspection of the DSL data,
the largest coccoliths occurred at the deepest depths where
nutrients were sufficient and light was insufficient, while
within the E. huxleyi abundant depth coccoliths were rel-
atively small (most remarkable at X3, F1, D9, I7, X5;
Fig. 10a). Estimated from the monthly (June 2014) in-
stantaneous PAR (∼ 2000 µmol m−2 s−1, ocean color Aqua-
MODIS satellite) in the SCS, the PAR in the water column
was about 200, < 100, and 20 µmol m−2 s−1 at 50 (10 %),
75 (< 5 %), and 100 m (1 %) depth, respectively. E. huxleyi
growth is likely to be limited by light, although some au-
thors have stated that light should not be regarded as a fac-
tor regulating phytoplankton growth in the oligotrophic SCS
as the euphotic zone depth exceeds the MLD and nutricline
throughout the year (Tseng et al., 2005; Wong et al., 2007).
The higher half-saturation constants of E. huxleyi for light
(∼ 100 µmol m−2 s−1 for E. huxleyi and ∼ 40 µmol m−2 s−1

for other phytoplankton groups; Tyrrell and Taylor, 1996)
may support our statement that E. huxleyi growth is more
light-dependent in the SCS. Here, we propose a simple

schematic (Fig. 10b). (1) In the DCM layer, where light and
nutrients are optimal for phytoplankton growth, E. huxleyi
growth is fast and the species produces small-sized coccol-
iths. (2) In deeper waters, when nutrients are more suffi-
cient but light is not available, E. huxleyi growth slows and
the species produces larger-sized coccoliths. It has been re-
ported that an E. huxleyi cell can produce higher-calcite-
content coccoliths with a lower growth rate in light-limited
continuous cultures (Fritz and Balch, 1996; Fritz, 1999). That
light limitation, in E. huxleyi cells, can prolong the G1 as-
similation stage during which calcification takes place and
will eventually increase cellular calcite content (Müller et
al., 2008). Although coccolith formation is a light-dependent
process, it does not seem to be impeded in the low-light con-
ditions. This could be owing to the calcification having a
lower light-saturated threshold than photosynthesis (Müller
et al., 2008). (3) Above the nutricline, where light intensity
is high and multi-nutrients are depleted, it is possible that
E. huxleyi coccolith size is dependent on whether inorganic
phosphorus is deficient or organic phosphorus compounds
can be utilized, although we lack data to directly address ei-
ther nutrient availability or coccolith biometry in these sam-
ples.

4.4.2 Temperature

Temperature is expected to be a critical factor for coccol-
ithophore growth and cell size. An E. huxleyi strain isolated
from Great Barrier Reef showed an optimal growth tempera-
ture at 25 ◦C with the smallest cell size, while the growth rate
and cell size became lower and bigger in parallel as the tem-
perature was decreased to 10 ◦C (Sorrosa et al., 2005). A re-
cent culturing study (Saruwatari et al., 2016) has also shown
that E. huxleyi strains of the morphotype B/C isolated from
the Arctic Ocean grow faster and produce smaller coccol-
iths when temperature increases from 5 to 20 ◦C. However,
contradictory results come from Rosas-Navarro et al. (2016),
who have found that E. huxleyi (type A, strains isolated from
North Pacific Ocean) produces the largest coccoliths within
the optimal growth temperature of 20 to 25 ◦C. Apparently,
these different patterns of E. huxleyi coccolith size may re-
sult from strain-specific or morphotype (ecotype) responses
to temperature. In the present study, temperature was not
found to correlate with E. huxleyi coccolith size from the sta-
tistical analysis (Table 3). One possible reason could be that
the temperature profiles were to a large extent controlled by
the eddy-related water-column structure (i.e., MLD), which
may possibly mute the signal of their influences on E. hux-
leyi growth and size. Alternatively, as stated by Bach et
al. (2012), temperature may exert little physiological influ-
ence on E. huxleyi size. In addition, the temperature at the
investigated stations ranged from 18 to 25 ◦C at depths from
100 to 50 m, which is near the optimal growth temperature
for many E. huxleyi strains (20 to 25 ◦C; Paasche, 2002; Sor-
rosa et al., 2005; Rosas-Navarro et al., 2016). That is, tem-
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perature may not be a limiting factor for E. huxleyi growth
within the euphotic zone in the tropical SCS, apart from sur-
face and/or near-surface waters where water temperatures are
> 29 ◦C, above the growth optimum temperature range for
this species (Rosas-Navarro et al., 2016).

4.4.3 Carbonate chemistry

Coccolithophores are thought to be sensitive indicators of
carbonate chemistry, especially �C and [CO2−

3 ] (e.g., Beau-
fort et al., 2011). Our results show that the mean DSL is
inversely correlated with pH and �C. Indeed, all the envi-
ronmental data were significantly intercorrelated (Table 3),
nearly all contributing to one principal component (PC-1,
76.59 % of variance) (Table 3). That is, the environmental
gradients in the water column are dependent on sampling
depth. Importantly, in the data from the SCS the carbonate
chemistry inversely mirrors the nutrient data, making it hard
to distinguish its influence on coccolith morphology. Simi-
larly, due to the high intercorrelation levels of all environ-
mental variants in two transects in the Southern Ocean, car-
bonate chemistry does not seem to be the best interpretation
for E. huxleyi cell-specific calcification (Charalampopoulou
et al., 2016). Hence, it is not possible to directly infer that E.
huxleyi coccolith size and carbonate chemistry have a simple
cause and effect relationship in the SCS.

Here, our DSL results in the SCS were compared with
those in the North Sea (Young et al., 2014) (Fig. 11). In
the North Sea, E. huxleyi was also dominated by morpho-
type A (Young et al., 2014). While �C in the two regions
falls within a similar range, DSL shows a significant differ-
ence (F = 17.18, p< 0.01). Young et al. (2014) have argued
that E. huxleyi DSL differences relate to neritic and oceanic
groups rather than to carbonate chemistry impacts. DSLs in
our samples show no significant difference with those in the
oceanic group (F = 0.243, p= 0.63); however, they are sig-
nificantly lower than those in the neritic group from Young
et al. (2014) (F = 125.2, p< 0.01) (Fig. 11). Hence, what
causes the morphological distinction may be genotypic vari-
ation or an ecological effect (Bach et al., 2012). It is sug-
gested that the changing environmental conditions can se-
lect for different coccolithophore strains, which indirectly
influences the coccolith size and morphology (Bach et al.,
2012). For example, different environmental provinces can
shift from a community dominated by normally calcified E.
huxleyi type A to one characterized by weakly calcified B/C
on the Patagonian Shelf and in the Southern Ocean (Cubil-
los et al., 2007; Poulton et al., 2011). More heavily calcified
morphotypes during low �C in winter may be responsible
for the seasonal morphotype transition in the Bay of Biscay
(Smith et al., 2012). Seasonal variability of E. huxleyi coc-
colith size has also been observed in the Aegean Sea, which
may be due to genotypic or ecophenotypic variation (Trianta-
phyllou et al., 2010). Meier et al. (2014) found that mean
coccolith weight peaked at the Rockall Plateau during Hein-

rich event 11, when �C and pH had minimum values. This
could be due to a coccolith assemblage shift to more heavily
calcified morphotypes in relation to oceanic frontal changes
during this geological episode rather than the influences of
carbonate chemistry (Meier et al., 2014). In conclusion, the
ecological transition of assemblages may have a more dom-
inant effect on coccolith morphology and/or cellular calcifi-
cation not only in the present ocean but also in geological
records.

5 Conclusions

In the South China Sea (SCS), the coccolithophore com-
munity corresponds to the tropical biogeographic zone, with
many characteristic tropical species being present (e.g., Um-
bellosphaera irregularis, Florisphaera profunda). Coccol-
ithophore cellular abundances ranged from < 0.27 cells mL−1

to 83.67 cells mL−1 across the SCS basin. Highest cell con-
centrations occurred in the deep chlorophyll maximum, with
all of the coccolithophore community within the euphotic
zone (i.e., above the depth where 1 % of surface irradiance
penetrates). Emiliania huxleyi (type A) was the numerically
dominant species in the SCS during summer.

Water samples were divided into three groups according
to the composition of their coccolithophore communities.
Group 1, characterized by the presence of U. irregularis,
preferred oligotrophic conditions; Group 2, dominated by E.
huxleyi, had relative high coccolithophore cell abundances;
and Group 3 contained lower photic species such as F. pro-
funda. These coccolithophore communities through the wa-
ter column showed strong vertical differentiation, with depth
shifts in response to mesoscale eddy features along the 18◦ N
section (Figs. 5, 8). Briefly, anticyclonic eddies were occu-
pied with oligotrophic representative species, whereas coc-
colithophore assemblages in the cyclonic eddy were slightly
productive.

Estimates of calcite concentrations in the upper water
column based on coccosphere and coccolith calcite con-
tents closely matched detached coccolith concentrations,
highlighting their significant contribution to calcite standing
stocks. Three key species (E. huxleyi, Gephyrocapsa ocean-
ica, F. profunda) contributed roughly half (Fig. 7) of the sur-
face ocean coccolith-calcite concentrations. Moreover, they
had an increased contribution to deep-sea coccolith and cal-
cite fluxes (Jin et al., unpublished), highlighting their impor-
tance for coccolith carbonate production in the SCS.

Biometric measurements of E. huxleyi coccoliths showed
significant (p< 0.01) positive relationships with nutrient (ni-
trate, phosphate) concentrations and negative relationships
with carbonate chemistry (pH, �C) (Table 3), although all
of these environmental parameters were strongly correlated.
It is suggested that light and nutrients are more likely to
explain the E. huxleyi coccolith variations rather than car-
bonate chemistry. Larger-sized coccoliths for E. huxleyi are
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produced in deep and light-limited waters with a slow cell
growth rate, while in optimal conditions (i.e., in deep chloro-
phyll maximum), they are likely to produce smaller-sized
coccoliths with faster growth rates.

The Supplement related to this article is available online
at doi:10.5194/bg-13-4843-2016-supplement.
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