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Abstract. Rivers are the primary means by which sediments
and carbon are transported from the terrestrial biosphere to
the oceans but gaps remain in our understanding of carbon
associations from source to sink. Bed sediments from the
Sacramento-San Joaquin River Delta (CA) were fraction-
ated according to density and analyzed for sediment mass
distribution, elemental (C and N) composition, mineral sur-
face area, and stable carbon and radiocarbon isotope com-
positions of organic carbon (OC) and fatty acids to eval-
uate the nature of organic carbon in river sediments. OC
was unevenly distributed among density fractions. Mass and
OC were in general concentrated in mesodensity (1.6-2.0
and 2.0-2.5gcm—3) fractions, comprising 84.04+1.3% of
total sediment mass and 80.8 +13.3 % of total OC (TOC).
Low-density (<1.6gcm~3) material, although rich in OC
(34.0+£2.0% OC) due to woody debris, constituted only
17.3 + 12.8% of TOC. High-density (>2.5gcm~2) organic-
poor, mineral-rich material made-up 13.7 +1.4% of sedi-
ment mass and 2.0 +0.9% of TOC. Stable carbon isotope
compositions of sedimentary OC were relatively uniform
across bulk and density fractions (§13C —27.4 + 0.5 %o). Ra-
diocarbon content varied from A*C values of —382 (radio-
carbon age 3800 yr BP) to 494 %0 (modern) indicating a mix
of young and old OC. Fatty acids were used to further con-
strain the origins of sedimentary OC. Short-chain n-Cy4-n-
C1g fatty acids of algal origin were depleted in 13C (s13C
—37.5 to —35.2%0) but were enriched in 4C (A1*C>0)
compared to long-chain n-Cy4—n-Cog acids of vascular plant
origins with higher §13C (—33.0 to —31.0 %) but variable
AC values (—180 and 61%oc). These data demonstrate
the potentially complex source and age distributions found

within river sediments and provide insights about sediment
and organic matter supply to the Delta.

1 Introduction

Rivers are the major conduits of sediment and organic car-
bon (OC) carried from upland erosional areas to lowland
floodplains and estuaries and the coastal ocean (Milliman
and Farnsworth, 2011). During transport, sediment grains are
eroded, remobilized, winnowed, and redeposited, resulting in
the sorting or mixing of material from different sources and
with different reactivities and ages (Prahl, 1985; Hedges and
Keil, 1995; Bianchi et al., 2007). Hydrodynamic sorting by
particle size, shape and density influences transport of parti-
cles and associated materials in rivers, estuaries, and conti-
nental margins. Density, grain size, mineralogy, and organic
carbon characteristics of riverine sediment grains will deter-
mine whether they are eroded and transported as suspended
or bed load or deposited, and how particles cycle between
phases (Jepson et al., 1997; Hassanzadeh, 2012).
Interactions between minerals and OC influence the fate
and distribution of organic materials in soils and aquatic sed-
iments (Hedges and Keil, 1995; Hedges and Oades, 1997
Baldock and Skjemstad, 2000; Trumbore, 2009; RihImann
and Berhe, 2014; Keil and Mayer, 2014). Evidence on or-
ganic matter-mineral associations from soils and marine sed-
iments shows relationships between OC concentrations and
compositions, mineral surface area, physical distributions of
OC on minerals, and OC preservation (Keil et al., 1994a,
b; Mayer, 1994a; Ransom et al., 1998; Mayer et al., 2004;
Trumbore, 2006; Keil and Mayer, 2014). Particle size and
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density are also important characteristics when considering
OM composition, reactivity and the fate of soil and sedi-
ment OC. In aquatic environments, OC associated with min-
eral grains strongly affects flocculation of suspended aquatic
particles and the cohesion of bottom sediments. OC that is
intimately associated with the clay fraction is most exten-
sively altered diagenetically, whereas larger size or higher
density mineral fractions are less altered (e.g., Keil et al.,
1994a; Bergamaschi et al., 1997; Wakeham et al., 2009).
Trends across size and density classes and between different
depositional environments show that a small fraction of the
OC is present as distinct organic debris, but associations of
OC with mineral surfaces are consistent with selective parti-
tioning of OC to mineral surfaces (Keil et al., 1998; Keil and
Mayer, 2014).

Chemical analysis of size-sorted sediments has been ex-
tensively used to show that compositional differences be-
tween grain sizes are related to source, diagenesis, and min-
eralogy (e.g., Keil et al., 1998; Bergamaschi et al., 1997;
Dickens et al., 2006). Density fractionation, although much
less widely utilized, takes advantage of density differences
between organic matter (~1gcm=3) and mineral grains
(>2.5gcm—2) (Mayer et al., 2004; Riihimann et al., 2006)
and by isolating organic-mineral aggregates having different
organic matter loadings offers a different view of relation-
ships between OC and particle grains. Densities of soils and
sediments depend on the compositions and proportions of
both organic and mineral components. Mineral-rich/organic-
poor soils and sediments typically have densities over the
range of ~ 2.4-2.9gcm~3; mineral-poor/organic-rich soils
and sediments have densities between ~ 1.0 and 1.5gcm=3
(Adams, 1973; Rihlmann et al., 2006).

Density fractionation has been widely used on soils to
elucidate mechanisms of how organic matter is physically
and chemically associated with minerals and to estimate sta-
bility, residence and turnover times of organic matter (e.g.,
Golchin et al., 1994; Hedges and Oades, 1997; Baldock and
Skjemstad, 2000; Baisden et al., 2002a; Sollins et al., 2006;
Rihlmann et al., 2006; Crow et al., 2007; Castanha et al.,
2008; Trumbore, 2009; Cerli et al., 2012; Kaiser and Berhe,
2014). The chemistry, stable and radiocarbon isotopic com-
positions, and turnover times for isolated fractions is partic-
ularly dependent on methodology. Protocols for dispersing
soil aggregates as a function of density for purposes of char-
acterizing organic matter/mineral interactions and ecological
function differ considerably, from shaking to ultrasonication
at varying energy levels and with or without acid/base hy-
drolysis of the high-density fraction(s). Overall, soils tend to
be compositionally (physically, chemically, and biologically)
more complex than sediments (Keil and Mayer, 2014).

Density fractionation has been applied less often to aquatic
sediments. In the few continental margin sediments that have
been studied by density fractionation, most of the mass
and most of the OC is found in a so-called “mesodensity”
fraction, roughly defined operationally as between 1.6 and
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2.5gcm—3 (Bock and Mayer, 2000; Arnarson et al., 2001,
2007; Dickens et al., 2006; Wakeham et al., 2009) that is
rich in organic-mineral aggregates. Lower density material
is largely mineral-free organic detritus, whereas higher den-
sity material is mostly organic-poor mineral grains. Chemical
compositions further distinguish these fractions (reviewed by
Keil and Mayer, 2014). Amino acids that are typically en-
riched in fine-grained and meso-density fractions point to
preferential association of nitrogenous material with clays
and extensive alteration of organic matter. Enrichment of car-
bohydrates in fine-grained fractions suggests that they help to
hold aggregates together. Lignin is typically associated with
larger grains or low-density material consistent with higher-
plant origins.

River sediments, which are largely sourced from soils, are
poorly represented among aquatic environments that have
been investigated. Here we used density fractionation in a
pilot study to examine relationships between organic matter
and mineral grains in several river sediments. In particular,
we wished to better understand whether and to what extent
redistributions of OC, potentially via hydrodynamic sorting,
occur between rivers and the ocean, at the river-ocean in-
terface. We determined mass, elemental (C and N), and sur-
face area distributions among density sorted fractions from
five bed sediments within the Sacramento-San Joaquin River
delta (hereafter termed the Delta). Stable carbon and radio-
carbon isotopic compositions of bulk sediments, density frac-
tions and isolated fatty acids were used to characterize the
provenance and age of the OC in these sediments.

2 Methods
2.1 Study area and samples

The Sacramento-San Joaquin Delta is part of San Francisco
Bay system. The Delta is a complex network of natural and
man-made channels and islands, making it one of the 60
largest river deltas in the world, at 1.7 x 10°km? and ac-
counting for ~40% of California’s land area (Herbold and
Moyle, 1989; Jassby and Cloern, 2000; Schoellhamer et al.,
2012). As such, it is one of the most highly modified and
managed systems in the world (Jassby and Cloern, 2000)
and is unique ecologically in North America (Herbold and
Moyle, 1989). Precipitation (rainfall and snowmelt) in the
Sierra Nevada Mountains contributes most of the freshwa-
ter delivered to the Delta, with the Coast Range dividing
the water flow between the Sacramento River draining into
the northern half of the Central Valley and the San Joaquin
River draining into the southern half. The Sacramento and
San Joaquin Rivers join in the Delta and flow into north-
ern San Francisco Bay. The Sacramento River contributes
80 % of the freshwater delivered to San Francisco Bay and
the San Joaquin River adds an additional 15% (Conomos et
al., 1985). The Sacramento River presently delivers approx-

www.biogeosciences.net/13/567/2016/



S. G. Wakeham and E. A. Canuel: The nature of organic carbon in density-fractionated sediments 569

imately seven times the sediment load of the San Joaquin
River, mostly as suspended sediment, but sediment loads are
highly episodic and significant transport of bed load occurs
during floods. Sedimentation in reservoirs behind the many
dams has reduced overall sediment transport since the 1950s
(Wright and Schoellhamer, 2004, 2005). The narrow mouth
of the Delta enhances deposition of sediments within the
Delta, along the Sacramento River and in Suisun Bay, rather
than in the open waters of upper San Francisco Bay.

In this study we investigate relationships between OC and
density fractions in river bed sediments at five sites in the
Sacramento-San Joaquin Delta (Fig. 1) system during a low
freshwater discharge period in Summer 2005. Average fresh-
water discharge of the Sacramento River at Freeport ranged
from 546.5 to 600.3m3 s~ during the sampling period and
discharge of the San Joaquin River at Vernalis was 155.7 to
171.3m3s~1 (US Geological Survey). The sites were cho-
sen to represent different sub-habitats within the Delta (e.g.,
upper and lower Sacramento River (EIk Slough and Horse-
shoe Bend, respectively), San Joaquin River (Potato Slough
and Venice Cut), and Suisun Marsh (Nurse Slough)). Surface
sediments (0-5cm) were obtained by grab sampling. Elk
Slough, Venice Cut, and Horseshoe Bend have contemporary
sedimentation rates of 1.1, 3.5, and 3.5 cmyr—1, respectively
(Canuel et al., 2009). Nurse Slough is a tidal slough in Su-
isun Marsh. Suisun Marsh consists of 240 km? of tidal and
managed brackish water wetlands and 120 km? of bays and
sloughs and is the largest contiguous estuarine marsh remain-
ing on the west coast of the US, constituting more than 10 %
of California’s remaining natural wetlands.

2.2 Density fractionation

Sodium metatungstate solutions (Arnarson and Keil, 2001;
Wakeham et al., 2009) with densities of 1.6, 2.0, and
2.5gcm~2 were used sequentially to yield four density frac-
tions: <1.6, 1.6 t0 2.0, 2.0 to 2.5, and >2.5gcm—2. These
fractions have been used previously (Bock and Mayer, 2000;
Arnarson and Keil, 2001, 2007) for studies of sediments.
The fraction with density < 1.6 gcm~2 is primarily organic-
rich biogenic material, the >2.5gcm~2 fraction is unaggre-
gated mineral grains, and the middle density fractions are
aggregates of organic matter and mineral grains. Roughly
20 g of wet sediment was dispersed in the 1.6 gcm—2 solu-
tion in 85 mL centrifuge tubes by gentle shaking on a shaker
table for 30 min. Gentle shaking rather than sonication was
used to minimize disaggregation of aggregates (note differ-
ences with investigations of soils as described below). Fol-
lowing shaking, solutions were centrifuged for 20min at
20000 relative centrifugal force. Particles at the surface of
the solution were carefully removed by pipet, deposited on
a 0.5um PTFE membrane filter and washed with distilled
water. This process was repeated until no additional low-
density (< 1.6 gcm~2) particles could be recovered (approx-
imately 10 repetitions). The next solution, 2.0 gcm—2, was
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Figure 1. Map of sampling locations in the Sacramento-San
Joaquin River Delta.

then added and the process repeated. Following each step,
the collected particles were rinsed from the PTFE filter into
85 mL centrifuge tubes and washed repeatedly with distilled
water to remove any remaining sodium metatungstate. Frac-
tionated sediments were freeze-dried for further analyses.
Most protocols employed to fractionate soils involve some
degree of dispersion, usually ultrasonication, and generally
yield a floating (light) fraction that contains mainly plant de-
bris, an intermediate fraction of fine organic particles that
has been released by disruption (e.g., ultrasonication with or
without hydrolysis) of aggregates, and a heavy residual frac-
tion of OC strongly bound to minerals (e.g. Golchin et al.,
1994; Cerli et al., 2012; Kaiser and Berhe, 2014). The frac-
tionation scheme we and others have used for sediments is
less energetic or disruptive (at least in the latter stages) than
commonly used for soils and these methodological contrasts
need to be considered when comparing results.
Metatungstate solutions can solubilize organic matter from
the soil and/or sediment grains (Shang and Tiessen, 2001;
Crow et al., 2007; Castanha et al., 2008). OC solubilization
apparently increases with the density of the metatungstate so-
lution used and may range between 10 and 28 % of bulk OC
regardless of whether the treatment involved shaking with
gravimetric settling or sonication and centrifugation. A slight
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Figure 2. Distributions of (a) mass, (b) organic carbon content, (c)
sediment bulk and density fractions.

yellowing of the solutions used here attests to dissolution of
OC to some extent, but we did not specifically conduct mass
balance measurements to quantify the extent of OC solubi-
lization.

2.3 Elemental analysis

Organic carbon (% OC) and total nitrogen (% TN) were
measured using a Fisons CHN analyzer (Model EA 1108)
(Waterson and Canuel, 2008). Freeze-dried sediments were
ground and acidified in pre-combusted silver capsules with
10 % high purity HCI to remove inorganic carbon.

2.4 Specific surface area analysis

Specific surface area (SA) of the mineral component of each
sediment fraction was measured by nitrogen adsorption us-
ing a five-point (Brunauer-Emmett-Teller (BET)) method in
a Micromeritics Gemini V surface area analyzer (Waterson
and Canuel, 2008). Freeze-dried but unground sediments
were heated at 350 °C for 12 h to remove organic matter and
then degassed for >2 h on a Micromeritics Flow Prep 060
degas station at 250°C to remove water. SA (m?g~1) and
carbon : surface area ratios (OC : SA; mg OC m~2) were ob-
tained.

Biogeosciences, 13, 567-582, 2016

atomic C: N ratio, and (d) percent of total organic carbon for the Delta

2.5 Carbon isotope analysis

Stable carbon (§*3C) and radiocarbon (A*C) analyses were
conducted at the National Ocean Sciences Accelerator Mass
Spectrometer (NOSAMS) facility at Woods Hole Oceano-
graphic Institution. Ground and acidified sediment samples
were combusted to CO, at 850°C for 5h in Vycor tubes.
A split of the purified and quantified CO2 was analyzed for
813C on a VG Micromass Optima isotope ratio mass spec-
trometer. The remaining CO, was reduced to filamentous
carbon (graphite) over either Fe or Co powder and then an-
alyzed for radiocarbon using standard NOSAMS procedures
(McNichol et al., 1994; von Reden et al., 1998).

Fatty acids (FA) were isolated from three of the bulk sed-
iments and analyzed for 13C and 1“C isotope values. Lipid
extracts obtained by accelerated solvent extraction (ASE) us-
ing dichloromethane : methanol (9 : 1) were saponified, and
the recovered FA were methylated with BF3-MeOH. Two
fatty acid methyl ester (FAME) composites were obtained
by preparative capillary gas chromatography (Eglinton et al.,
1997; Wakeham et al., 2006): short-chain FAME (n-C14—n-
Cig) and long-chain FAME (n-Cy4—n-Cyg). Compositions,
purity, and amounts of FAME isolates were checked by gas
chromatography and analyzed subsequently for 13C and 14C.

www.biogeosciences.net/13/567/2016/
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Figure 3. Mean and standard deviations of distributions of (a) mass, (b) organic carbon content, (c) atomic C: N ratio, and (d) percent of
total organic carbon for each density fractions across the five study sites.

Corrections for the addition of carbon from the methyl group
during methylation were made by mass balance.

3 Results
3.1 Density fractionation

Particles in the 2.0 to 2.5gcm™2 density range dominated
four of the studied sediments (Potato Slough, Elk Slough,
Venice Cut, and Nurse Slough), constituting ~ 70-80 % of
total dry mass (Fig. 2a), with a mean of 73.1 4+ 6.6 %. Con-
sidering all five sediments, the 2.0 to 2.5 g cm~3 material
accounted for between 26.5 and 80.1% of dry mass or a
mean of 63.8 +21.5% (Fig. 3a). The Horseshoe Bend sedi-
ment contained the greatest proportion (~ 66 %) of mass in
the high-density fraction, > 2.5 gcm~2, whereas only ~ 30 %
of total mass was in the 2.0 to 2.5gcm~2 fraction. The low-
est density fraction of these sediments, < 1.6 g cm~2 material,
made-up the smallest proportion of total mass, never more
than a few percent (1.6 & 1.9 %). The 1.6 to 2.0gcm—2 frac-
tions varied between 4 and 17 % of mass (11.6 & 6.1 %), and
the heaviest material (>2.5gcm~2) was generally less than
~15% (13.7 + 1.4 %).

www.biogeosciences.net/13/567/2016/

3.2 Elemental compositions

Organic carbon (% OC) of all five bulk, unfractionated sed-
iments ranged from 0.7 % at Horseshoe Bend to 2.9% at
Venice Cut (Fig. 2b); mean 2.0 +-0.86 % (Fig. 3b). Total ni-
trogen (% TN) ranged from 0.07 to 0.20 % in bulk sediments
(mean 0.15+0.05%). % OC and % TN were well corre-
lated with one another (r2 = 0.93). Atomic C:N(a) ratios
ranged between 16.9 in Venice Cut to 11.9 in Elk Slough
(Fig. 2c; mean 14.6 2.1 %, Fig. 3c). Low-density fractions
had the highest OC and TN concentrations; highest density
fractions had the lowest % OC and % TN. Low-density
<1.6gcm—2 material contained between 32 and 37 % OC
(34.0+2.1%) and from 1.5-2.7% TN (1.9+ 0.6 %; data
not shown). The 1.6-2.0 gcm~23 material contained 9-15 %
OC (124+2.2%) and 0.7-1.1 % TN (0.8 +0.2%); the
2.0-2.5 and >2.5gcm~2 fractions both contained <1 % OC
(0.8+2.2 and 0.2+0.1%, respectively) and <0.2% TN
(0.2+£0.04 and 0.0940.06 %, respectively). C:N) ratios
thus generally decreased with increasing particle density
(Figs. 2c, 3c): 24 for <1.6gcm—3, 17 for 2.0 to 2.5gcm—3,
6.7 for 2.0 to 2.5 g to 3.1 for >2.5gcm—2 fractions. Low
C: Ny ratios for the >2.5gcm=3 fractions may be artifacts
arising from sorption of excess inorganic nitrogen onto these

Biogeosciences, 13, 567-582, 2016
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Figure 4. Surface area (SA) (following combustion) (a) and organic carbon/surface area ratio (OC/SA) (b) for Delta bulk sediment and

density fractions.

particles or blanks associated with measuring low levels of
nitrogen in these organic matter-poor samples.

3.3 Specific surface area (SA) and OC : SA ratios

Specific surface areas (SA) of mineral grains in bulk Delta
sediments ranged from ~14m2g~—! (Horseshoe Bend) to
~34m?g~1 (Potato Slough) (Fig. 4a). SA was measured
on three density fractions for each sediment, but not on the
<1.6gcm~2 fractions because they contained incompletely
charred plant fragments which could confound interpreta-
tions. SA decreased with increasing particle density. The
1.6 to 2.0gcm~23 material had the highest SA of the mea-
sured fractions and SA ranged from ~ 65m? g~—tat Horse-
shoe Bend to ~ 30 m? g~tin Elk Slough. Thus in four out of
five cases SA of 1.6 to 2.0 g cm—2 fractions was >50 m2 g~ 1.
SA’sin the 2.0 to 2.5 g cm~3 fractions were ~ 25-30m2 g1,
and in the 2.5 g cm~3 fractions were ~5-10m? g~ 1.

Measuring SA allows calculation of an organic car-
bon : surface area ratio (OC : SA) widely used to express the
loading of sedimentary OC onto mineral grains. OC : SA ra-
tios of bulk sediments ranged from 0.68-0.84 mg OC m~—2
(mean 0.72 4 0.13mg OC m~—2; Fig. 4b). The 1.6-2.0gcm 3
fractions consistently had the highest OC: SA ratios (1.6—
5.1mg OCm~2, Fig. 4b; mean 2.8+1.4mg OCm™2).
OC:SA ratios decreased with density so that for the
>2.5gcm—2 fractions OC:SA ranged from 0.21-0.32mg
OCm~2(0.26 +£0.04mg OCm~—2).

3.4 Stable carbon and radiocarbon isotopes

Stable carbon isotope (§13C) values for bulk OC were rel-
atively uniform and ranged between —27.5 and —26.5 %o
(—27.0£0.5%o; Table 1; Fig. 5a). §13C values for OC in
the density fractions of the three fractionated sediments (Elk
Slough, Venice Cut, and Nurse Slough) were somewhat more
variable, but §13C values among density fractions were al-
ways within & ~ 1.5%o (Fig. 5a, Table 1). §13C values for

Biogeosciences, 13, 567-582, 2016

density fractions from Elk Slough were lower than those
from Venice Cut and Nurse Slough. Low-density material
tended to have lower §13C values (~ 1 to 1.5 %o lower) than
higher density fractions.

Radiocarbon compositions were quite variable, reflecting
a wide range of carbon ages (Fig. 5b; Table 1). AYMC is
defined by Stuiver and Pollach (1977) and Stuiver (1980)
where AC values >0 are completely modern OC and
reported as “modern”; A*C values <0 indicate the pres-
ence varying proportions of old carbon. “Modern” is con-
ventionally defined as 95% of the 14C activity of an ox-
alic acid standard for AD 1950 (Karlen et al., 1964). The
fraction of carbon in a sample that is modern, fy, ranges
from fyvalues >1 (if C from atmospheric nuclear bomb
testing is present) to O (containing no measurable 14C).
Ages are calculated using 5568 years as the half-life of ra-
diocarbon. Bulk OC from Elk Slough was modern in age
(AT*C +3.4%0). Mesodensity (1.6 to 2.0gcm~2 and 2.0 to
2.5gcm~3) fractions from Elk Slough were enriched in 1*C
(AYC 494 and +89 %o, respectively) relative to bulk sed-
iment OC, whereas the >2.5gcm—3 material was depleted
in 14C (—25%o) relative to both OC and mesodensity mate-
rial. In contrast, bulk OC from Venice Cut and Nurse Slough
was depleted in 1*C (A4C —151 and —161 %o, respectively),
as were the density fractions. In both Venice Cut and Nurse
Slough, >2.5gcm—2 fractions were highly depleted in 14C
(AT*C —339 and —382 %o for Venice Cut and Nurse Slough,
respectively), whereas the remaining density fractions and
bulk sediment were remarkably uniform (average A*C of
—156 =+ 39 %o).

Fatty acids (FA) were isolated from bulk (unfractionated)
sediments and analyzed for stable carbon and radiocarbon
content to help constrain the provenance and age of OC in
the sediments. As constituents of many energy storage and
structural membrane lipids in organisms, FA feature struc-
tural differences between compounds biosynthesized by al-
gae, bacteria, and higher plants that make them biomark-

www.biogeosciences.net/13/567/2016/
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Figure 5. §13C (a) and AY4C (b) values for OC in Delta bulk sediment and density fractions and §13C (c) and A4C (d) values for fatty

acids in bulk sediments.

ers for elucidating the origins and diagenetic fate of organic
matter in sediments (Volkman, 2006; Wakeham et al., 1997).
FA distributions in the Delta river sediments were bimodal:
short-chain n-C14-n-C1g compounds peaking at n-Csg and
long-chain n-Cy4—n-Cag FA peaking at Cy4. Short-chain FA
had lower §13C values (—37.5 to —35.2 %o; Fig. 5¢) com-
pared to long-chain FA (—33.0 to —31.0 %o). FA were signif-
icantly depleted in 13C relative to total OC reflecting contri-
butions from other organic compounds to OC such as amino
acids and carbohydrates that are enriched in 3C compared
to lipids. Short-chain FA in all three fractionated sediments
were modern (A*C > 0; Fig. 5d). While the radiocarbon age
for long-chain FA in Elk Slough was also modern (61 %o),
AC values in Venice Cut and Nurse Slough were lower in-
dicating that FA at these locations were older in age (—180
and —80 %o, respectively).

4 Discussion
4.1 Particle morphology
Previous studies have shown scanning electron microscopy

(SEM) to be valuable for examining particle morphology of
density-fractionated sediments (photomicrographs of density

www.biogeosciences.net/13/567/2016/

fractions are shown in Bock and Mayer, 2000; Arnarson and
Keil, 2001, 2007; Wakeham et al., 2009). We do not have
SEM images of the density fractions in this study but ob-
servations from the previous studies are relevant here. Low-
density <1.6 gcm~3 fractions typically contain readily iden-
tifiable filaments and particles resembling terrestrial wood
fragments or aggregates containing plant debris. Aggregates
of up to a millimeter in size are common, as well as smaller-
sized particles. The abundance of plant material in low-
density material is borne out by the high OC concentrations
and, when measured, high lignin concentrations (Sampere
et al., 2008; Wakeham et al., 2009; Schreiner et al., 2013).
Mesodensity (1.6 to 2.0 and 2.0 to 2.5 g cm—3) fractions con-
tain aggregates that survived the density fractionation pro-
cess, but the size and abundance of aggregates decreases as
density increases. The highest density (>2.5gcm~3) frac-
tions are primarily unaggregated mineral grains, often only a
few micrometers in size. Arnarson and Keil (2001) also ex-
amined the mineral content of density fractions of a sediment
from the oxygen minimum zone off the west coast of Mex-
ico by X-ray photoelectron spectroscopy. Low-density and
OC-rich material was dominated by clay minerals whereas
the high-density OC-poor fraction was dominated by quartz
and feldspars. It is impossible to rule out some alteration of
particle morphology during the fractionation treatment, but
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Table 1. Stable and radiocarbon isotope data for OC in density fractions, bulk OC and fatty acids for Elk Slough, Venice Cut and Nurse

Slough sediments.

$13C (%)  AMAC (%o) fm  fmerror Age (yr BP)  Age Error
Elk Slough
<16 —28.2 10 1.017  0.0039 modern
1.6-2.0 —28.2 94 1.101  0.0043 modern
2.0-2.5 —28.0 89 1.097 0.0034 modern
>25 —27.4 -25 0.982  0.0042 150 35
bulk —-275 3.4 1.010 0.0031 modern
Short FA -36.3 91 1.100 0.0072 modern
Long FA -33.0 61 1.069 0.0091 modern
Venice Cut
<16 —-27.3 —147 0.859  0.0027 1220 25
1.6-2.0 —27.8 —152 0.854  0.0028 1270 25
2.0-2.5 -27.2 —114 0.892  0.0037 920 35
>25 —26.8 —339 0.666  0.0029 3270 35
bulk -27.1 —151 0.854  0.0037 1260 35
Short FA -37.5 90 1.099  0.0097 modern
Long FA -31.0 —180 0.825 0.0097 1840 100
Nurse Slough
<16 -27.3 —247 0.758  0.0029 2230 30
1.6-2.0 -27.1 -135 0.871  0.0027 1110 25
2.0-25 —26.9 —144 0.862  0.0033 1190 30
>25 —26.6 —382 0.622  0.0026 3810 30
bulk -27.1 -161 0.845 0.0032 1350 30
Short FA —-35.2 19 1.027  0.0056 modern
Long FA -31.6 —80 0.927  0.0097 915 85

Arnarson and Keil (2001) suggest that the degree of sam-
ple handling used here does not significantly disrupt the “or-
ganic glue” that holds aggregates together. Indeed, Bock and
Mayer (2000) had previously proposed that removal of this
organic binder, such as by the combustion step used in SA
analysis, is required for organic-mineral particles to disag-
gregate.

4.2 Organic carbon among density fractions

In previous studies, bed sediments of the Lower Sacramento
River were found to have a mean OC content of 0.55%
(range 0.14-2.1%) and in the lower San Joaquin River
a mean OC of 0.68% (0.26-1.38%) (Reed, 2002; Nilsen
and Delaney, 2005). The bulk sediments in our study had
somewhat higher TOC contents (mean 2.0 £0.9%, range
0.7-2.9%). TOC of the density fractions were lower than
bulk sediments for high-density fractions (0.8 +0.2% OC
for 2.0 to 2.5gcm~2 and 0.2 4+ 0.07 % OC for >2.5gcm—3
fractions, respectively) and higher for low-density fractions
(34.04+2.1% OC for <1.6gcm~—2 and 12.4 4 2.1 % OC for
1.6 to 2.0gcm~2 fractions). The 1.6 to 2.0gcm—2 frac-
tions therefore made-up the greatest proportions of TOC
(44-65 %; mean 53.7 = 8.8 % of TOC; Figs. 2d and 3d), re-
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flecting the high proportion this density fraction contributed
to total sediment mass despite low OC concentrations. The
2.0 to 2.5cm—2 fractions contained 13-37 % of TOC (mean
27.1+10.3% of TOC). Collectively, mesodensity material
(1.6 to 2.0gcm~2 plus 2.0 to 2.5gcm~2 fractions) con-
stituted the highest proportions of TOC, 63-96% (mean
80.8 & 13.3% of TOC).

This dominance of mesodensity material, in terms of both
mass and OC content, is common among river (lower Mis-
sissippi River) and coastal sediments (Mississippi Margin,
Washington Margin, Mexico Margin) that have been inves-
tigated by density fractionation (Bock and Mayer, 2000;
Arnarson et al., 2001; Dickens et al., 2006; Wakeham et
al., 2009). The Sacramento-San Joaquin Delta sediments
therefore were generally consistent with previous studies in
coastal regions. The Horseshoe Bend sediment was some-
what different from the other four sediments studied here
in that OC-poor high-density > 2.5 gcm—2 material (65 % of
mass but only 4% of TOC) was most abundant, with only
30 9% of mass and 37 % of TOC in the mesodensity fractions.
This sediment is similar to sediments off the Eel River on
the California Margin and in the Colville River Delta in the
Alaskan Beaufort Sea where erosive hydrodynamic winnow-
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ing leaves behind greater proportions of denser, sandy mate-
rial (Wakeham et al., 2009; Schreiner et al., 2013). Horseshoe
Bend flows along the eastern and southern edges of Decker
Island, and is the original Sacramento River channel. Higher
density sediments with low OC content at Horseshoe Bend
are consistent with hydrodynamic winnowing by Sacramento
River flow and/or tidal currents from San Francisco Bay.

4.3 Physical character of sediment particles

Sediment transport through the Delta, and deposition in the
upper San Francisco Bay estuary, has varied considerably
over the past century. The high sediment loads from hy-
draulic mining during the later 1800s and early 1900s (up to a
9-fold increase over the pre-mining period) have dropped sig-
nificantly due to water management projects such as dams,
levees, and bypass channels (Schoellhamer et al., 2012) and
adjustment to a regime of decreasing sediment supply dur-
ing the 20th century (Schoellhamer et al., 2013). Bed sedi-
ments in channels of the lower Sacramento River are 8-50 %
(mean 19 %) fines (< 63 um) and in the San Joaquin River are
15-79 % (mean 48 %) fines (Schoellhamer et al., 2012), and
as noted above TOC contents are 0.14-2.1 %. Larger floods
and increased winnowing of fine grains from the bed sed-
iments in the Sacramento River are the probable cause for
differences between the two rivers. During large floods, the
sand content of bed sediments often approaches 100 % in the
Sacramento River, whereas during intervals between floods,
sediments become finer.

4.4 Specific surface area OC loadings on sediment
grains

Sediment grain size, particle shape, density, mineralogy, and
organic carbon content determine how particles behave in
rivers and on coastal margins (Bridge and Bennett, 1992;
Dade and Friend, 1998; Hassanzadeh, 2012) and their nutri-
tional value to organisms (Mayer et al., 1993). Specific min-
eral surface area (SA) of sediment particles is often thought
of as an approximate (inverse) proxy for grain size (Horowitz
and Elrick, 1987; Keil et al., 1994a; Bergamaschi et al.,
1997). In general, as grain size decreases, SA and % OC in-
crease. But this relationship is probably simplistic since sur-
face roughness of mineral particles may cause SA to be con-
siderably higher than predicted by grain size alone (Weiler
and Mills, 1965; Mayer, 19944, b), and SA measured af-
ter combustion that may destroy larger organic particles or
organic-mineral aggregates likely under-represents the true
size of the original aggregates. Inorganic coatings, notably Fe
and Mn oxides, also help to cement fine-grained particles into
water-stable aggregates of larger size (Horowitz and Elrick,
1987), decreasing effective SA. In the present study, SA was
measured on all five bulk sediments and three density frac-
tions of each sediment to evaluate the degree of OC loading
(OC: SA) onto different density fractions, analogous to the
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more common measurements of SA and OC : SA of sediment
particles of different grain sizes. SA decreased with increas-
ing particle density (Fig. 4a), suggesting that higher density
fractions were characterized by larger particle grain sizes (the
<1.6gcm—2 fractions being exceptions). Higher SA for the
intermediate density fractions (e.g., 1.6 to 2.0gcm=3) are
similar to previous observations (Arnarson and Keil, 2001,
2007; Wakeham et al., 2009) and might result from rough
three-dimensional structures of aggregated clay grains (Hod-
son et al.,1998). In contrast, quartz and feldspar grains that
dominate the high-density fractions have low SA.

Organo-mineral associations affect OC reactivity and OC
sorbed onto mineral grains is protected from degradation
(Mayer, 1999; Hedges and Keil, 1995; Keil and Mayer,
2014). Lower OC : SA ratios in deltaic (~0.3mg OC m—2)
and deep-sea sediments (~0.15mg OC m—2) indicate des-
orption or losses of OC from mineral grains due to micro-
bial decomposition whereas higher OC: SA ratios (>2mg
OC m~—2) occur typically in anoxic, marsh, and estuarine sed-
iments where OC is preserved because supply exceeds de-
composition (Keil et al., 1997). Among the river sediments
discussed here, OC: SA ratios of bulk sediments were rel-
atively invariant, between 0.54 and 0.84mg OC m~2, sim-
ilar to OC loadings in the Amazon and Mississippi Rivers
but lower than adjacent marsh and estuary sediments and
higher than adjacent continental shelf sediments (Keil et
al., 1997; Gordon and Gofii, 2004; Waterson and Canuel,
2008). Among density fractions in this study, OC: SA ra-
tios were higher for 1.6 to 2.0 g cm~2 fractions than for bulk
sediments (2.75+1.4 vs. 0.72+£0.13mg OC m~2, respec-
tively) indicating more OC was associated with mineral ma-
terial. In contrast, OC:SA were lower for the 2.0 to 2.5
and >2.5gcm—2 fractions (0.31£0.06 vs. 0.26 +0.04 mg
OCm~2, respectively) than bulk sediment, where less OC
was associated with mineral phases.

4.5 Provenance of OC in the Sacramento-San Joaquin
Delta

Sources of OC to river sediments in the Delta are di-
verse (Canuel, 2001). Autochthonous sources include phyto-
plankton (80 % of annual TOC input), higher aquatic plants
(18% of TOC), and benthic macroalgae (<2 %); seagrasses
and seaweeds are absent (Jassby and Cloern, 2000). Al-
lochthonous contributions, much of which are soil-derived,
from riparian zones within the rivers’ watersheds may come
from tributaries (81% of TOC), agriculture (11 %), tidal
marsh export (4 %), wastewater (4 %), and urban discharges
(1%). Relative contributions of each depend on river flow,
which itself is seasonally variable. However, taken together,
autochthonous inputs account for only about 15 % of annual
TOC input to the Delta, whereas allochthonous sources dom-
inate at 85 %. The Jassby and Cloern (2000) model further in-
dicates that ~ 90 % of TOC supply to Suisun Bay and north-
ern San Francisco Bay is delivered by the Delta rivers, in
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stark contrast to south San Francisco Bay where ~ 90 % of
TOC is autochthonous.

C : N ratios of bulk sediments confirm the importance of
vascular plant OC and minor input of algal material to the
Delta river sediments. Among density fractions, increasing
C: N(y) ratios with decreasing density point to the importance
of vascular plant OC in lower density fractions. Results from
a wide-ranging investigation of elemental and isotope com-
positions of aquatic and terrestrial plants in the Delta sys-
tem by Cloern et al. (2002) and studies of suspended POM
(Canuel, 2001) support this conclusion.

There was considerable variability in 13C isotopic compo-
sition among the plants analyzed by Cloern et al. (2002) in
the Delta, with differences reflecting carbon source and car-
bon fixation pathway (Hayes, 2001; Pearson, 2010). Among
plants fixing carbon dioxide from the atmosphere, C4 marsh
plants were relatively enriched in 13C (~ —17 to —12 %o),
whereas C3 salt marsh, floating vascular and terrestrial plants
were, by comparison, depleted in 3C (~ —31 to —22 %o).
Agquatic filamentous algae, phytoplankton and submerged
vascular plants that utilize dissolved CO; had highly variable
813C values covering most of the range given above, usu-
ally depleted in 13C compared to marine phototrophs due to
different isotope systematics between freshwater and marine
systems (Oana and Deevey, 1960). Isotope values for soils
within the Delta reflect land use, ranging from ~ —20 %o in a
corn (Cy) field to (~ —27 to —24 %o) in an uncultivated grass-
land (C3). Since the range of §13C values in the bulk Delta
sediments we analyzed was small (—27.4 4 0.5 %o) and sea-
sonal and species variability was high (Cloern et al., 2002),
it is difficult to conclusively infer the dominant OC source,
except perhaps to say that inputs from C,4 plants are minor.
Nonetheless, the consistently lower values for §13C in the
lower density fractions (Fig. 6a) suggest greater proportions
of vascular plant OC in those fractions.

Natural-abundance radiocarbon measurements (A*Coc
or fraction modern f,) add the dimension of “age” to the
character of organic matter and help define the residence
time and redistribution of OC in rivers and estuaries (Ray-
mond and Bauer, 2001a, b; Blair et al., 2003; Griffith et
al., 2010; Lu et al., 2014; Mclntosh et al., 2015). In our
study, radiocarbon ages of OC of bulk and most density
fractions at Elk Slough are modern [A1*C > 0%o (fm ~ 1)],
whereas high-density >2.5gcm~2 material is depleted in
14¢C reflecting a more aged character (Fig. 6a). OC in Venice
Cut and Nurse Slough, however, is considerably more de-
pleted in 14C. Bulk OC and <1.6, 1.6 to 2.0, and 2.0 to
2.5gcm~3 fractions are similar in radiocarbon isotope val-
ues (A14C —247 to —114 %) but high-density >2.5gcm=3
fractions are highly 14C depleted (A*C —339 and —382 %o,
for Venice Cut and Nurse Slough, respectively) and hence
the oldest (3300 and 3800 yr BP, respectively). Radiocarbon
ages of sediments that are “too old” to reflect deposition
of recently-biosynthesized (“young”) OC require contribu-
tions from old OC (often termed “pre-aged” OC) from ter-
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restrial soil or fossil (rock) OC (Drenzek et al., 2009; Grif-
fith et al., 2010; Blair and Aller, 2012; Douglas et al., 2014;
Galy et al., 2015) and/or anthropogenic (petrogenic or fos-
sil fuel combustion) sources (Mitra et al., 2002; Masiello,
2004). Rivers are an important mechanism for redistribut-
ing old terrestrial OC (Raymond and Bauer, 2001b; Masiello
and Druffel, 2001; Blair and Aller, 2012). In the Rhine and
Meuse Rivers, the Ems-Dollard estuary, and the southern
North Sea, 3C and 14C compositions of size fractionated
suspended particulate matter showed seasonal variations in
a mix of OC sources and that a greater proportion of old ter-
restrial material was associated with coarse (>20 um) mate-
rial (813 C ~ —26; A1* C ~ —500 %o) than fine fractions (513
C ~—23; AY™ C ~—200%o) (Megens et al., 2001, 2002).
In the present study, the relatively unimpacted Elk Slough,
which lies north of the city of Sacramento, contains mostly
recently biosynthesized OC whereas Venice Cut and Nurse
Slough contained higher proportions of older OC. Interest-
ingly, the Nurse Slough site in Suisan Marsh that is not highly
influenced by anthropogenic activities had A*C values indi-
cating sources of aged carbon that could reflect erosion or
scouring of deeper marsh sediments or mixing with “older”
sources from the surrounding watershed. Overall, there is a
progression from A*C-enriched (young) but §13C-depleted
OC (bulk and density fractions) in Elk Slough to generally
more A4 C-depleted (older) and §*3C-enriched OC in Venice
Cut and Nurse Slough.

Biomarkers shed additional light on the sources and dia-
genetic state of river sediment OC. Among the fatty acids
analyzed here, short-chain (n-C14—n-C1g) FA are biosyn-
thesized by all plants but they are major lipids in freshwa-
ter microalgae (Cranwell et al., 1988, 1990; Volkman et al.,
1998) and freshwater macroalgae (Dembitsky et al., 1993;
Rozentsvet et al., 1995, 2002). Long-chain (n-C24—n-Cag)
FA are components of epicuticular waxes of terrestrial higher
plants (Cranwell et al., 1987; Volkman, 2006) and are abun-
dant in soils. FA compound distributions in Delta sediments
—a mix of short-chain and long-chain compounds — confirm
heterogeneous sources. Stable carbon isotope values of FA
in Delta sediments were lower than TOC, by ~ 8.1 to 10.4 %o
for the short-chain FA but by ~ 3.6 to 5.5 %o for the long-
chain FA (Fig. 6b). All sites showed the same 3C trend:
813C3h0rt FA <513C|0ng FA <313Coc. The offset of 813CFA
relative to §13Coc reflects the 4-8 %o isotope fractionation
common during autotrophic biosynthesis of acetogenic lipids
(in this case FA) vs primary biomass (here represented by
TOC) (Hayes, 2001; Pearson, 2010), but the difference be-
tween 823Cshort Fa and 8%3Ciong Fa indicates a source dis-
tinction. A higher proportion of seston with low §13C values
(Cloern et al., 2002) may contribute to the 13C-depletion of
the short-chain FA pool. Radiocarbon values of FA are more
complex and A Cghort Fa indicate predominately modern
OC while ACjong £a in Venice Cut and Nurse Slough in-
dicate substantial proportions of old OC (Fig. 6b). Short-
chain FA could originate from either aquatic or terrestrial
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Figure 6. Cross plots of (a) 813C vs. ATAC for OC in Delta bulk sediment and density fractions: black symbols =EIk Slough; white
symbols = Venice Cut; gray symbols = Nurse Slough and (b) §13C vs. A14C for fatty acids in bulk sediments: black symbols = bulk OC;

white symbols = long-chain FA; gray symbols = short-chain FA.

plants; the narrow range of §13C does not provide a distinc-
tion. Long-chain, vascular plant FA likely reflect storage in
soils for some time, but probably do not derive from fossil
sources since functionalized lipids like FA, though present at
low levels, are mostly lost during diagenesis (Rullkétter and
Michaelis, 1990; de Leeuw and Largeau, 1993). Our findings
are consistent with isotope compositions of FA in bulk sed-
iments from the Eel Margin and in lower Mississippi River
and Mississippi Margin sediments (Wakeham et al., 2009)
and in the Delaware Estuary (Mclntosh et al., 2015). Long-
chain FA in Eel sediments had lower 13C values compared
to short-chain FA (813C —32 and —25 %o, respectively). In
sediments of the Mississippi River/Margin, the opposite was
found: long-chain FA had higher §13C values than short-
chain FA (—31 %o vs. —37 %o, respectively). However, like
the Sacramento-San Joaquin Delta sediments, short-chain FA
in both the Eel and Mississippi River/Margin were modern
in age (AC +49 and +47 %o, for Eel and Mississippi, re-
spectively) whereas long-chain FA were older (AC —109
and —91 %o for Eel and Mississippi, respectively). This trend
is the reverse of that of FA of particulate organic matter in
the Delaware Estuary, where short-chain FA were older than
long-chain FA, indicating that the riverine algae that are the
source of the short-chain FA fix aged dissolved organic car-
bon (Mclintosh et al., 2015). Long-chain FA used to evalu-
ate OC transport from the Himalayan Mountains and Tibetan
Plateau through the Ganges-Bramaputra river system were
younger (A1*C —160 to —3%o) than bulk terrestrial bio-
spheric OC (A4C —878 to —63 %) (Galy et al., 2008; Galy
and Eglinton, 2011).

Modern carbon in river sediments and sediments at river-
ocean margin interfaces must derive from recently biosyn-
thesized aquatic or terrestrial plant biomass. Land plants that
fix atmospheric CO, may have 'C values that are com-
pletely modern due to inclusion of post-bomb carbon. The
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radiocarbon content of freshwater plants varies depending
on the reservoir effect of freshwater dissolved inorganic car-
bon, either CO, or bicarbonate. If old, dissolved inorganic
carbon (e.g., bicarbonate leached from carbonate or evapor-
itic deposits) is present in freshwater systems, reservoir ages
may be longer than in marine systems (Broecker and Wal-
ton, 1959; Phillippsen, 2013; Lu et al., 2014; Mcintosh et
al., 2015) and aquatic plants may be *C-depleted relative to
biomass that fixed atmospheric CO».

Most old carbon in sediments originates from 4C-
deficient OC remobilized from terrestrial soils or fossil OC
from ancient sediments, and much of this export is driven
by erosion (e.g., Galy et al., 2015). Soil OC is highly vari-
able in C age depending on soil ecosystem and horizon
depth, carbon cycling and residence time, land use, and the
proportions of modern and fossil carbon, with ages rang-
ing from modern in litterfall and upper horizons to thou-
sands of years in deeper horizons (Richter et al., 1999; Ew-
ing et al., 2006; Trumbore, 2009). In the case of the Delta,
surface alluvial soil horizons from grasslands of the Cen-
tral Valley are modern (A4C>0) whereas deeper horizons
are significantly older (AC —800 to —600 %o) depending
on whether or not they have been cultivated (Baisden et al.,
2002a, b; Ewing et al., 2006). Soil OC typically consists
of a rapidly cycling (5-20 yr) low-density fraction of rel-
atively unaltered vascular plant material and a more abun-
dant but slowly cycling mineral-associated component with
a mean residence time > 200 yr (Trumbore et al., 1989; Bais-
den et al., 2002a, b; Ewing et al., 2006; Castanha et al.,
2008; Trumbore, 2009; Cerli et al., 2012). The lower re-
gion of the Delta, at the confluence of the Sacramento and
San Joaquin Rivers, also contains large tracts of peat. Bulk
densities of the peat range from 0.2-0.7gcm~2 and their
radiocarbon contents ranged from —560 to —225 %o (Ew-
ing et al., 2006; Canuel et al., 2009). Fossil carbon sources
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include OC remobilized from ancient rocks (kerogen) and
black carbon (BC). Kerogen is an amorphous network of
degraded, polymerized, and crosslinked biomolecules gener-
ated during diagenesis (Derenne et al., 1997; de Leeuw and
Largeau, 1993; Stankiewicz et al., 2000); BC is a carbon-
rich, highly aromatized and heterogeneous material that de-
rives from biomass or fossil fuel combustion and sedimen-
tary metamorphism (where alteration of OC has proceeded
beyond the kerogen stage) (Masiello, 2004; Dickens et al.,
2004), and thus may have modern (biomass) or fossil (an-
cient sediment) radiocarbon signatures. In lake and marine
sediments (Dickens et al., 2004; Veilleux et al., 2009), BC
is concentrated in a <1.6gcm~2 density fraction. Mitra et
al. (2002) estimated that ~ 27 % of the BC load, or up to 25 %
of OC, of the Mississippi River is fossil fuel combustion-
derived. Because both kerogen and BC are highly refractory
with respect to chemical or biological degradation they may
cycle between fluvial and sediment and/or soil environments
during their transport through drainage basins, especially in
environments characterized by rapid channel migration and
flooding (Dunne et al., 1998; Aalto et al., 2003; Blair and
Aller, 2012). Most particles in rivers are thought to have
spent time in soils, floodplain alluvial deposits or wetlands
(Reneau and Dietrich, 1991; Gomez et al., 2003; Leithold et
al., 2006; Hoffmann et al., 2009).

The age of OC in rivers also varies with the nature of the
river and its watershed, and consequently with sediment load
(e.g., Raymond and Bauer, 2001b; Leithold et al., 2006; Blair
et al., 2003). Small rivers (< 10000 km? watersheds) drain-
ing high relief, mountainous (1000-4000 m elevation) areas
where thin soils/sedimentary rocks are continuously eroded
and there is minimal sediment storage capacity export sub-
stantial amounts of old, refractory organic matter. Rivers with
lower relief but watersheds that include long-term carbon
storage environments such as forests, grasslands, and wet-
lands can also deliver significant amounts of old OC. In con-
trast, rivers that integrate large watersheds with diverse geol-
ogy and land cover/use and with extensive lowland sediment
storage areas and floodplains that are dominated by chemi-
cal weathering (e.g., the Mississippi-Atchafalaya River Sys-
tem, Gordon and Gofii, 2003; Rosenheim et al., 2013) carry
generally younger and less degraded OC. Because the Sacra-
mento and San Joaquin Rivers begin as steep-gradient, high
energy streams in the Sierra Nevada Mountains but gradually
become larger as numerous tributaries join the mainstems, in-
cluding those from the Coast Range, they become more qui-
escent as they flow through the Central Valley and a range
of OC sources contributes to the observed elemental and iso-
topic compositions of river sediments in the Delta.

5 Conclusions

Bed sediments in the Sacramento-San Joaquin Rivers con-
tain organic matter unevenly distributed among density frac-
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tions, similar to other river and continental margin sediments.
In general, mass and TOC are concentrated in mesodensity
fractions, whereas both low-density material that is rich in
woody debris and high-density material that is OC-poor min-
eral grains are relatively unimportant. At the Elk Slough site,
OC is mostly derived from contemporary vegetation, but in
both Venice Cut in the San Joaquin River and Nurse Slough
in Suisan Marsh substantial amounts of old OC are present,
especially in the OC-poor, mineral-rich highest density ma-
terial. Low river flow, such as during our study period, al-
lows bed sediments to accumulate all density fractions: low-
density but coarse-grained material consisting of young dis-
crete plant debris, older mesodensity organic-mineral ag-
gregates, and still older organic-poor high-density mineral
material. But even under low flow and/or low turbulence
conditions, some hydrodynamic sorting may occur whereby
the mesodensity fractions become predominant. Overall, this
work identifies differences in the source and age composition
of organic matter associated with different sediment density
fractions in rivers and reveals some of the complex interac-
tions between organic matter and sediments that arise from
watershed, hydrology, and hydrodynamic features.
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