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Abstract. Light availability is of primary importance to the

ecological function of shallow estuaries. For example, ben-

thic primary production by submerged aquatic vegetation is

contingent upon light penetration to the seabed. A major

component that attenuates light in estuaries is colored dis-

solved organic matter (CDOM). CDOM is often measured

via a proxy, fluorescing dissolved organic matter (fDOM),

due to the ease of in situ fDOM sensor measurements. Fluo-

rescence must be converted to CDOM absorbance for use in

light attenuation calculations. However, this CDOM–fDOM

relationship varies among and within estuaries. We quanti-

fied the variability in this relationship within three estuaries

along the mid-Atlantic margin of the eastern United States:

West Falmouth Harbor (MA), Barnegat Bay (NJ), and Chin-

coteague Bay (MD/VA). Land use surrounding these estu-

aries ranges from urban to developed, with varying sources

of nutrients and organic matter. Measurements of fDOM

(excitation and emission wavelengths of 365 nm (±5 nm)

and 460 nm (±40 nm), respectively) and CDOM absorbance

were taken along a terrestrial-to-marine gradient in all three

estuaries. The ratio of the absorption coefficient at 340 nm

(m−1) to fDOM (QSU) was higher in West Falmouth Harbor

(1.22) than in Barnegat Bay (0.22) and Chincoteague Bay

(0.17). The CDOM : fDOM absorption ratio was variable be-

tween sites within West Falmouth Harbor and Barnegat Bay,

but consistent between sites within Chincoteague Bay. Sta-

ble carbon isotope analysis for constraining the source of

dissolved organic matter (DOM) in West Falmouth Harbor

and Barnegat Bay yielded δ13C values ranging from−19.7 to

−26.1 ‰ and−20.8 to−26.7 ‰, respectively. Concentration

and stable carbon isotope mixing models of DOC (dissolved

organic carbon) indicate a contribution of 13C-enriched DOC

in the estuaries. The most likely source of 13C-enriched DOC

for the systems we investigated is Spartina cordgrass. Com-

parison of DOC source to CDOM : fDOM absorption ratios

at each site demonstrates the relationship between source and

optical properties. Samples with 13C-enriched carbon iso-

tope values, indicating a greater contribution from marsh or-

ganic material, had higher CDOM : fDOM absorption ratios

than samples with greater contribution from terrestrial or-

ganic material. Applying a uniform CDOM : fDOM absorp-

tion ratio and spectral slope within a given estuary yields er-

rors in modeled light attenuation ranging from 11 to 33 %

depending on estuary. The application of a uniform absorp-

tion ratio across all estuaries doubles this error. This study

demonstrates that light attenuation coefficients for CDOM

based on continuous fDOM records are highly dependent on

the source of DOM present in the estuary. Thus, light attenu-

ation models for estuaries would be improved by quantifica-

tion of CDOM absorption and DOM source identification.

1 Introduction

Benthic primary production in estuaries, including those

along the Atlantic coast of the United States, is typically

dominated by seagrass (Heck et al., 1995). Furthermore, sea-

grass acts as an ecosystem engineer in temperate coastal

ecosystems via habitat provision and nutrient cycling (Ehlers

et al., 2008). Recent anthropogenic nutrient loading to these

ecosystems due to industrial and agricultural development

has caused a loss of seagrass density. This occurs as eutroph-
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ication creates water column algal blooms and increases ben-

thic algae populations (Burkholder et al., 2007; Hauxwell

et al., 2003). These algal processes reduce penetration of

the light necessary for survival of seagrasses (Kennish et

al., 2011). As anthropogenic impacts on coastal ecosystems

compound with increasing urbanization of coastal zones

(McGranahan et al., 2007), it is important to understand the

factors controlling light attenuation in the estuarine water

column.

Four main factors attenuate light in the water column: wa-

ter itself, non-algal particulate material, phytoplankton, and

colored dissolved organic matter (CDOM; Kirk, 1994). Prox-

ies are typically used to quantify these factors in situ: depth,

turbidity, chlorophyll a fluorescence, and fluorescing dis-

solved organic matter (fDOM), respectively (Ganju et al.,

2014). The use of fDOM as a proxy for the CDOM com-

ponent is widespread due to the ease of measuring in situ

fluorescence. However, variability in the CDOM : fDOM ab-

sorption ratios observed both between and within numerous

aquatic systems (Clark et al., 2004; Del Castillo et al., 1999;

Hoge et al., 1993) confounds using fDOM alone to quan-

tify absorbance. Quantifying and understanding what con-

trols the relationship between fDOM and CDOM is required

to accurately model light attenuation and seagrass viability

in estuaries. CDOM also has great importance for its utility

as a tracer (Stedmon et al., 2003; Del Castillo et al., 1999),

its major role in photochemistry (Mopper et al., 2015), its

effects on biological production (Coble, 2007), and remote

sensing relevance (Nelson and Siegel, 2013).

Estuaries are transition zones between freshwater and ma-

rine systems where DOM from a variety of sources mixes

(Raymond and Bauer, 2001). The major sources of DOM to

estuaries are typically terrestrial DOM from riverine inputs,

oceanic DOM from phytoplankton, and tidal marsh DOM

from emergent and submergent marsh vegetation (Peterson

et al., 1994). Both seagrass and macroalgae can also con-

tribute DOM in these systems (Barron et al., 2014; Pregnall,

1983). Marine and terrestrial DOM exhibit different struc-

tural characteristics (Harvey et al., 1983) that are reflected

in the optical properties of CDOM (Helms et al., 2008; De

Souza Sierra et al., 1994). Additionally, photodegradation is

a major sink for CDOM (Mopper et al., 2015; Kouassi and

Zika, 1992), and must also be considered when discussing

CDOM and light attenuation. Due to its role in attenuating

light in the water column, measurement of CDOM and en-

hanced understanding of its source-dependent optical prop-

erties are important for modeling light availability in estuar-

ies.

The goal of this study is to improve the understanding of

light attenuation in the estuarine water column by character-

izing the optical properties and sources of CDOM in three

diverse estuaries located along the mid-Atlantic US margin:

West Falmouth Harbor (MA), Barnegat Bay (NJ), and Chin-

coteague Bay (MD, VA). Our objectives are to quantify the

CDOM : fDOM absorption ratio, establish absorption spec-

tral slopes for use in light models (Gallegos et al., 2011), de-

termine the sources of CDOM in these estuaries, and identify

variation in the CDOM : fDOM absorption ratio as a function

of source.

2 Site descriptions

2.1 West Falmouth Harbor

West Falmouth Harbor is a small (0.7 km2), groundwater-fed

estuary on the western shore of Cape Cod, Massachusetts

(Fig. 1b). The harbor has a mean depth of approximately

1 m, and is connected to Buzzard’s Bay by a 3 m deep,

150 m wide channel. Residence time in the harbor is approx-

imately 1 day (Hayn et al., 2014). Tidal range is 1.9 m during

spring tides and 0.7 m during neap tides, with tidal currents

at the mouth approaching 0.5 m s−1. The dominant source of

freshwater and nutrients is groundwater. Land use surround-

ing the harbor is largely residential, with influence from a

legacy wastewater plume within the aquifer (Ganju et al.,

2012). Plant coverage in surrounding wetlands is variable,

but Spartina alterniflora and Spartina patens tend to domi-

nate, with some lesser coverage by Juncus gerardii and forbs

such as Salicornia spp., Limonium carolinianum, and Sol-

idago sempervirens (Buchsbaum and Valiela, 1987). Zostera

spp. eelgrass is also present in the harbor (Del Barrio et al.,

2014).

2.2 Barnegat Bay

The Barnegat Bay–Little Egg Harbor estuary is a back-

barrier system along the New Jersey Atlantic coast (Fig. 1c).

The estuary is approximately 70 km long, 2–6 km wide, and

1.5 m deep. Bay and ocean water exchange occurs at three in-

lets: the Point Pleasant Canal at the northern limit, Barnegat

Inlet in the middle of the barrier island, and Little Egg Inlet

at the southern limit. Limited exchange through these inlets

leads to a spatially variable residence time exceeding 30 days

in some locations (Defne and Ganju, 2014). For the purpose

of this study, sites north of Barnegat Inlet are referred to as

“North Barnegat Bay”, while sites parallel to and south of

Barnegat Inlet are referred to as “South Barnegat Bay”. Tides

are semidiurnal and range from < 0.1 to 1.5 m, and current

velocities range from < 0.5 to 1.5 m s−1 (Kennish et al., 2013;

Ganju et al., 2014); there is also a pronounced south-to-north

gradient in tidal range and flushing (Defne and Ganju, 2014).

While the land surrounding the northern portion of the bay is

developed with mixed urban–residential land use, the area

south of Barnegat Inlet is less developed and retains much

of the original marsh (Wieben and Baker, 2009). The salt

marshes south of Barnegat Inlet are dominated by Spartina

alterniflora (Olsen and Mahoney, 2001). Freshwater inputs

are largest at the northern end of the bay due to the Toms

River, Metedeconk River, and Cedar Creek (US EPA, 2007).
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Figure 1. (a) Location of US Atlantic Coast estuaries investigated

in this study. Sample locations within (b) West Falmouth Harbor,

(c) Barnegat Bay, and (d) Chincoteague Bay.

2.3 Chincoteague Bay

Chincoteague Bay is along the Atlantic coast of the Delmarva

Peninsula (Fig. 1d). This estuary has an area of 355 km2

and an average depth of 2 m. The watershed surrounding

Chincoteague Bay is 487 km2, and consists of 36 % forest,

31 % agricultural development, 25 % wetlands, and 8 % ur-

ban development (Bricker et al., 1999). Vegetation in the

wetland portion is dominated by Spartina alterniflora, much

like South Barnegat Bay (Keefe and Boynton, 1973). Tide

range averages 0.5 m, and residence time has been estimated

at 8 days (Bricker et al., 1999). The bay is connected to the

ocean via two inlets: Ocean City Inlet in the north and Chin-

coteague Inlet in the south (Allen et al., 2007). Historically,

Chincoteague Bay has been marked by extensive seagrass

coverage and higher water quality, especially compared to

other more developed and less well-flushed bays on the At-

lantic coast (Wazniak et al., 2004).

3 Methods

3.1 Fluorescence measurements

Sampling sites were approached by both land (WF01-WF13,

BB01-BB07) and sea (BB08-BB16, CB01-CB10). Sampling

occurred from 25 June 2014 to 17 July 2014 (Table 1). Either

a bucket (sites approached on foot) or 1 L Nalgene sampling

bottle (sites approached by boat) was rinsed with native wa-

ter and then used to collect a surface water sample. A pre-

calibrated YSI EXO 2 multisonde, measuring fDOM, tem-

perature, salinity, pH, turbidity, chlorophyll a fluorescence,

blue-green algae fluorescence, and dissolved oxygen con-

centration, was placed in each sample. Excitation and emis-

sion wavelengths for the fluorescing dissolved organic matter

sensor were 365 nm (±5 nm) and 460 nm (±40 nm), respec-

tively. Measurements of each parameter were collected at 1 s

intervals for approximately 60 s and averaged. For sites ap-

proached on foot, the YSI EXO was deployed immediately;

for sites approached by boat, the YSI EXO was deployed

later on land (in concurrence with absorbance measurements,

as described below).

Temperature, turbidity, and inner filter effects (IFEs) have

been shown to alter fluorescence measurements (Baker,

2005; Downing et al., 2012). For this reason, we corrected

fluorescence measurements to account for temperature, tur-

bidity, and IFEs, according to Downing et al. (2012).

3.2 Absorbance measurements

A 60 mL syringe was used to draw a water sample from these

buckets for absorbance measurements. Fifteen milliliters of

this sample was filtered through a 0.2 µm inorganic mem-

brane filter into a 5 cm path length cuvette. Absorbance mea-

surements were recorded in 20 nm increments over the range

of 340–440 nm (West Falmouth Harbor) or 340–720 nm

(Barnegat Bay and Chincoteague Bay). Spectral slope was

calculated over both the entire 340–720 nm range and the

340–440 nm range for Barnegat Bay and Chincoteague Bay

to allow for direct comparison to West Falmouth Harbor and

other studies (e.g., Huang and Chen, 2009; Del Castillo et

al., 1999). The estimated photometric accuracy of the spec-

trophotometer was 0.003 absorbance units. Offsets from zero

were determined for the West Falmouth Harbor CDOM spec-

tra by running a blank sample (Milli-Q water) at 440 nm (the

high end of the recorded spectrum). For Barnegat Bay and

Chincoteague Bay, offsets from zero were determined by

running a blank sample before measurement at each wave-

length (340–720 nm). Absorbance measurements were con-

verted to Naperian absorption coefficients as follows:

a(λ)= 2.303A(λ)/l, (1)

where A(λ) is the absorbance at 340 nm, l is the cell length

in meters (0.05 m for this study), and a(λ) is the absorp-

tion coefficient (Green and Blough, 1994). Absorbance val-

ues at 340 nm were the highest across the range scanned,

so 340 nm was chosen as the absorbance wavelength for

calculating the absorption coefficient. Spectral slopes were

calculated by plotting the natural log of absorption coeffi-

cient against wavelength. Due to use of the natural log, non-

positive absorption coefficients were discarded to calculate
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Table 1. Sampling sites and procedures.

Estuary No. of Site IDs Isotope Date

sites Analysis (Y/N)

West Falmouth Harbor, MA 13 WF01-WF13 Yes 25 June 2014

Barnegat Bay, NJ 16 BB01-BB16 Yes 14–15 July 2014

North Barnegat Bay (BB-N) 8 BB01-BB04; BB08-BB11 Yes 14–15 July 2014

South Barnegat Bay (BB-S) 8 BB05-BB07; BB12-BB16 Yes 14–15 July 2014

Chincoteague Bay, MD/VA 10 CB01-CB10 No 17 July 2014

spectral slope, as described in Eq. (2) (Bricaud et al., 1981):

S = ln(a(λ)/a(r))(r − λ), (2)

where λ is wavelength, r is a reference wavelength, a(λ)

is absorption coefficient at a given wavelength, a(r) is ab-

sorption coefficient at the reference wavelength, and S is the

spectral slope. The value of S shows the rate at which ab-

sorption decreases with increasing wavelength (Green and

Blough, 1994). This parameter can be used to predict absorp-

tion coefficients across the spectrum based on absorption at

one reference wavelength (Bricaud et al., 1981).

3.3 Isotope analysis

At each site in West Falmouth Harbor and Barnegat Bay, wa-

ter samples were collected for stable carbon isotope analy-

sis of DOC (dissolved organic carbon). Chincoteague Bay

was excluded due to logistical limitations. Thirty milliliters

of the collected sample was filtered through a 0.2 µm inor-

ganic membrane filter, collected in a 40 mL glass autosam-

pler vial that had been baked at 450 ◦C for 4 h, and sealed

with caps and Teflon-faced silicon septa that had been soaked

and rinsed with 10 % (by volume) HCl. Additionally, trace

metal grade 12N HCl (Sigma-Aldrich) was added to each

isotope water sample to achieve pH < 2. The vials were then

stored at 4 ◦C. Samples were analyzed by high-temperature

combustion–isotope ratio mass spectrometry (HTC-IRMS)

at the USGS-WHOI Dissolved Carbon Isotope Lab (DCIL),

as described by Lalonde et al. (2014). The DCIL HTC-IRMS

system consists of an OI 1030C total carbon analyzer and a

Graden molecular sieve trap interfaced to a Thermo-Finnigan

DELTAplus XP IRMS via a modified Conflo IV. The stable

carbon isotope ratios are reported in the standard δ notation

relative to Vienna Pee Dee Belemnite (VPDB) and are cor-

rected by mass balance to account for the analytical blank,

which was less than the equivalent of 15 µM DOC in the sam-

ple. By comparison, the sample DOC concentrations ranged

from 60.7 to 581 µM. Thus the blank correction was always

less than 25 % of the sample concentration. The analytical

precision of the δ13C analysis was less than 0.3 ‰. DOC

concentration was calculated using a standard curve consist-

ing of four potassium hydrogen phthalate (KHP) calibration

standards quantified as the integrated volt-seconds (Vs) of

the mass-44 peak on the IRMS (Lalonde et al., 2014). Peak

areas were corrected for analytical blanks determined from

ultrapure lab water injections.

Salinity and δ13C values for freshwater and marine end-

members from West Falmouth Harbor and Barnegat Bay

were used to construct isotope mixing models for the es-

tuaries (Kaldy et al., 2005). Marine and freshwater end-

members are defined as the most and least saline samples

collected at each estuary. Because of the number of sam-

ples clustered near the highest salinity for each estuary, ma-

rine end-members were checked with geographic location.

For West Falmouth Harbor, the site chosen as marine end-

member (WF01) was taken from the mouth of the harbor

where the estuary connects to Buzzard’s Bay. For Barnegat

Bay, the site of highest salinity (BB13) was taken from the

middle of Little Egg Harbor in South Barnegat Bay. How-

ever, a more geographically intuitive marine end-member

would be site BB16, near Little Egg Inlet. The only slightly

lower salinity at this site (29.69 psu) as compared to BB13

(30.08 psu), along with the geographic location of BB16 at

an oceanic inlet, makes BB16 a more appropriate marine

end-member. Therefore, end-members used in the conser-

vative mixing models were as follows: WF06 (freshwater),

WF01 (marine), BB01 (freshwater), and BB16 (marine). The

conservative mixing models (Kaldy et al., 2005) were con-

structed as

Cmix = fCR + (1− f )CO , (3)

where Cmix is the calculated concentration for use in the

mixing model, CR and CO are freshwater and marine end-

member DOC concentrations, respectively, and f is the frac-

tion of freshwater calculated from salinity:

f = (SO − SM)/(SO − SR), (4)

where SM is measured salinity at a specific site, and SR and

SO are freshwater and marine end-member salinities, respec-

tively. These calculations lead to the modeled isotope ratio of

each sample as

δmix = [fCRδR + (1− f )COδO ]/Cmix, (5)

where all subscripts and variables are the same as described

for Eqs. (3) and (4).
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3.4 Carbon-normalized CDOM

In addition to the stable carbon isotope analysis, a “carbon-

normalized CDOM” (C-normalized CDOM340) was calcu-

lated for each sample as

C-normalized CDOM340 = A(λ)/DOC, (6)

where DOC is dissolved organic carbon concentration

(mg L−1) and A(λ) is decadic light absorbance at 340 nm

(m−1). This C-normalized CDOM340 is comparable to spe-

cific ultraviolet absorbance (SUVA), a measure proven to

correlate strongly with DOC aromaticity (Weishaar et al.,

2003). While SUVA is typically calculated at 254 nm, the

C-normalized CDOM340 calculated here provides a similar

measure while accommodating this study’s minimum ab-

sorbance measurement wavelength of 340 nm.

4 Results

4.1 Spectral slopes

The estuary-wide average spectral slope (over the range 340–

440 nm) for West Falmouth was steeper than for Barnegat

and Chincoteague, with Savg equal to 0.021, 0.016, and

0.018, respectively (Table S1). At West Falmouth Harbor,

spectral slope ranged from 0.013 to 0.044, with a standard

deviation of 0.010. At Barnegat Bay, S ranged from 0.011 to

0.019, with a standard deviation of 0.002. At Chincoteague

Bay, S ranged from 0.014 to 0.023, with a standard devia-

tion of 0.003. Spectral slope values for Barnegat and Chin-

coteague were slightly steeper over the range 340–440 nm as

compared to S calculated over the range 340–720 nm (Ta-

ble S1 in the Supplement).

4.2 Fluorescence measurements (fDOM)

At West Falmouth, fDOM ranged from 0.63 to 10.21 QSU,

with a standard deviation of 2.57 QSU. At Barnegat Bay,

fDOM ranged from 12.06 to 84.40 QSU, with a standard de-

viation of 20.82 QSU. At Chincoteague Bay, fDOM ranged

from 11.15 to 49.49 QSU, with a standard deviation of 10.95

QSU. Values observed for fDOM were within ranges re-

ported for similar estuaries and coastal waters (Callahan

et al., 2004; Clark et al., 2002; Green and Blough, 1994).

Sites at West Falmouth and Barnegat Bay represented a

freshwater to seawater gradient, with salinity ranging from

0.13 to 31.28 psu at West Falmouth and 3.41–30.08 psu at

Barnegat. At Chincoteague Bay, salinity ranged from 25.88

to 31.85 psu. A complete salinity gradient was not sampled

at Chincoteague due to the relatively high salinity found

throughout the main basin of the bay, and low freshwater

input. fDOM correlated inversely with salinity (Fig. 2), as

expected because riverine input is typically the main ex-

ternal source of DOM. However, the slope and strength of
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Figure 2. Fluorescence measurement versus salinity for all sample

sites at West Falmouth Harbor (WFH), North Barnegat Bay (BB-N),

South Barnegat Bay (BB-S), and Chincoteague Bay (CB). Dashed

lines indicate the best linear fits to the data, with associated r2 and

p value.

the fDOM–salinity relationship differed both between and

within estuaries. The steepest relationship (most rapidly de-

creasing fDOM signal with increasing salinity) was observed

at Chincoteague Bay and in South Barnegat Bay. These two

areas displayed a similar fDOM–salinity relationship; fDOM

and salinity showed a slightly less negative relationship at

North Barnegat Bay, and even less negative at West Falmouth

Harbor.

4.3 CDOM absorption and CDOM : fDOM ratios

At West Falmouth, a(340) ranged from 0.92 to 5.07 m−1,

with a standard deviation of 1.02 m−1. At Barnegat Bay,

a(340) ranged from 0.97 to 14.97 m−1, with a standard de-

viation of 3.99 m−1. At Chincoteague Bay, a(340) ranged

from 1.84 to 8.38 m−1, with a standard deviation of 1.86 m−1

(Table 2). The ratio between a(340) and fDOM differed

both between and within estuaries, as expected (Table S1;

Fig. 3). The mean ratio of a(340) to fDOM was relatively

higher in West Falmouth Harbor (1.22) than in Barnegat

Bay (0.22) and Chincoteague Bay (0.17). There were two

significant outliers at Barnegat Bay: BB01, which had a

lower absorption coefficient (0.97 m−1) than expected based

on its higher fDOM value (69.92 QSU), and BB15, which

showed a much higher absorption coefficient (14.97 m−1)

than expected based on its lower fDOM value (16.50 QSU).

West Falmouth also demonstrated substantial variability in

a(340) : fDOM ratio between sites. Chincoteague Bay, how-

ever, showed a highly consistent ratio.

www.biogeosciences.net/13/583/2016/ Biogeosciences, 13, 583–595, 2016
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Table 2. Light attenuation model parameters and ensuing errors arising from usage of estuary-wide mean values. Note reduced number of

significant figures for reporting of spectral slope as compared to Table S1.

Estuary Mean CDOM : fDOM Mean spectral Mean light attenuation

ratio (range) slope (range) error (range)

West Falmouth Harbor, MA 1.2 (0.50–4.3) 0.03 (0.01–0.05) 15 % (0–52 %)

Barnegat Bay, NJ 0.23 (0.01–0.96) 0.01 (0.01–0.02) 33 % (0–220 %)

Chincoteague Bay, MD/VA 0.17 (0.16–0.19) 0.01 (0.01–0.02) 11 % (0.01–28 %)
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Figure 3. Absorption coefficient at 340 nm versus fluorescence

measurement for all sampling sites at West Falmouth Harbor

(WFH), North Barnegat Bay (BB-N), South Barnegat Bay (BB-S),

and Chincoteague Bay (CB). Dashed lines indicate the best linear fit

to the data, with associated r2 and p value. Two outliers (indicated

by asterisks) removed from the regressions for Barnegat Bay.

4.4 Stable carbon isotope analysis

The observed isotope–salinity relationship at West Falmouth

Harbor and Barnegat Bay had numerous δ13C values well

outside the range predicted by concentration and isotopic

conservative mixing models (Table S2; Figs. 4a and 5a),

which suggests an additional DOM source from within the

estuaries (discussed further in Sect. 5.3). For West Falmouth

Harbor, end-members of the conservative mixing model had

δ13C values of −23.0 and −26.1 ‰. The observed δ13C

data, however, ranged from −19.7 to −26.1 ‰, six of which

were more 13C-enriched samples than the modeled range.

For Barnegat Bay, end-members of the conservative mixing

model had δ13C values of−22.1 and−26.7 ‰. The observed

δ13C data ranged from −20.8 to −26.7 ‰, four of which

were more 13C-enriched than the modeled range. The two

points from North Barnegat Bay falling well above the model

(Fig. 5a) correspond to sites BB04 and BB09. The two points

from South Barnegat Bay falling well above the model cor-

respond to sites BB12 and BB14. These 13C-enriched sam-

ples from Barnegat were all taken from areas near significant

stretches of marsh along the western edge of Barnegat Bay.

Furthermore, these samples all fall above the concentration-

based mixing model for Barnegat Bay (Fig. 5b). Spatial rep-

resentation of δ13C values at Barnegat Bay (Fig. 5c) shows

significantly less negative δ13C values in South Barnegat Bay

compared to North Barnegat Bay.

4.5 Comparison of isotopic signature and

fDOM-CDOM absorption ratio

Comparison of the isotopic and optical analyses suggests

a correlation between δ13C signature and fDOM-CDOM

absorption ratio (Fig. 6). For both West Falmouth Harbor

and Barnegat Bay, the more 13C-enriched samples also had

a higher absorption coefficient per unit fluorescence. This

trend is highlighted by the extremes of the data set, with

the most 13C-enriched sample (WF02) displaying the highest

CDOM : fDOM absorption ratio, and the least 13C-enriched

sample (BB01) displaying the lowest CDOM : fDOM ab-

sorption ratio. Furthermore, West Falmouth Harbor samples

had both higher CDOM : fDOM absorption ratios (−0.032,

natural log scale, average) and 13C enrichment (δ13C aver-

age of −22.4 ‰) as compared to Barnegat Bay (−1.75 and

−23.4 ‰, respectively).

5 Discussion

5.1 Absorption coefficient and spectral slope ranges

Absorption coefficients for West Falmouth and Chincoteague

were comparable to those reported for other estuaries and

coastal waters (Chen et al., 2003; Green and Blough,

1994). Absorption coefficients for Barnegat Bay were some-

what higher, but within the range reported by Green and

Blough (1994). Likewise, all values observed for spectral

slope were within ranges reported for similar estuaries and

coastal waters (Keith et al., 2002; Green and Blough, 1994),

despite differences in the range over which spectral slope

was calculated (400–550 nm for Keith et al., 2002; 290 nm

to wavelength of absorption detection limit for Green and

Blough, 1994). At Barnegat Bay and Chincoteague Bay,

the range of calculated spectral slopes was quite small (Ta-

ble S1). At West Falmouth Harbor, however, there was sig-
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Figure 4. (a) Measured δ13C-DOC values and salinity for West Falmouth Harbor are plotted against an isotopic conservative mixing model

for location. Deviations from the model suggest contributions of DOC 13C-enriched relative to the assumed end-members. (b) Measured

DOC concentration and salinity for West Falmouth Harbor are plotted along with a line of concentration-based conservative mixing between

end-members. Data points with concentrations greater than those predicted by conservative mixing indicate addition of DOM to the system.

(c) Spatial plot of isotopic signatures measured at West Falmouth Harbor. Asterisks indicate assumed end-members.

nificantly more variability in spectral slope. West Falmouth

Harbor is a relatively dynamic system with multiple freshwa-

ter point sources and unique mixing characteristics (Ganju

et al., 2012). Considering the dramatic influence that vari-

able sources (aquatic vs. terrestrial) and alterations (e.g., mi-

crobial and photodegradation) have on the optical proper-

ties of DOM (Spencer et al., 2009; Helms et al., 2008; De

Souza Sierra et al., 1994), the variability in spectral slopes

observed at West Falmouth Harbor may be attributable to the

physical complexity and short residence time of this estu-

ary. More specifically with respect to source, previous studies

have shown that DOM comprised of primarily fulvic acids

has steeper spectral slopes than DOM comprised of primar-

ily humic acids (Carder et al., 1989). Considering the phys-

ical complexity and variety of point sources at West Fal-

mouth Harbor, variable organic matter composition and spec-

tral slope is not surprising.

5.2 Variability in fDOM–salinity relationship

The inverse relationship between fDOM and salinity ob-

served for these three estuaries is consistent with other estu-

arine studies (Clark et al., 2002; Green and Blough, 1994).

Differing slopes of the inverse relationships suggests the

freshwater DOM sources vary between and within estuar-

ies. This is due to differences in organic matter composi-

tion and fluorescence between the freshwater sources (Sted-

mon et al., 2003; Parlanti et al., 2000). South Barnegat Bay

and Chincoteague Bay display a similar fDOM–salinity rela-

tionship, while South Barnegat Bay and North Barnegat Bay

show a divergent relationship. South Barnegat Bay and Chin-

coteague Bay also have geographic and land use similarities

with less development and extensive Spartina alterniflora-

dominated marshes (Wieben and Baker, 2009; Olsen and

Mahoney, 2001; Keefe and Boynton, 1973), whereas North

Barnegat Bay is much more developed (Wieben and Baker,

2009). Furthermore, North and South Barnegat Bay appear to

have different organic matter sources (determined via isotope

analysis; see Sect. 5.3). This information considered together
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Figure 5. (a) Measured δ13C-DOC values and salinity for both North and South Barnegat Bay are plotted against an isotopic conserva-

tive mixing model for location. Deviations from the model suggest contributions of DOC that is distinct from the assumed end-members.

(b) Measured DOC concentration and salinity for Barnegat Bay are plotted along with a line of concentration-based conservative mixing

between end-members. Data points with concentrations greater than those predicted by conservative mixing indicate addition of DOM to the

system. (c) Spatial plot of isotopic signatures measured at Barnegat Bay. Asterisks indicate assumed end-members.

supports the idea of differing organic matter sources due to

various inputs affecting fluorescence properties. As for the

variability seen within West Falmouth Harbor, this is again

likely attributable to the relatively low fluorescence signals

observed throughout the estuary, along with the variety of

freshwater inputs to this complex system.

5.3 Evidence for internal DOM sources

The disparity between observed δ13C values and those pre-

dicted by conservative mixing models (Figs. 4a and 5a) sug-

gests an additional DOM source within the estuaries. Previ-

ous studies of DOC in eastern US estuaries have suggested

a marine end-member δ13C value of −24 to −22 ‰, and a

freshwater end-member δ13C of −28 to −26 ‰ (Peterson et

al., 1994). Observed values falling above the mixing model

and approaching much more 13C-enriched values than the

defined marine end-member are likely due to the influence

of DOC from Spartina spp. cordgrass in nearby salt marshes.

Analysis of DOC Spartina spp. by past studies has indicated

a δ13C signature of about −16.4 to −11.7 ‰ (Komada et al.,

2012; Chmura and Aharon, 1995). The tendency of values

from this study towards this 13C-enriched signature, in com-

bination with knowledge of Spartina coverage around the

sites differing from conservative mixing models, suggests a

DOM source derived from Spartina cordgrass. The influence

of this end-member is particularly notable in South Barnegat

Bay (specifically sites BB12 and BB14), where Spartina cov-

erage is extensive (Olsen and Mahoney, 2001), and the δ13C

of the DOC is −21.6 and −20.9 ‰ for BB12 and BB14, re-

spectively. Although Spartina coverage in North Barnegat

Bay is not as extensive as in South Barnegat Bay, the sites

with DOC δ13C values that are more enriched than the con-

servative mixing model for North Barnegat Bay (BB04 and

BB09) were taken from inland sampling locations, specif-

ically the north bank of the lower Toms River and Reedy

Creek, where stands of Spartina are present.
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Figure 6. Isotopic signature versus CDOM absorption coefficient

(340 nm) divided by fluorescence for all sites at West Falmouth

Harbor (WFH), North Barnegat Bay (BB-N), and South Barnegat

Bay (BB-S). CDOM absorption coefficient per unit fluorescence

presented on natural log scale.

However, the observed 13C enrichment could also be at-

tributed to Zostera eelgrass, which has been shown to exhibit

a 13C-enriched signature (Hemminga and Mateo, 1996). For

this reason, the aforementioned samples falling well above

the conservative mixing models cannot necessarily be con-

sidered a result of Spartina influence. However, a compar-

ison of site locations to known seagrass and Spartina wet-

land coverage can yield some indication of the most likely

source of 13C-enriched DOC. Seagrass coverage maps (Lath-

rop and Haag, 2011) and maps of estuarine intertidal wetland

coverage (United States Fish and Wildlife Service, 2015) for

Barnegat Bay show intertidal wetland coverage and no sea-

grass coverage for sites BB09, BB12, and BB14. Site BB04

is characterized by neither type of coverage, but its inland lo-

cation places it much closer to known intertidal wetland cov-

erage (US Fish & Wildlife Service, 2015). This geographic

comparison indicates Spartina as the more likely additional

end-member at Barnegat Bay, though Zostera influence is

still possible. Considering the movement of water and po-

tential for mixing during residence in the estuary, this geo-

graphic analysis is by no means definitive, but does provide

some insights.

For West Falmouth Harbor, sites falling well above the

conservative mixing model (WF02, WF03, WF04, WF05,

WF07, WF11) were compared to known seagrass (Del Bar-

rio et al., 2014) and intertidal wetland (US Fish & Wildlife

Service, 2015) coverage for West Falmouth Harbor. For sites

WF03, WF05, WF07, and WF11, there is known intertidal

wetland coverage and no known Zostera coverage. For site

WF02, there is both intertidal wetland coverage and Zostera

coverage, whereas WF04 corresponds to neither Spartina nor

Zostera. This comparison yields a less clear picture of DOC

sources, but this is to be expected considering the aforemen-

tioned complexity of surrounding land uses, potential DOC

inputs, and limited mixing at West Falmouth Harbor. Further-

more, spatial representation of δ13C values at West Falmouth

Harbor (Fig. 4c) show 13C-depleted samples in the northeast-

ern corner of the harbor, the location of a freshwater culvert

discharging groundwater (Ganju, 2011). On the whole, the

conservative mixing models used in this study may not be ap-

propriate for a system as complex as West Falmouth Harbor.

Unlike the clear indication of a third end-member from the

mixing model for Barnegat Bay, one could envision a more

complex system with multiple additional end-members for

West Falmouth Harbor (Fig. 4a and b).

5.4 Potential influence of photodegradation

We also considered the potential influence of photodegra-

dation on the samples with DOC that was 13C-enriched in

comparison to the conservative mixing model. Irradiation

experiments have shown that riverine DOC becomes 13C-

enriched by∼ 3.5 ‰ and concentrations decrease by as much

as 45 % over 57 days as a result of photodegradation (Spencer

et al., 2009), suggesting the possibility that the aforemen-

tioned 13C-enriched samples are photodegraded terrestrial

DOM. This is unlikely for samples from West Falmouth

Harbor, given the very short residence time of this estu-

ary (∼ 1 day; Hayn et al., 2014). For Barnegat Bay, how-

ever, the influence of photodegradation is possible. Sites

BB12 and BB14 are in areas with residence time of ∼ 10

days, while sites BB04 and BB09 are in areas with resi-

dence time of∼ 15–20 days (Defne and Ganju, 2014). These

residence times are within the time frame over which pho-

todegradation effects on δ13C have previously been observed

(Spencer et al., 2009), which could also influence the 13C-

enriched signatures observed for these samples. However, the

relative lack of 13C enrichment observed at other Barnegat

Bay sites with even longer residence times (e.g., BB03 and

BB07; Defne and Ganju, 2014) implies that photodegrada-

tion alone likely does not explain the 13C-enriched signa-

tures found for certain Barnegat Bay samples. Furthermore,

and most convincing, the concentration-based mixing model

for Barnegat Bay (Fig. 5b) demonstrates a net input of DOC

into the estuary. DOC concentrations that exceed the conser-

vative concentration-based mixing model indicate a source

of DOC within the estuary. If the samples were affected by

photodegradation, one would expect a net loss of measured

DOC within the estuary (e.g., Spencer et al., 2009).

Further insight into the possibility of photodegradation

can be derived from the C-normalized CDOM340 (Table S2).

Carbon-normalized CDOM correlates strongly with sample

aromaticity (Weishaar et al., 2003), which one would ex-

pect to decrease as a result of photodegradation (Hood et

al., 2005). However, C-normalized CDOM340 (and thus aro-

maticity) is not significantly lower for the potentially pho-
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todegraded terrestrial DOM samples as compared to other

terrestrial DOM samples such as BB01 and BB03 (Table S2).

This lack of a drop in aromaticity does not support the pos-

sibility that the 13C-enriched samples from Barnegat Bay are

photodegraded terrestrial DOM.

5.5 Variability in fDOM–CDOM absorption

relationship

The variability between fDOM and CDOM absorption in

these estuaries was expected based on the results of previous

studies (Clark et al., 2004; Del Castillo et al., 1999; Hoge

et al., 1993). West Falmouth Harbor in particular showed

a different absorption coefficient to fDOM ratio as com-

pared to the general trend for Barnegat and Chincoteague

Bays (Fig. 3). We ascribe this difference to groundwater in-

puts, which have been shown to have lower CDOM (Shen

et al., 2015; Chen et al., 2010; Huang and Chen, 2009) and

are substantial in West Falmouth Harbor (Ganju, 2011). Ad-

ditionally, the extremes of CDOM variability in this study

can be explained by differing DOC sources within the es-

tuaries. While the relatively uniform CDOM–fDOM rela-

tionship for Barnegat Bay results in clustering of Barnegat

Bay samples (Fig. 6), this relationship is highlighted by both

the Barnegat Bay outliers and the higher CDOMabs : fDOM

observed for the more 13C-enriched samples at West Fal-

mouth Harbor. Points such as the outliers at Barnegat Bay

are indicative of how the CDOM–fDOM relationship can be

altered in an estuary with such diverse sources and trans-

port mechanisms. This assertion of variable CDOM–fDOM

relationship depending on source is supported by the find-

ings of Tzortziou et al. (2008), which suggested that marsh-

exported DOC has a lower fluorescence per unit absorbance

as compared to humic DOC originating from a freshwa-

ter source. For the two extreme outliers, 13C-enriched DOC

(likely Spartina source) was associated with a lower flu-

orescence per unit absorbance. 13C-depleted DOC (terres-

trial source) was associated with a higher fluorescence per

unit absorbance. While other studies have focused on differ-

ences in the fluorescence–absorbance relationship as a func-

tion of molecular weight (Belzile and Guo, 2006; Stewart and

Wetzel, 1980), the combination of CDOM optical and iso-

topic analyses presented here provide a connection between

CDOM source and optical characteristics, as suggested by

Tzortziou et al. (2008).

The effects of in situ processing on absorption properties

of DOM must also be considered here. In particular, pho-

todegradation is known to reduce the absorbance of light by

DOM (Spencer et al., 2009; Kouassi and Zika, 1992). There-

fore, observations of higher fluorescence per unit absorbance

could be a result of photochemical effects. However, the 13C-

enriched DOC samples discussed here exhibit lower fluores-

cence per unit absorbance than expected. This trend provides

additional evidence refuting the aforementioned possibility

that the 13C-enriched samples from Barnegat Bay are pho-

todegraded terrestrial DOM (Sect. 5.4).

5.6 Ramifications for light attenuation modeling

The variability in fDOM optical properties between and

within estuaries has important consequences for light at-

tenuation models. Continuous estimates of light attenua-

tion are possible with continuous proxy measurements of

turbidity (for sediment), chlorophyll a fluorescence, and

fDOM (Gallegos et al., 2011), but Ganju et al. (2014) found

that light models can be highly sensitive to the CDOM–

fDOM relationship, specifically in Barnegat Bay. We ap-

plied the light model of Gallegos et al. (2011) to the individ-

ual measurements of turbidity, chlorophyll a fluorescence,

and fDOM collected in this study. We explored two cases

to calculate light attenuation: (1) use of the individual point

CDOM : fDOM ratio and spectral slope from measurements

and (2) use of an estuary-wide average CDOM : fDOM ratio

and spectral slope (model parameters related to sediment par-

ticles and chlorophyll were held constant to values reported

in Ganju et al., 2014). Variation in the DOM properties led

to average light attenuation errors ranging from 11 to 33 %

(Table 2), with individual site errors over 200 % at sites with

the highest deviation from the estuary mean (site BB01, at

the landward end of Barnegat Bay). This suggests that con-

straining optical properties of the DOM pool is critical for

light modeling, and that high variability within an estuary

may confound use of spatially constant parameters.

6 Conclusions

This study shows that the CDOM absorption–fDOM rela-

tionship is variable both between and within West Falmouth

Harbor, Barnegat Bay, and Chincoteague Bay, and depends

upon DOM source. DOM that was 13C-enriched (higher δ13C

values) also had a higher absorption coefficient per unit fluo-

rescence. Additionally, fDOM–salinity relationship was vari-

able between and within these estuaries. The exception here

was the lack of variability in these relationships within Chin-

coteague Bay. Future work in relation to this study might

involve a stable carbon isotope analysis at Chincoteague

Bay similar to the analysis carried out here for West Fal-

mouth Harbor and Barnegat Bay. Results of such an anal-

ysis could further elucidate the effects of DOM source on

the CDOM : fDOM ratio. Finally, spectral slopes for use in

light models were consistent between and within Barnegat

and Chincoteague Bays, with more variability observed at

West Falmouth Harbor.

The Supplement related to this article is available online

at doi:10.5194/bg-13-583-2016-supplement.
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