

Supplement of

Sources and transformations of anthropogenic nitrogen along an urban river–estuarine continuum

Michael J. Pennino et al.

Correspondence to: Michael J. Pennino (michael.pennino@gmail.com)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

23 **Contents of this file**

24

25 Introduction

26 Text S1. Methods

27 Text S1.1 Site Description

28 Text S1.2 Water Sampling and Analysis

29

30 Figure S1. Comparison of nitrate isotope box model results when using bottom $\delta^{15}\text{N}$ -
31 NO_3^- isotope value from (Horrigan et al. (1990), which reported the bottom water $\delta^{15}\text{N}$ -
32 NO_3^- value to be $\sim 10\text{\textperthousand}$.

33 Table S1. Potomac River Estuary sampling locations and coordinates.

34 Table S2. Comparison between box model (this study) and Chesapeake Bay Model
35 results.

36

37

38

39 **Introduction**

40 The supporting information contains additional details on the methods used for this
41 study and additional description of specific results and analysis of the data used in this
42 study. This supporting information also contains data to validate the box model analysis
43 used in the study and additional results that support the findings of the paper.

44

45 **Text S1. Methods**

46 **Text S1.1 Site Description**

47 The Potomac River drains water from both Maryland and Virginia and forms the
48 border between these two states. The entire Potomac River basin has a total drainage of
49 approximately 38,000 km² and is comprised of 16% cropland, 12% Pasture, 55% forest,
50 5% water and wetlands, 10% urban, and 3% other (Boynton et al. 1995). The upper
51 Potomac is freshwater and drains rural and agricultural areas above Washington D.C.,
52 while the Potomac River Estuary begins as tidal freshwater and salinity starts to increases
53 30 to 50 km downriver (Jaworski et al. 1992). The upper Potomac River Basin is
54 classified as 48% forested, 38% agricultural, and 14% urban (Karrh et al. 2007).

55 Sources of both nitrogen to the Potomac River include wastewater treatment
56 effluent (e.g. the Blue Plains Wastewater Treatment Plant), urban and agricultural runoff,
57 and atmospheric deposition. For the entire Potomac, the sources above the fall-line are
58 11.3% point, 84.6% diffuse, while the sources below the fall-line are 76.7% point, 15.4%
59 diffuse, and 5.4% atmospheric (Boynton et al. 1995). The study by Jaworski et al. (1992)
60 indicates that for the upper Potomac River, total nitrogen (TN) inputs are 27.5%
61 atmospheric deposition, 42.65% animal waste, 11.6% fixation and adsorption, 16%
62 fertilization, and 2.16% wastewater. The N outputs include 17.2% from river export,
63 17.1% from crop harvest, and 65.6% from other sinks and storage. Boynton et al. (1995)
64 also estimates that internal losses of TN for denitrification rates above the fall-line are
65 5.5% point, 16.3% diffuse of total inputs and losses, while the sources below fall-line are
66 19.9% point, 19.6% diffuse of inputs and losses.

67

68 Text S1.2 Water Sampling and Analysis

69

70 Three sets of routine sampling along the Lower Potomac were carried out (See

71 Figure 1). First, surface water was collected by small boat during seven separate months

72 between September 2009 through January 2011 above and below the Blue Plains

73 Wastewater Treatment Plant outfall (within 12 km). On each small boat cruise, 3-5

74 samples were collected longitudinally within 6 km above the wastewater outfall, one

75 sample was collected in the estuary at the Blue Plains effluent outfall, and 4-6 samples

76 were collected longitudinally within 12 km below the outfall. Monthly effluent samples

77 were also taken from the wastewater treatment plant before emptying into the estuary.

78 Second, monthly surface water samples were collected from nine Maryland Department

79 of Natural Resources sampling stations, located longitudinally down the Potomac River

80 Estuary, all the way to the Chesapeake Bay (from April 2010 to March 2011). Thirdly,

81 there were two larger multi-depth sampling cruises from 24 sampling stations along the

82 entire Lower Potomac River Estuary (August 2010 and May 2011). Samples were taken

83 at surface, middle and bottom depths during these two larger intensive sampling cruises.

84 See Table S1 for site coordinates for the sampling stations.

85 At each sampling location, a 1-liter plastic amber HPDE bottle (cleaned in 10%

86 HCl and distilled water) was used to take estuarine water samples. The surface water

87 samples were collected using a pump and hose on the boat at 0.5-meter depth. The 1-liter

88 bottle was then stored in a cooler, on icepacks until returning to the lab, where water was

89 stored in the refrigerator, until filtered within 24 hours.

90 Water was filtered through 47 mm/0.45 μm glass fiber filter. The filtered water

91 was then partitioned into two bottles: one 30 ml Nalgene bottle, one 60 mL glass amber

92 Quorpak bottle. The 30 mL Nalgene bottle was frozen and saved for nitrate isotope
93 analysis. The 60 mL amber bottle was stored in a refrigerator (at 4°C), to be analyzed for
94 fluorescence within 3-weeks. For quality assurance, blank samples and replicates were
95 taken. The concentration of all total and dissolved forms of N, P, C were measured by
96 Nutrient Analytical Services Laboratory (NASL) at Chesapeake Biological Laboratory
97 (CBL).

98

99 Text S1.3 Salinity vs. Nitrate Concentration and Isotope Mixing Plots

100 The following equations from (Middelburg and Nieuwenhuize 2001) were used
101 for calculating the mixing lines. End member values for these equations were based on
102 the salinity, nitrate concentration, and nitrate isotope values found at the furthest up-
103 estuary sampling station and furthest down-estuary sampling station (Table S2).

104

105 $S = f \times Sm + (1 - f) \times Sr$ (1)

106

107 $f = \frac{S-Sr}{Sm-Sr}$ (2)

108

109 $N = f \times Nm + (1 - f) \times Nr$ (4)

110

111 $\delta^{15}N = \frac{(\delta^{15}Nm \times f \times Nm + \delta^{15}Nr \times (1-f) \times Nr)}{N}$ (5)

112

113 Where,

114 S = salinity of sample

115 S_r = salinity of freshwater endmember
116 S_m = Salinity of marine endmember
117 f = seawater fraction
118 N = Nitrate concentration of sample
119 $^{15}N = ^{15}N$ nitrate of the sample
120 $^{15}Nr = ^{15}N$ nitrate of freshwater endmember
121 $^{15}Nm = ^{15}N$ nitrate of marine endmember
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

Table S1. Potomac River Estuary sampling locations and coordinates.

Shorter intensive synoptic surveys				Seasonal extensive synoptic surveys			
Site	Distance (km)	Latitude	Longitude	Site	Distance (km)	Latitude	Longitude
TF2.1	12.1	38°42'23.91"N	77°02'55.54"W	POTN28	-5.6	38°54'36.00"N	77°05'60.00"W
TF2.2	17.8	38°41'26.43"N	77°06'40.00"W	POTN27	-5.9	38°52'48.00"N	76°58'12.00"W
TF2.3	29.6	38°36'29.52"N	77°10'26.04"W	POTN26	-3.5	38°51'00.00"N	77°01'12.00"W
TF2.4	41.4	38°31'48.36"N	77°15'55.44"W	POTN25	1.2	38°49'48.00"N	77°01'48.00"W
RET2.1	55.6	38°24'12.60"N	77°16'08.76"W	POTN24	0.7	38°48'37.62"N	77°02'02.16"W
RET2.2	64.0	38°21'09.00"N	77°12'18.36"W	POTN23	11.8	38°42'30.96"N	77°02'40.32"W
RET2.4	87.9	38°21'45.36"N	76°59'26.27"W	POTN22	20.6	38°40'03.90"N	77°07'52.68"W
LE2.2	130.1	38°09'27.36"N	76°35'52.80"W	POTN21	20.6	38°40'16.86"N	77°08'01.86"W
LE2.3	156.6	38°01'17.40"N	76°20'51.72"W	POTN20	37.3	38°34'16.50"N	77°14'29.76"W
Monthly extensive synoptic surveys				POTN19	48.7	38°28'32.04"N	77°16'50.94"W
PR1	-6.6	38°52'22.65"N	77°02'12.28"W	POTN18	52.3	38°26'48.60"N	77°18'09.66"W
PR2	-5.4	38°51'44.88"N	77°01'57.52"W	POTN17	59.0	38°23'33.78"N	77°16'09.54"W
PR3	-6.1	38°51'52.86"N	77°00'32.14"W	POTN16	63.5	38°21'35.88"N	77°14'16.26"W
PR4	-4.2	38°51'04.71"N	77°01'19.83"W	POTN15	76.8	38°24'22.26"N	77°06'46.44"W
PR5	-2.7	38°50'18.55"N	77°01'35.62"W	POTN14	74.6	38°23'23.28"N	77°07'11.52"W
PR6	-1.8	38°49'48.63"N	77°01'45.26"W	POTN13	85.0	38°26'49.02"N	77°01'50.58"W
PR7	-0.8	38°49'15.85"N	77°01'50.84"W	POTN12	82.0	38°24'33.72"N	77°02'26.64"W
PR8	-0.4	38°48'49.46"N	77°01'54.32"W	POTN11	93.8	38°19'38.34"N	76°58'41.52"W
PR9	0	38°48'51.32"N	77°01'39.79"W	POTN10	95.8	38°17'56.16"N	77°00'21.60"W
PR10	0.26	38°48'43.10"N	77°01'39.62"W	POTN09	110.1	38°20'52.02"N	76°51'12.48"W
PR11	0.58	38°48'33.04"N	77°01'39.61"W	POTN08	111.8	38°18'35.64"N	76°50'24.96"W
PR12	1.1	38°48'19.45"N	77°01'55.69"W	POTN07	112.8	38°14'25.02"N	76°49'04.32"W
PR13	2.0	38°47'17.81"N	77°02'10.81"W	POTN06	115.8	38°11'24.90"N	76°49'16.86"W
PR14	3.5	38°46'57.39"N	77°01'50.51"W	POTN05	136.8	38°11'45.78"N	76°34'46.32"W
PR15	5.2	38°46'04.78"N	77°02'04.56"W	POTN04	135.8	38°09'38.10"N	76°36'01.86"W
PR16	8.0	38°44'33.36"N	77°02'10.33"W	POTN03	153.5	38°05'00.36"N	76°25'16.56"W
PR17	11.6	38°42'38.33"N	77°02'27.29"W	POTN02	156.7	38°02'24.60"N	76°25'11.94"W
				POTN01	158.4	38°00'41.58"N	76°25'45.00"W

*Distances are along the Potomac River, relative to the location of the Blue Plains wastewater treatment plant, at location 0 km.

141

Table S2. Endmember values* for salinity *vs.* nitrate concentration and isotope mixing lines

	Winter	Spring	Summer	Fall
Sr =	0.11	0	0	0
Sm =	15.8	11.0	14.2	16.7
Nr	1.44	1.09	0.3	0.83
Nm	0.0507	0.35	0.008	0.01
15Nr =	9.85	11.0	15.1	16.8
15Nm =	11.5	7.19	10.3	8.2
18Or	7.15	7.51	7.5	7.5
18Om	14.17	8.23	-5.4	-6.1

142 *Values are based on the concentration or isotope values obtained from samples at the most up-estuary (TF2.1) or down-estuary (LE2.3) sampling
 143 stations.

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

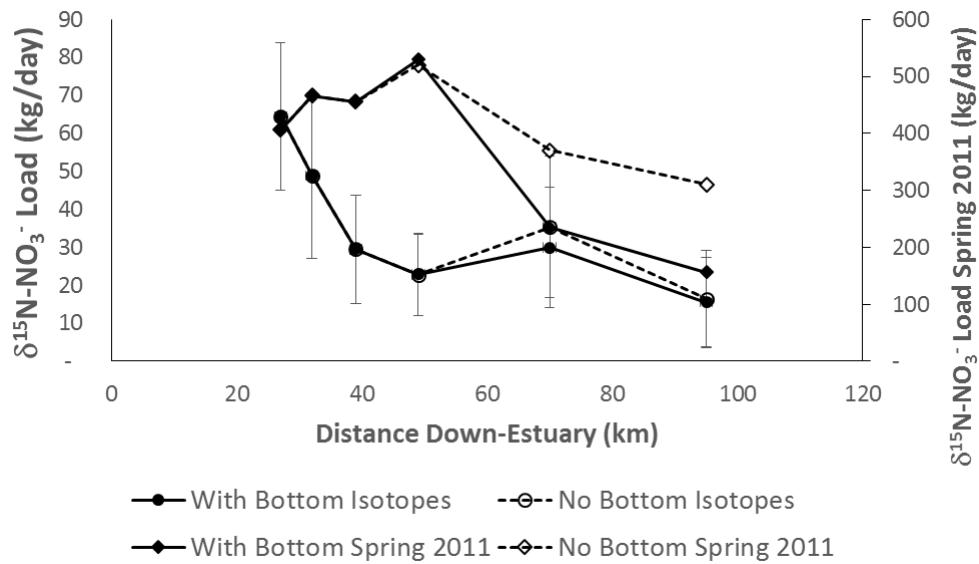
162

163

164

165

166


167

168

169
170**Table S3. Comparison between box model (this study) and Chesapeake Bay Model results.**

Season	Distance (km)	Box Model		Factor Difference	% Difference	Correlation Coefficient
		Flux (kg/day)	Bay Model Flux (kg/d)			
Winter	30	49,752	66,708	1	25	0.97
Winter	49	34,410	56,333	2	39	
Winter	95	19,844	26,926	1	26	
Spring	30	116,848	97,924	1	19	0.99
Spring	49	120,809	94,732	1	28	
Spring	95	68,431	55,274	1	24	
Summer	30	9,411	21,919	2	57	0.73
Summer	49	5,971	8,851	1	33	
Summer	95	4,853	15,496	3	69	
Fall	30	11,347	19,855	2	43	0.85
Fall	49	5,867	9,707	2	40	
Fall	95	(1,613)	9,790	(6)	116	

171

172

173 Figure S1. Comparison of nitrate isotope box model results when using bottom $\delta^{15}\text{N}$ -
 174 NO_3^- isotope value from (Horriigan et al. (1990), which reported the bottom water $\delta^{15}\text{N}$ -
 175 NO_3^- value to be $\sim 10\text{\textperthousand}$.

176

177

178

179

180

181

182

183

184

185

186

187

188

189 **References**

190 Boynton, W. R., J. H. Garber, R. Summers, and W. M. Kemp. 1995. Inputs,
191 transformations, and transport of nitrogen and phosphorus in Chesapeake Bay and
192 selected tributaries. *Estuaries* **18**:285-314.

193 Jaworski, N. A., P. M. Groffman, A. A. Keller, and J. C. Prager. 1992. A watershed
194 nitrogen and phosphorus balance - the upper Potomac River basin. *Estuaries*
195 **15**:83-95.

196 Karrh, R., W. Romano, S. Garrison, B. Michael, M. Hall, K. Coyne, D. Reynolds, and B.
197 Ebersole. 2007. Maryland Tributary Strategy Upper Potomac River Basin
198 Summary Report for 1985-2005 Data. Maryland Department of Natural
199 Resources.

200 Middelburg, J. J., and J. Nieuwenhuize. 2001. Nitrogen isotope tracing of dissolved
201 inorganic nitrogen behaviour in tidal estuaries. *Estuarine Coastal and Shelf*
202 **53**:385-391.

203