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Abstract. Methane (CH4) fluxes were investigated in a sub-

arctic Russian tundra site in a multi-approach study combin-

ing plot-scale data, ecosystem-scale eddy covariance (EC)

measurements, and a fine-resolution land cover classifica-

tion scheme for regional upscaling. The flux data as mea-

sured by the two independent techniques resulted in a sea-

sonal (May–October 2008) cumulative CH4 emission of 2.4

(EC) and 3.7 g CH4 m−2 (manual chambers) for the source

area representative of the footprint of the EC instruments.

Upon upscaling for the entire study region of 98.6 km2, the

chamber measured flux data yielded a regional flux estimate

of 6.7 g CH4 m−2 yr−1. Our upscaling efforts accounted for

the large spatial variability in the distribution of the various

land cover types (LCTs) predominant at our study site. Wet-

lands with emissions ranging from 34 to 53 g CH4 m−2 yr−1

were the most dominant CH4-emitting surfaces. Emissions

from thermokarst lakes were an order of magnitude lower,

while the rest of the landscape (mineral tundra) was a weak

sink for atmospheric methane. Vascular plant cover was a key

factor in explaining the spatial variability of CH4 emissions

among wetland types, as indicated by the positive correla-

tion of emissions with the leaf area index (LAI). As eluci-

dated through a stable isotope analysis, the dominant CH4

release pathway from wetlands to the atmosphere was plant-

mediated diffusion through aerenchyma, a process that dis-

criminates against 13C-CH4. The CH4 released to the atmo-

sphere was lighter than that in the surface porewater, and

δ13C in the emitted CH4 correlated negatively with the vas-

cular plant cover (LAI). The mean value of δ13C obtained

here for the emitted CH4,−68.2± 2.0 ‰, is within the range

of values from other wetlands, thus reinforcing the use of

inverse modelling tools to better constrain the CH4 budget.

Based on the IPCC A1B emission scenario, a temperature in-

crease of 6.1 ◦C relative to the present day has been predicted

for the European Russian tundra by the end of the 21st Cen-

tury. A regional warming of this magnitude will have pro-

found effects on the permafrost distribution leading to con-

siderable changes in the regional landscape with a potential

for an increase in the areal extent of CH4-emitting wet sur-

faces.

1 Introduction

The Arctic tundra, underlain by permafrost, covers

9.2 million km2, i.e., 8 % of the global land area, and the large

carbon pools stored in Arctic soils are extremely vulnerable

to global warming (McGuire et al., 2012). The Arctic region

can greatly alter the atmospheric concentrations of CO2 (car-

bon dioxide) and CH4 (methane) through feedback mecha-

nisms (Post et al., 2009). Inverse modelling results based on

measurements of concentrations and stable isotope compo-

sition of CH4 have already proved the importance of high-

latitude wetlands as global CH4 sources (Riley et al., 2011).
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For example, the spike in the global mean atmospheric CH4

concentration in 2007 has been attributed to anomalously

high summer temperatures experienced by these ecosystems

during that year (Dlugokencky et al., 2011). Despite the large

areal extent, the Russian tundra region is relatively less ex-

plored as far as its biogeochemical functioning is concerned.

According to the latest estimates, this region is presently con-

sidered to be a net carbon dioxide (CO2) sink and a source

of atmospheric CH4. Although CO2 flux represents the ma-

jor component in the total C flow between tundra ecosystems

and the atmosphere, CH4 is equally important owing to its 28

times higher global warming potential over a 100-year time

horizon (IPCC, 2014).

In the Arctic, CH4 is mostly emitted from wetlands

(Heikkinen et al., 2004; Mastepanov et al., 2008) and from

lakes and ponds (Walter et al., 2008). On the whole, there

is a general consensus that the Arctic region is a moderate

CH4 source (19 Tg yr−1; McGuire et al., 2012). However,

this estimate is fraught with uncertainty ranging from 8 and

29 Tg yr−1 (McGuire et al., 2012). This is attributed to the

flux variability across time and space that is poorly character-

ized as yet. Methane exchange is unevenly distributed across

the landscape (hot spots; Walter et al., 2006) and may oc-

cur during short periods of time (Mastepanov et al., 2008).

For reliable estimates of CH4 balance, continuous measure-

ments made across all important constituent land cover types

are required. The ideal way to achieve this is to apply cham-

ber and eddy covariance techniques in parallel. Such an ap-

proach has, however, rarely been adopted in Arctic investiga-

tions (Parmentier et al., 2011; Sachs et al., 2008). The eddy

covariance method allows continuous ecosystem-scale mea-

surement of methane exchange, while chamber techniques

aid in a proper characterization of the inherent site spatial

variability. The two methods employed simultaneously help

improve the accuracy of the regional flux estimates, as has

been shown for CO2 at this site (Marushchak et al., 2013).

In addition to increasing the accuracy of flux estimates,

processes underlying CH4 dynamics need to be better under-

stood. This is important for developing process-based bio-

geochemical models with an ability to simulate present and

future CH4 fluxes (Riley et al., 2011). In this respect, sta-

ble isotope analyses of CH4 have been useful as they pro-

vide valuable information on mechanisms of CH4 produc-

tion, transport, and oxidation (Chanton, 2005; Chanton et

al., 2005; Popp et al., 1999). The two dominant CH4 pro-

duction pathways, hydrogenotrophic (CO2 reduction) and

acetoclastic methanogenesis (acetate fermentation), discrim-

inate differently against 13C-isotope (Chanton et al., 2005).

Also, CH4 oxidation by methanotrophic bacteria favours the
12C-isotope, leaving the residual CH4 enriched with 13C

(Whiticar, 1999). Isotopic fractionation of CH4 released from

wetland to the atmosphere depends on the mode of its trans-

port. While ebullition and diffusion through the air–water in-

terface cause practically no fractionation, diffusive transport

through plant aerenchyma is slower for 13C-CH4, resulting in

lighter CH4 being emitted from the plants compared to that in

sediment porewater (Chanton et al., 2005). Knowledge on the

isotopic composition of CH4 from various ecosystem types

is also important for top-down modelling in which the aim

is to determine the relative contribution of different emission

sources to the atmospheric CH4 content (Riley et al., 2011).

Data on isotopic composition of C in peatland CH4 emis-

sions are sparse, especially from the Russian tundra ecosys-

tems (Sapart et al., 2013). A more detailed characterization

of CH4 emissions is highly relevant to better constrain global

CH4 sinks and sources, particularly in view of the growing

emphasis on the role of northern peatlands in the global C

cycle.

The present-day trends have revealed that the permafrost

temperatures in the discontinuous zone have risen by 2 ◦C

and the southern boundary of permafrost has retreated north-

wards in the Russian Arctic (Romanovsky et al., 2010).

Changes in permafrost extent and active layer thickness af-

fect vegetation composition (Christensen, 2004) and CH4

flux (Johansson et al., 2006) from northern wetlands. In a

study on permafrost dynamics of the Russian tundra (Anisi-

mov, 2007), permafrost temperatures have been projected to

increase by 2–3 ◦C by 2050 with a 15–25 % increase in the

active layer thickness and a 25 % increase in the CH4 emis-

sions from the northern Russian wetlands. Such projections

can be improved with a robust estimate of the magnitude of

CH4 fluxes, their spatial and temporal variability, and under-

lying mechanisms.

Our aim here is to provide an estimate of CH4 fluxes as

measured by two independent measurement techniques in a

subarctic Russian tundra region and to deepen our under-

standing of the factors regulating methane exchange in this

environment. To investigate methane fluxes and underlying

mechanisms in the Russian Arctic at various scales (from

plots to landscape), we used a set of methodological tools

including stable isotope investigations, EC- and chamber-

based flux measurement techniques and regional upscaling

by a fine-scale QuickBird satellite image-based land cover

classification scheme. We report here a full year of CH4

measurements by static chambers and gas gradient methods.

These methods were complemented by fluxes measured us-

ing the EC technique from early spring to autumn in 2008.

To the best of our knowledge, this is one of the rare studies

that employs multi-level approaches on CH4 dynamics over

various temporal and spatial scales in the Russian Arctic en-

vironment.

2 Materials and methods

2.1 Site description

This study was conducted in the subarctic tundra of the

Komi Republic, Northeast European Russia. The measure-

ment site is located near the village of Seida (67◦03′21′′ N,
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Figure 1. Land cover classification of the field site employing QuickBird satellite imagery. The eddy covariance (EC) tower is indicated by a

star, concentric lines drawn around the tower at 100 m intervals represent the EC footprint area. Areal coverage of fen and willow land cover

types in different sectors from the EC tower is shown in a table to the right of the figure, zero refers to north.

62◦56′45′ E, 100 m a.s.l.) and situated in the discontinuous

permafrost zone just above the northern treeline. Based

on the long-term climatic data from the Vorkuta station

(67◦48′ N, 64◦01′ E, 172 m a. s. l.) for the 1977–2006 pe-

riod, the mean annual temperature in the region is −5.6 ◦C,

with January being the coldest month (mean temperature

−20.4 ◦C) and July the warmest one (mean temperature

13.0 ◦C), and an annual precipitation of 501 mm. A more de-

tailed description of the site as well as information on per-

mafrost and carbon storage of the tundra soils of this re-

gion can be found in Hugelius et al. (2011), Marushchak et

al. (2011, 2013) and Biasi et al. (2013).

A high-resolution QuickBird satellite image (Fig. 1) was

used to map the distribution of the various land cover types

(LCTs) of the study area of 98.6 km2 (Hugelius et al., 2011;

Marushchak et al., 2013). In terms of areal coverage, the tun-

dra heath (58 %) and tundra bog vegetation (24 %) found es-

pecially on permanently frozen peat plateaus are the domi-

nant ecosystem types in the region followed by willow stands

(9 %), and various fen ecosystems (6 %). The peat plateaus

are spotted by unvegetated, patterned ground features – re-

ferred to hereafter as bare peat circles – which have been

studied by Repo et al. (2009) as they were found to emit

large amounts of N2O to the atmosphere. The willow stands

are typically 0.5–1.5 m in height and grow on low-lying ar-

eas with waterlogged soils. The dominating plant species be-

sides various Salix species are Carex aquatilis Wahl., Betula

nana L., Eriophorum russeolum Fries and Comarum palus-

tre L. Fens are found on littoral areas of thermokarst lakes

and on the edges of the frozen peat plateau peatlands. They

are mesotrophic and can be divided according to the dom-

inant vascular plant species into Eriophorum fens (domi-

nating vascular plant species Eriophorum russeolum Fries)

and Carex fens (dominating vascular plants Carex aquatilis

Wahl. and Comarum palustre L.). Sphagnum species domi-

nate the ground layer and form a dense mat floating on the

water together with vascular plant roots. Small lakes, mostly

of thermokarst origin, cover a minor part of the landscape

(1 %).

2.2 Instrumental setup and methodology

2.2.1 Plot-scale CH4 flux measurements at terrestrial

land cover types

Ten land cover types, each with three replicate measuring

plots, were established for the determination of CH4 fluxes

from the soil surface, three of them on water-logged wet-

lands, three on peat plateau and four on upland tundra.

Fluxes of CH4 were determined using the methodology de-

scribed in detail for nitrous oxide fluxes by Marushchak et

al. (2011). Fluxes were measured by the static chamber tech-

nique 11–16 times during the snow-free season from early

July to mid-October 2007 and 16–21 times during the snow-

free season from late May–early July until the beginning of

October 2008. In addition, CH4 fluxes were measured 2–5

times per plot during the snow cover period in January–June

with a snow-gradient method (Merbold et al., 2013). The

CH4 concentrations in the collected gas samples were anal-

ysed within three months from sampling using a gas chro-

matograph equipped with a flame ionization detector (Agi-

lent 6890N, Agilent Technologies Deutschland, Böblingen,

Germany). A leakage test with a high CH4 concentration

(15 ppm) showed that the reduction in gas concentration in

the sample vials over 2 months was less than 1 % (data not

www.biogeosciences.net/13/597/2016/ Biogeosciences, 13, 597–608, 2016
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shown). Flux calculation and the criteria to accept or reject

fluxes for further analysis are described in Marushchak et

al. (2011). Water table level (WT), active layer depth (AL),

soil temperature at 2 and 25 cm depths and vascular leaf area

index (LAI; only in 2008) were monitored at different land

cover types by manual and continuous measurements as de-

scribed by Marushchak et al. (2011, 2013). The adjustment

of moss surface to water table fluctuations on willow and

fen microsites was monitored in 2008 by a measuring pole

pushed through the peat profile down to the mineral soil.

2.2.2 Lake methane emission measurements

Release of CH4 by diffusion and ebullition pathways was

studied in three thermokarst lakes from July to August 2007

(11 samplings between days 191–239) and from June to Oc-

tober 2008 (19 samplings between days 182–276). The area

of the studied lakes was 0.03–3 ha with the maximum depth

ranging from 2.0 to 2.6 m and surface water pH from 4.6 to

5.5. Diffusive CH4 flux was calculated from CH4 concentra-

tion in the surface water and local wind speed using the thin

boundary layer (TBL) model (Liss and Slater, 1974). Sur-

face water samples were collected during daytime (8 a.m.–

19 p.m.). The determination of CH4 concentration with a

headspace method and flux calculation were carried out as

described in Repo et al. (2007). Linear interpolation was

used to obtain daily CH4 concentrations. The hourly aver-

aged wind speed measured at 2 m, normalized to 10 m us-

ing a logarithmic wind profile, was used to calculate hourly

flux rates. Ebullitive CH4 flux was monitored with perma-

nently installed, submerged funnel gas collectors (Repo et

al., 2007). Each lake had 6–7 replicate gas collectors (diam-

eter 0.35 m), which were sampled concurrently with surface

water sampling. Gas samples were stored and analysed as

described above.

2.3 Temporal extrapolation of plot-scale CH4 fluxes

The temperature dependence of CH4 flux was used to pro-

duce daily CH4 exchange rates during the snow-free period

for the land cover types with large CH4 fluxes: willow stands,

Carex fen and Eriophorum fen. Regression functions based

on air temperature and peat temperatures at 2 and 25 cm

were tested, and the best fit was obtained with temperature

at 25 cm. Addition of a water table term improved the model

fit in 2007 (helped explain 20 % additional variation in the

flux data) and resulted in a more realistic seasonal pattern, so

the following function was used:

CH4 flux (gCH4−Cm−2d−1)

= α×β(T−10)/10
× exp(γ×WT), (1)

where T is the soil temperature at 25 cm (◦C) and WT is the

water table level (cm). Model parameters were estimated for

each measurement plot individually using the SPSS 14.0 sta-

tistical software. The regression functions explained 85 % of

Figure 2. A comparison of observed and predicted CH4 fluxes

(n= 254) measured using chambers during 2007–2008 from dif-

ferent tundra wetland types in the Seida study site. The solid line

represents the linear least-squares fit of the data. Statistics from the

linear regression analysis are also shown in the figure.

the overall variability in fluxes across the different vegetation

types (Table 1; Fig. 2).

For the remaining terrestrial plots with low emissions and

for lakes, CH4 fluxes were integrated over time using lin-

ear interpolation for the days between the measurements as

described by Marushchak et al. (2011). Linear interpolation

was also used for willows and fens for the snow period when

the water table levels were not monitored. The annual fluxes

were calculated for the period from 6 October 2007 until the

termination of measurements on 5 October 2008.

2.4 Isotope analysis of emitted and porewater CH4

The δ13C-values of the emitted and porewater CH4 were de-

termined during summer 2007 and 2008 from the three sur-

face types with high water table and, thus, with a poten-

tial for high CH4 release: willow stands, Carex and Erio-

phorum fens. Gas samples were collected biweekly in 2007

from mid-July until late August (total five times) and twice

in 2008, in late June and in early August. Five gas sam-

ples were collected for the isotopic analysis during the time

of the chamber closure and injected into 35 mL glass vials

(Wheaton) topped with rubber septa and prefilled with N2

gas. Porewater at 5 and 30 cm depths was sampled from per-

manently installed gas collectors made out of perforated plas-

tic tubes following Maljanen et al. (2003). A water sample of

30 mL was taken in a 60 mL syringe, a similar volume of

synthetic CH4-free air was added and the syringe was then

shaken for 2 min, after which the gas phase was transferred

to a glass vial (Labco Exetainer) prefilled with pure N2. The

5 cm gas collector was occasionally above water table level,

in which case poregas was sampled and transferred directly

into a vial. Additionally, porewater was sampled from 4 to 5

Biogeosciences, 13, 597–608, 2016 www.biogeosciences.net/13/597/2016/
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Table 1. Summary of the empirical models used to generate the seasonal CH4 flux estimates for the different wetland land cover types at the

Seida study site. These seasonal estimates are based on chamber fluxes measured during the snow-free period. Models were fitted separately

for each measurement plot.

Site Year α β γ R2

Carex fen (n= 3) 2007 0.11–0.26 2.1–7.4 −0.06–0.01 0.18–0.84

2008 0.15–0.20 7.4–22.3 −0.02–0.04 0.78–0.83

Eriophorum fen (n= 3) 2007 0.04–0.11 3.3–3.7 −0.09–0.04 0.20–0.82

2008 0.06–0.09 5.3–35.3 −0.01–0.09 0.62–0.66

Willow stand (n= 3) 2007 0.14–0.22 1.6–5.1 0.02–0.05 0.77–0.87

2008 0.30–0.32 2.3–9.3 −0.01–0.07 0.79–0.94

depths extending down to 40–60 cm in June and August 2008

with a steel probe connected to a syringe. Also ambient air

samples were collected for isotopic analysis.

Isotope analyses of CH4 were done at the laboratories of

the University of Eastern Finland by gas chromatography

isotope ratio mass spectrometry (GC-IRMS; Thermo Finni-

gan Delta XP, Germany) equipped with a preconcentration

unit (Precon, Thermo Scientific, Germany; Dorodnikov et al.,

2013). If needed, samples were diluted. Values are expressed

as δ13C relative to VPDB (Vienna Pee Dee Belemnite Stan-

dard) using a standard gas with known 13C values. The stan-

dard error of five repeated measurements of isotope standard

was less than 0.5 ‰ for CH4. Methane concentrations of all

samples were separately analysed by gas chromatography

(Hewlett Packard 5890A) equipped with a flame ionization

detector (FID) for CH4 (Mörsky et al., 2008). The Keeling

plot method (Pataki et al., 2003) was used to determine the

δ13C-value of emitted CH4. According to this method, the

δ13C value of the emitted CH4 is obtained by plotting the

measured δ13C values against the inverse of CH4 concen-

trations, where the intercept of the linear equation with the

y axis is the δ13C value of the emitted CH4.

2.5 EC measurements

The landscape-scale CH4 fluxes were measured by the EC

technique during the period from mid-May to early Octo-

ber 2008. The CO2 fluxes, measured simultaneously with

the CH4 flux data presented in this paper, have already

been reported in Marushchak et al. (2013) and Kiepe et

al. (2013). Fluctuations in the vertical wind speed were mea-

sured at a height of 2.75 m above the ground using a three-

dimensional sonic anemometer (R3, Gill Instruments Ltd,

UK). A quantum cascade laser (QCL) spectrometer was used

for CH4 concentration measurements (Aerodyne Inc., USA).

The CH4 fluxes were calculated and corrected for theoretical

separation between instruments and attenuation of the CH4

signal in the intake tube using the software package, AltEddy

version 3.5 (Alterra, University of Wageningen, The Nether-

lands). Methane fluxes were further corrected for simultane-

ous flux of H2O (Webb et al., 1980). Further data process-

ing and quality control followed the standard methodology of

Aubinet et al. (1999) and Foken et al. (2005). Calculation of

the source area for the flux measurements followed the prin-

ciples described in Soegaard et al. (2000) and Marushchak et

al. (2013), where LCTs were based on a QuickBird satellite

image classification.

2.6 Regional CH4 emission

For area integration of the CH4 fluxes to the landscape and

regional level we used a land cover classification (Fig. 1;

Hugelius et al., 2011; Marushchak et al., 2013) that was

made based on a QuickBird satellite image acquired on 6

July 2007 (QuickBird© 2007, Digital Globe; Distributed by

Eurimage/Pöyry). The classification procedure is explained

in more detail in Virtanen and Ek (2014). The high resolu-

tion of the satellite image (2.4 m pixel size, four channels)

allowed accurate representation of the heterogeneous land-

scape, including fens that are distributed across the land-

scape as narrow stripes or patches (Virtanen and Ek, 2014).

The hourly chamber fluxes of different land-cover types were

weighted by their relative area contributions to estimate flux

values for the EC footprint and for the whole QuickBird area.

For rivers, we used a CH4 emission value of 1.33 g CH4 m−2

during summer, estimated for a river in the same region by

Heikkinen et al. (2004). A zero CH4 balance was assumed

for forest stands, sand, and impacted tundra.

3 Results

3.1 Climatic conditions during the study period

Plot-scale measurements of CH4 fluxes on terrestrial sites

and lakes were made primarily during the 2007 and 2008

growing seasons and less frequently during the cold sea-

son in between (Fig. 3a and b). A detailed discussion of

weather conditions during the study period can be found in

Marushchak et al. (2011). In brief, mid-summer temperatures

were higher than the long-term averages during both years,

and July was hotter in 2007 (17.9 ◦C) than in 2008 (15.8 ◦C).

The amount of precipitation received during the two growing

seasons was comparable to the long-term regional precipi-

tation. In 2008, a period from mid-May through early Oc-

www.biogeosciences.net/13/597/2016/ Biogeosciences, 13, 597–608, 2016
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Figure 3. Seasonal distribution of daily values of chamber and EC

measured CH4 fluxes during the period from July 2007 to October

2008. Top panel: raw data as measured by the chamber method at

dominant terrestrial land cover types (LCTs); Middle panel: daily

mean fluxes measured using chambers at terrestrial LCTs and lakes

interpolated over the study period; Bottom panel: a comparison of

the daily fluxes measured using EC technique with the plot-scale

chamber data integrated over the EC footprint area and over the

QuickBird map area for the whole study region of 98.6 km2.

tober was covered by simultaneous plot-scale and EC mea-

surements (Fig. 3c). In the beginning of this measurement

campaign, there was still a 90 % snow cover and soil tem-

peratures were below the freezing point. By early October,

the diurnal average air temperatures had again dropped close

to zero and the maximum active layer thickness varied from

41 cm to greater than 120 cm depending on the land cover

type.

3.2 Spatial variability in CH4 fluxes

Based on the plot-scale measurements, wetland sites (wil-

low stands and fens) were the emitters of high amounts

of CH4 to the atmosphere throughout the snow-free sea-

son (Fig. 3a). The CH4 fluxes increased in the order: Erio-

phorum fen < Carex fen < willow stands, with LAI of vascu-

lar plants explaining 88 % of the differences in fluxes among

the sites (Fig. 4). The annual CH4 emissions from these wet-

 

 

(a)

(b)

Figure 4. Correlation between cumulative seasonal CH4 fluxes with

(a) mean vascular LAI, (b) δ13C of CH4 flux recorded in different

wetland LCTs during the 2008 growing season.

land types were 11± 4.5, 37± 17, and 53± 8 g CH4 m−2, re-

spectively (the standard deviations indicate the flux variabil-

ity associated with replicate measurements). At willow and

Carex fen sites, the floating Sphagnum mat followed the fluc-

tuations in the ground water level. This dampened the am-

plitude of the water table level variation relative to the moss

surface. While the absolute amplitude of the water table level

at the fen sites in 2008 was 23 cm, this was reduced to about

10 cm relative to the moss surface as a result of the surface

adjustment. Consequently, the fen sites remained submerged

5–10 cm below the water level even during the driest part of

the growing season in July 2008. The willow LCT did not

have a floating moss layer but the mean water table was still

maintained close to the moss surface. The CH4 fluxes from

these sites showed a strong exponential dependence on soil

temperature at the individual plot level. Moreover, a strong

exponential relationship between CH4 flux and soil temper-

ature was also corroborated by EC measurements made on

the landscape level (Fig. 5). The drier peatland habitats – the

tundra bog and bare peat circles – were smaller CH4 sources

(0.2± 0.2 and 0.7± 1.1 g CH4 m−2 yr−1, respectively). The

upland tundra types were at times small sinks for atmo-

spheric methane during the season. When accumulated over

the entire season, they were close to being neutral, with the

CH4 emissions ranging from −0.03 to 0.13 g CH4 m−2.
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The annual CH4 emissions from the thermokarst lakes var-

ied from 2.1 to 5.3 g CH4 m−2 (mean 4.2 g CH4 m−2), and

thus were lower than for wetland sites (Fig. 3b). The mag-

nitude of total CH4 emissions as well as the importance of

diffusion vs. ebullition pathways varied strongly among the

lakes. The contribution of the ebullitive flux ranged from 5 to

94 % and was the highest in the biggest of the lakes with the

most intensive thermokarst processes occurring. The high-

est diffusive flux was observed in the smallest lake with the

least open water area. The seasonal mean CH4 concentration

in the surface water was 0.3–3.7 µmol L−1 in 2007 and 0.4–

8.0 µmol L−1 in 2008.

3.3 Isotopic signature of C-CH4 in emission and

porewater

The δ13C of CH4 flux did not show much variability among

the wetland types, years, or sampling dates (Table 2, Fig. 6).

The bulk average ±SD of δ13C in CH4 emitted across peat-

land types and years was −68.2± 2.0 ‰. During the June

sampling in 2008, the CH4 released from Eriophorum fen

was remarkably heavier than during the other samplings or

at other wetland types, which resulted in a high mean an-

nual δ13C-CH4 value. Methane emitted from wetlands was

lighter (δ13C more negative) than the porewater CH4 at 5 and

30 cm depth (Fig. 6). In most of the cases, δ13C of porewa-

ter CH4 at 5 cm (−52.3± 6.6 ‰) was heavier than that at

30 cm (−60.7± 2.8 ‰). The more detailed profile samplings

in 2008 revealed an overall trend of decreasing δ13C values

with depth (Fig. 7). Porewater CH4 in the rhizosphere (0–

20 cm) was enriched with 13C compared to deeper depths.

Also, CH4 released to the atmosphere was lighter than that

at any depth in the peat profile, except for the June sampling

at Eriophorum fen. A negative linear correlation was found

between δ13C in CH4 emission and vascular LAI across the

wetland plots (Fig. 4, the higher the LAI, the lighter the CH4

emitted; P < 0.0001).

3.4 Landscape-scale and regional CH4 balance

The fluxes of various land cover types were spatially ex-

trapolated over the EC footprint area and further over the

whole study region of 98.6 km2 using the data on the land

cover classification. When the plot-scale measurements were

scaled up to the EC footprint area, the CH4 flux estimate

(3.7 g CH4 m−2) obtained was larger than the estimate by

the EC technique (2.4 g CH4 m−2 for the whole EC measur-

ing campaign, Fig. 3c). An LAI map produced for the area

based on the QuickBird image (see Marushchak et al., 2013)

showed that the fen plots selected for the chamber measure-

ments had on average higher LAI (1.2) than the fens in the

region (0.7). If the linear relationship between CH4 flux and

LAI presented in Fig. 4 is used to correct the CH4 fluxes from

fens to account for the lower LAI in the landscape, the CH4

 

 
Figure 5. Dependence of CH4 flux measured using EC technique

from June until early October at fen surfaces on soil temperature.

The solid line represents the Q10 function fitted to the data using

a nonlinear least-squares fit (x is soil temperature, y is daily mean

methane flux, a represents the base methane flux rate and b is the

Q10 coefficient). The statistics generated from the regression anal-

ysis are also presented in the graph.

estimate was reduced to 2.8 g CH4 m−2. This is close to the

estimate based on EC measurements (Table 3).

The regional CH4 emission, without LAI correction for

fen fluxes, was 5.6 g CH4 m−2 for the EC measurement pe-

riod from May through September and 6.7 g CH4 m−2 for the

whole year. Contribution of the non-growing season to this

annual CH4 flux was 30 %. The higher emission compared

to the EC footprint area can be explained by higher coverage

of wetlands in the whole study region (willow coverage 8.7 %

vs. 1.6 %). In the EC footprint area there were more tundra

bog (39 %), fen (10 %), and lakes (9%) and less tundra heath

(41 %) and willows (2 %) than in the whole QuickBird area.

4 Discussion

In comparison with other studies of the Russian Arctic tun-

dra, the landscape-scale CH4 emissions estimated in the

present study are relatively low. Methane flux values pre-

sented here are comparable to those measured during June to

mid-September in the Lena River Delta (Sachs et al., 2008;

Wille et al., 2008). A seasonal (May–September) emission

of 2.4 g CH4 m−2 as measured by EC technique is less than

what has been reported for northeastern Siberia – e.g. Cor-

radi et al., 2005 (16 g CH4 m−2) and Van Der Molen et al.,

2007 (4 g CH4 m−2). The emissions reported in this study are

also lower compared to the work of Jackowicz-Korczyński

et al. (2010) in subarctic Scandinavia (25 g CH4 m−2). Emis-

sion rates reported here are similar to the rates measured by

Friborg (2003) during a summer season at a high Arctic fen

site in NE Greenland. Overall, CH4 emissions from this site
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Table 2. Isotopic signature (13C) of δ13C in CH4 emission of various tundra wetland types and magnitude of CH4 flux during isotope

sampling. Data are growing season means ±SD, n= 3.

Carex fen Eriophorum fen Willow stand

δ13C in CH4 flux 2007 −66.8± 2.5 −70.8± 1.1 −70.4± 2.6

2008 −66.6± 5.8 −64.3± 1.3 −70.5± 2.3

CH4 flux, mg CH4 m−2 d−1 2007 10.1± 1.0 3.4± 2.8 9.1± 2.4

2008 6.8± 1.3 1.5± 0.5 8.7± 0.2

Table 3. Methane balance of the eddy covariance (EC) tower footprint area and the whole study region of 98.6 km2 based on EC and area-

integrated plot-scale measurements. For the EC tower footprint area, chamber fluxes were corrected to account for the higher LAI on fen

measurement plots (see text for more details on why such a correction was necessary).

CH4 balance, g CH4 m−2 EC measuring campaign Annual

2008 (days 139–279) (days 280/2007–279/2008)

EC footprint area

EC 2.4 not determined

Plot-scale measurements, with LAI correction 2.8± 1.2 3.4± 1.6

Plot-scale measurements, without LAI correction 3.7± 1.5 4.4± 2.1

Study region of 98.6 km2

Plot-scale measurements, without LAI correction 5.6± 1.3 6.7± 1.8

are relatively low, owing to a low coverage of high-emitting

wetlands (less than 20 %). Nevertheless, it is evident from

our chamber measurements that the wet parts of the tundra

ecosystem in the Seida area emit CH4 at a rate equivalent or

higher than what has been reported for similar tundra habitats

in Russia (e.g. Heikkinen et al., 2004).

The area-integrated chamber measurements presented

here show higher fluxes than those measured by the EC tech-

nique (Table 3). This could be attributed to the disparity in

the distribution of different land cover types within and out-

side the EC tower footprint and to the variability associated

with the fluxes among various surface types as measured by

the chambers. The high variability among the surface types

accounts for the difference in the estimates by the two tech-

niques. For example, the fen plots measured with chambers

had higher LAI than the fens in the region in general. Based

on the relationship between CH4 flux and LAI, when we

corrected the chamber CH4 flux estimate for such a LAI

variation, the CH4 estimates based on the two independent

methods agreed with each other. Without this correction, the

chamber-based seasonal CH4 flux was higher than the EC-

based estimate (2.4 g CH4 m−2).

To characterize the CH4 released from the fens and willow

stands, we measured the δ13C values of CH4 in porewater and

surface emissions. The overall mean δ13C value of CH4 re-

leased to the atmosphere was −68.2 ‰. This value is within

the range of values reported for wetlands from the Arctic

including Siberia (McCalley et al., 2014; Sriskantharajah et

al., 2012). The δ13C value of CH4 from wetlands worldwide

is −59± 6 ‰ (McCalley et al., 2014). Generally, the iso-

tope signal of CH4 from wetlands appears to be rather con-

stant and sufficiently distinct from other large sources, e.g.

biomass burning (Monteil et al., 2011), supporting the use of

isotopes to better constrain sources and sinks of atmospheric

CH4 by inverse modelling.

We have shown here that the CH4 emitted from the sur-

face is substantially lighter than the porewater methane. The
13C depletion in the CH4 emission combined with rhizo-

spheric enrichment of 13C-CH4 suggests that a large part of

the emitted CH4 is transported from peat to the atmosphere

via plant aerenchyma, the gas exchange system of aquatic

plants. Diffusion through air-filled aerenchyma causes frac-

tionation against the heavier 13C-isotope, thus depleting the

δ13C of CH4 released from plants to the atmosphere (Chan-

ton et al., 2005). This in turn leaves rhizospheric CH4 en-

riched with δ13C. Accordingly, we observed less negative

δ13C of porewater CH4 in the rhizosphere than at greater

depths, where it presumably was unaffected by fractiona-

tion due to plant-mediated transport. Besides passive plant-

mediated transport, another process that causes δ13C deple-

tion of CH4 emissions relative to porewater CH4 is CH4 oxi-

dation during diffusion through the peat column. However,

the importance of oxidation is likely minor in these wet-

lands with such high water tables. Similar observations of

depleted CH4 in surface emissions compared to porewater

were made by others (Popp et al., 1999). It has been gener-

ally argued that plant-mediated transport accounts for a large

share of CH4 emissions in wetlands inhabited by vascular
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(a)

(b)

(c)

Figure 6. Mean and standard deviations in δ13C of emitted CH4

(red) and of CH4 contained in porewater samples collected from

5 cm (green) and 30 cm depths (yellow) of wetlands at the Seida

site during 2007 and 2008 growing seasons from (a) willow stands,

(b) Carex fens and (c) Eriophorum fens.

plants (Kutzbach et al., 2004; Riley et al., 2011; Van Der Nat

et al., 1998).

The assumption that plants play a role in the release of

CH4 from these sites is further supported by the negative cor-

relation between δ13C of emitted CH4 and LAI. The deple-

tion of 13C-CH4 with increasing LAI cannot be driven by the

influence of plant-derived C supply for methanogens (Riley

et al., 2011). On the contrary, this would have lead to a pos-

itive correlation: the acetate fermentation pathway that relies

on input of labile C compounds produces more enriched CH4

than CO2 reduction (Whiticar, 1999). The observation that

plants mediate CH4 release is important in the context of cli-

mate change. This implies that a significant part of the CH4

produced in the soil profile bypasses the oxic soil zones, thus

confounding the effect of water table variations.

Temperature records from the nearby Vorkuta station

(75 km north of the field site) show that the average air tem-

perature in the region rose by 0.9 ◦C from 1980–1999 to

 

 
Figure 7. Profiles of porewater δ13C-CH4 of wetlands at the Seida

site in June (red) and August (green) 2008. Yellow and blue verti-

cal lines represent δ13C of CH4 emitted during June and August,

respectively.

2000–2008 (P. Kuhry, personal communication, 2010). A cli-

mate scenario for the northern part of the Komi Republic, the

region within which the study site is situated, was developed

as part of the CARBO-North project using the IPCC-SRES

emission scenario A1B, which predicts a global warming of

2.8 ◦C by 2100 relative to today (Stendel et al., 2011). For the

northern part of the Komi Republic, a temperature increase

of nearly 7 ◦C relative to the average over the period 1980–

1999 is predicted by 2100. The clear Q10-type temperature

response of CH4 flux found in this study (Fig. 5) suggests

that warming of this magnitude could lead to a substantial

increase of CH4 emission. A crucial point in the assumption

is that the water table remains within a range favourable for

CH4 production despite the increases in evapotranspiration,

which can be expected due to the higher temperatures. The

floating peatland surface in fens typical of this area adjusts

to fluctuations in the water table. This implies that the fen

types might remain water-logged, even if other tundra habi-

tats would get drier. Additionally, the isotope data suggest
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that CH4 is released largely via plant aerenchyma thereby es-

caping its oxidation, implying relatively minor effects of wa-

ter table fluctuations. Moreover, the growth of willow stands

in the study area has been reported to be higher owing to

warmer temperatures (Forbes et al., 2010). Enhanced willow

stand productivity may further lead to increased CH4 emis-

sions, also evidenced by the fact that plants control the net

CH4 release. Based on the positive correlation between LAI

and CH4 flux, we estimate that a 50 % increase in the LAI

would favour enhanced release of CH4 to the extent of nearly

35 % from tundra wetlands in the study region.

While less uncertainty is associated with the direct effects

of temperature increase on the methanogenic processes, a

high degree of uncertainty does exist with respect to con-

sequences of temperature increases on the geomorphological

changes of the studied tundra landscape and their possible

impact on vegetation. In addition to the direct enhancement

of CH4 fluxes by higher temperatures, warming of 6.1 ◦C by

2100 relative to the present day will evidently cause thawing

of permafrost and result in landscape changes in the study

region. Our measurements of active layer thickness over the

season reveal that the seasonal active layer is deepest in the

wettest (low-lying) parts of the tundra, which are character-

ized by lakes, fens, and willow wetlands. A possible conse-

quence of the predicted warming could be that these wetland

cover types become more prevalent in the future. Based on

our results, willow stands and fen sites are the strongest emit-

ters of CH4. Any landscape change leading to the formation

and expansion of such wetland types owing to permafrost

thaw would further increase CH4 escape, thus providing a

strong positive feedback to climate change in the region.

5 Concluding remarks

Arctic tundra ecosystems are among the world’s fastest

warming biomes. These ecosystems, underlain by per-

mafrost, are extremely vulnerable to the impacts of anthro-

pogenic climate change. They have been a huge store for

organic C since the last glaciation in the area. The current

warming Arctic trend poses a threat to these ecosystems as

their soil temperature is likely to rise above 0 ◦C leading sub-

sequently to the thawing of the underlying permafrost. While

the fact that these ecosystems are fast undergoing changes

has been established with a fair degree of certainty based on

field data, how these ecosystems will respond to the future

climate is still uncertain. Therefore, with a view to under-

standing the future ecosystem responses better, regional stud-

ies aiming at a proper characterization of the atmosphere–

biosphere greenhouse gas (GHG) exchange in the Arctic

have been launched. To that end, the work presented in this

paper serves to provide the much-needed seasonal and an-

nual methane flux estimates from Northeast European Rus-

sia, a region not yet well represented in the Arctic studies.

Flux data on other GHGs (CO2 and N2O) from this study

site have already been reported in earlier publications (Repo

et al., 2009; Marushchak et al., 2011, 2013).

Owing to the spatially heterogeneous nature of the stud-

ied ecosystem (Virtanen and Ek, 2014), this study segre-

gated the site into several major land cover types employ-

ing a fine-scale land cover classification scheme. Chamber

techniques were used to measure CH4 fluxes during 2007

and 2008 growing seasons from replicate plots on 10 dif-

ferent LCTs. These data were useful in characterizing the

inherent variability in methane CH4 flux at the studied site.

To complement these plot-scale measurements, the EC tech-

nique was also used to characterize this ecosystem’s CH4

source strength. Employing empirical modelling and vascu-

lar leaf area data, the up-scaled plot-scale data agreed well

with the seasonal CH4 flux estimates obtained using the EC

technique. Soil temperature, water table level, and leaf area

were found to be the major factors controlling CH4 release

to the atmosphere. Growing season δ13C-CH4 isotopic anal-

yses confirmed the important role of plants in transferring

methane to the atmosphere. The data and process-level infor-

mation generated in this study are useful in the biogeochem-

ical modelling of C and N dynamics in Arctic ecosystems.
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