

Supplement of

Modelling long-term impacts of mountain pine beetle outbreaks on merchantable biomass, ecosystem carbon, albedo, and radiative forcing

Jean-Sébastien Landry et al.

Correspondence to: Jean-Sébastien Landry (jean-sebastien.landry2@mail.mcgill.ca)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

Figure S1. Transient effect of the *Peak* outbreak regime on total RF as well as its CO₂ and α components (all in pico-W m⁻², for 1-ha outbreaks) compared with the no-outbreak *Control* (the outbreak occurred on year 1). The columns correspond to the three locations (Fig. 1) and the rows to the four vegetation coexistence scenarios (Table 2); the y-axis scale differs across the four rows.

Variable	This study	Previous studies
$\Delta C_{eco} \; (\mathrm{kg} \mathrm{C} \mathrm{m}^{-2})$		
Years 1–3	$-0.16 \ (-0.23 \ \text{to} \ -0.12)^a$	$-1.9 \ (-4.2 \text{ to } 0.4)^1$
$\Delta C_{eco} \; (\mathrm{kg} \mathrm{C} \mathrm{m}^{-2})$		
Years 25–30	$-0.20 \ (-0.58 \ \text{to} \ 0.34)^b$	-0.40^{2}
$\Delta \mathrm{GPP}~(\mathrm{kg}\mathrm{C}\mathrm{m}^{-2}\mathrm{yr}^{-1})$		
Years 1–3	$-0.34 \ (-0.41 \text{ to } -0.30)^a$	$-0.04 \ (-0.09 \ \text{to} \ 0.01)^3$
Years 4–9	$-0.24 \ (-0.50 \ \text{to} \ 0.01)^a$	$-0.22 \ (-0.27 \ \text{to} \ 0.17)^3$
ΔGPP (%)		
Years 1–5	$-18 \ (-33 \ \text{to} \ -11)^c$	$-14 \ (-18 \ \text{to} \ -10)^4$
ΔE cosystem respiration (%)		
Years 1–5	$-9 \ (-16 \ \text{to} \ -5)^c$	$-12 \ (-16 \ \text{to} \ -8)^4$
$\Delta \rm NEP~(kgCm^{-2}yr^{-1})$		
Years 1–4	$-0.19 \ (-0.26 \ \text{to} \ -0.16)^a; \ -0.23^d$	-0.13^{5}
Years 5–15	$-0.05 \ (-0.16 \ \text{to} \ 0.09)^a; \ -0.15^d$	-0.23^{5}
Years 16–25	$-0.01 \ (-0.07 \ \text{to} \ 0.10)^a; \ -0.07^d$	-0.13^{5}
Years 26–65	$0.00 \ (-0.04 \ \text{to} \ 0.05)^a; \ -0.03^d$	-0.05^{5}
Years 66–80	$0.02 \ (-0.01 \ \text{to} \ 0.04)^a; \ 0.03^d$	0.02^{5}

Table S1. Comparison of IBIS–MIM results for different carbon cycle variables to four empirical and one model-based studies.

^aMean value from the 12 combinations of locations and vegetation coexistence scenarios for the *Peak* outbreak regime, with the minimum and maximum values in parenthesis. ^bSame as "a", but for the *Medium* outbreak regime. ^cSame as "a", but for the *Large* outbreak regime. ^dValue from the *Peak* outbreak regime at the central location for the NEonly vegetation scenario.

¹Morehouse et al. (2008), from their Table 3 (\geq 80% mortality ~1–3 years earlier); errors were added in quadrature.

²Kashian et al. (2013), from their Table 4 ($\sim 25\%$ mortality 25–30 years earlier).

³Bright et al. (2013), from the >70–90% cumulative mortality of their Fig. 2 (timeseries over different stands); Year 0 corresponds to mortality of >1%.

⁴Moore et al. (2013), from their Fig. 1 (50% mortality at Year 0, 70% mortality at Year 5).

⁵Arora et al. (2016), from their Fig. S6 (estimated uncertainty of ~0.03 kg C m⁻² yr⁻¹ for our visual retrieval of their results); ~80% cumulative mortality over Years ~1–10 for a NEonly-type modelling setting in a grid cell close to the central location of our study.

Variable	This study ^{a,b}	Previous studies
Mean value; Nov–Fe	eb	
Years 4–9	$0.07 \ (0.06 \ to \ 0.08)$	$0.05 \ (0.02 \text{ to } 0.08)^1$
Years 10–14	$0.09 \ (0.08 \ \text{to} \ 0.10)$	$0.07 \ (0.04 \text{ to } 0.10)^1$
Mean value; Jun–Se	р	
Years 4–9	0.009 (-0.002 to 0.013)	0.006^{1}
Years 10–14	0.004 (-0.001 to 0.009)	0.006^{1}
February only		
Years 1–3	$0.011 \ (0.010 \ \text{to} \ 0.013)$	$0.00 \ (-0.04 \text{ to } 0.04)^2$
Years 4–9	0.09 (0.08 to 0.10)	$0.06 \ (-0.005 \ \text{to} \ 0.13)^2$
Mean value; Dec–Fe	b	
Years 1–3	$0.008 \ (0.007 \ to \ 0.009)$	-0.02^{3}
Years 4–13	$0.07 \ (0.06 \ to \ 0.08)$	0.06^{3}
Years 14–20	0.05 (0.04 to 0.07)	0.10^{3}
Years 21–30	$0.11 \ (0.05 \ to \ 0.14)$	0.06^{3}
Years 31–40	$0.10 \ (0.03 \ to \ 0.16)$	0.00^{3}
Years 51–60	0.05 (0.004 to 0.11)	-0.01^{3}
Mean value; Jun–Au	ıg	
Years 1–3	0.001 (-0.001 to 0.002)	0.005^{3}
Years 4–13	0.007 (-0.001 to 0.01)	0.005^{3}
Years 14–20	0.003 (-0.001 to 0.006)	0.005^{3}
Years 21–30	0.009 (-0.002 to 0.02)	0.005^{3}
Years 31–40	$0.008 \ (-0.002 \ \text{to} \ 0.02)$	-0.005^{3}
Years 51–60	$0.004 \ (-0.001 \ \text{to} \ 0.01)$	0.01^{3}

Table S2. Comparison of IBIS–MIM *Peak* results for $\Delta \alpha$ (unitless) to three empirical studies.

^aMean value from the 12 combinations of locations and vegetation coexistence scenarios, with the minimum and maximum values in parenthesis. ^bValues for many months were computed as the simple mean of the monthly $\Delta \alpha$ (i.e., without weighting monthly values with incoming solar radiation).

 1 O'Halloran et al. (2012), from the black curves and error bars of their Fig. 6 (timeseries over different stands); cumulative mortality and mortality at Year 1 not reported.

²Bright et al. (2013), from the >70–90% cumulative mortality of their Fig. 2 (timeseries over different stands); Year 0 corresponds to mortality of >1%.

 3 Vanderhoof et al. (2014), from the MODIS results of their Fig. 2 (stands grouped by age since mortality); cumulative mortality from <1 to 88%.

References

- Arora, V. K., Peng, Y., Kurz, W. A., Fyfe, J. C., Hawkins, B., and Werner, A. T.: Potential near-future carbon uptake overcomes losses from a large insect outbreak in British Columbia, Canada, Geophys. Res. Lett., 43, 2590–2598, 2016.
- Bright, B. C., Hicke, J. A., and Meddens, A. J. H.: Effects of bark beetle-caused tree mortality on biogeochemical and biogeophysical MODIS products, J. Geophys. Res.-Biogeo., 118, 974–982, 2013.
- Kashian, D. M., Romme, W. H., Tinker, D. B., Turner, M. G., and Ryan, M. G.: Postfire changes in forest carbon storage over a 300-year chronosequence of *Pinus contorta*-dominated forests, Ecol. Monogr., 83, 49–66, 2013.
- Moore, D. J. P., Trahan, N. A., Wilkes, P., Quaife, T., Stephens, B. B., Elder, K., Desai, A. R., Negron, J., and Monson, R. K.: Persistent reduced ecosystem respiration after insect disturbance in high elevation forests, Ecol. Lett., 16, 731–737, 2013.
- Morehouse, K., Johns, T., Kaye, J., and Kaye, M.: Carbon and nitrogen cycling immediately following bark beetle outbreaks in southwestern ponderosa pine forests, Forest Ecol. Manag., 255, 2698–2708, 2008.
- O'Halloran, T. L., Law, B. E., Goulden, M. L., Wang, Z., Barr, J. G., Schaaf, C., Brown, M., Fuentes, J. D., Göckede, M., Black, A., and Engel, V.: Radiative forcing of natural forest disturbances, Glob. Change Biol., 18, 555–565, 2012.
- Vanderhoof, M., Williams, C. A., Shuai, Y., Jarvis, D., Kulakowski, D., and Masek, J.: Albedoinduced radiative forcing from mountain pine beetle outbreaks in forests, south-central Rocky Mountains: magnitude, persistence, and relation to outbreak severity, Biogeosciences, 11, 563–575, 2014.