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Abstract. Earth observation-based long-term global vege-

tation index products are used by scientists from a wide

range of disciplines concerned with global change. Inter-

comparison studies are commonly performed to keep the

user community informed on the consistency and accuracy

of such records as they evolve. In this study, we compared

two new records: (1) Global Inventory Modeling and Map-

ping Studies (GIMMS) normalized difference vegetation in-

dex version 3 (NDVI3g) and (2) Vegetation Index and Phe-

nology Lab (VIP) version 3 NDVI (NDVI3v) and enhanced

vegetation index 2 (EVI3v). We evaluated the two records

via three experiments that addressed the primary use of such

records in global change research: (1) leaf area index (LAI),

(2) vegetation climatology, and (3) trend analysis of the mag-

nitude and timing of vegetation productivity. Unlike previ-

ous global studies, a unique Landsat 30 m spatial resolution

and in situ LAI database for major crop types on five con-

tinents was used to evaluate the performance of not only

NDVI3g and NDVI3v but also EVI3v. The performance of

NDVI3v and EVI3v was worse than NDVI3g using the in

situ data, which was attributed to the fusion of GIMMS

and MODIS data in the VIP record. EVI3v has the poten-

tial to contribute biophysical information beyond NDVI3g

and NDVI3v to global change studies, but we caution its use

due to the poor performance of EVI3v in this study. Overall,

the records were most consistent at northern latitudes dur-

ing the primary growing season and southern latitudes and

the tropics throughout much of the year, while the records

were less consistent at northern latitudes during green-up and

senescence, and in the great deserts of the world throughout

much of the year. These patterns led to general agreement

(disagreement) between trends in the magnitude (timing) of

NDVI over the study period. Bias in inter-calibration of the

VIP record at northernmost latitudes was suspected to con-

tribute most to these discrepancies.

1 Introduction

The normalized difference vegetation index (NDVI) (Rouse,

1974) is defined as (ρNIR−ρRED)/(ρNIR+ρRED), where ρNIR

and ρRED are surface reflectance in the near infrared (NIR;

0.725–1.10 µm) and visible red (0.58–0.68 µm), respectively.

As plants become more photoactive, they absorb more vis-

ible red light due to the chlorophyll content of leaves and

stems, and scatter more in the near infrared due to the align-

ment of cell walls (Tucker et al., 1994). This relationship,

detected by remote sensing instruments at the canopy scale,

has the effect of making the index increase (decrease) as the

density of the canopy increases (decreases; Tucker, 1979).

As such, NDVI has been used widely in global change re-

search with Earth observation remote sensing for three gen-

eral purposes: (1) the estimation of canopy properties related

to light-use efficiency, such as the leaf area index (LAI) and

fraction of photosynthetically active radiation intercepted by

the canopy (FPAR; e.g. Zhu et al., 2013), (2) representation of
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vegetation climatology in soil–vegetation–atmosphere trans-

fer models (e.g. O’ishi and Abe-Ouchi, 2009), and (3) de-

tection of trends in vegetation (e.g. de Jong et al., 2011) and

phenology (e.g. de Jong et al., 2012). Several agro-ecosystem

modeling applications fall into these categories, including

agro-climate forecasting (Funk and Brown, 2006), drought

monitoring (Karnieli et al., 2006), and crop yield estimation

(Xin et al., 2013). Although NDVI is widely used, it is sen-

sitive to atmospheric effects, soil background, and saturates

at high LAI. The enhanced vegetation index (EVI) was intro-

duced to overcome these limitations, as it includes a visible

blue band to reduce atmospheric effects, calibration terms to

reduce the effects of soil background, and does not saturate

as severely as NDVI at high LAI (Huete et al., 2002). EVI has

also been used in a wide array of global change studies, but

post 2000, when the Moderate-Resolution Imaging Spectro-

radiometric (MODIS) satellite sensor began retrieving visi-

ble blue reflectance (see Huete et al., 2010 for a review).

The Advanced Very High Resolution Radiometer

(AVHRR) is the most commonly used sensor for long-term

(i.e. pre-MODIS) global change studies, because it began

retrieving visible red and NIR reflectance needed to estimate

NDVI from 1981 (Brown et al., 2006). The AVHRR sensor

has been on board eight National Oceanic and Atmo-

spheric Administration (NOAA) satellites: 7 (1981–1985), 9

(1985–1988 and 1994–1995 descending), 11 (1988–1994),

14 (1995–2000), 16 (2000–2003), 17 (2003–2009), 18

(2005–present), and 19 (2009–present). Reflectance data

collected from the earlier AVHRR sensors (7, 9, 11, and

14) were difficult to process and synthesize, because they

lacked onboard calibration; the NIR channel was sensitive

to water, sun glint, glaciers at high latitudes, and clouds;

and of orbital drift (Rao and Chen, 1995, 1996). These

issues were rectified with the launch of the AVHRR sensors

onboard NOAA 16, 17, 18, and 19, but have resulted in

radiometric and spectral inconsistencies across sensors that

can significantly bias global change analyses (van Leeuwen

et al., 2006). Various methods have been developed to

make these data continuous and consistent through time,

but take different approaches and are frequently updated,

necessitating new accuracy assessments to inform the user

community as they evolve.

The Global Inventory Modeling and Mapping Studies

(GIMMS; Tucker et al., 1994) and Vegetation Index and Phe-

nology Lab (VIP; Didan, 2014) AVHRR products are ac-

tively used and frequently updated, but represent fundamen-

tally different approaches to synthesis. The NOAA Global

Vegetation Index (Jiang et al., 2010) is a category onto it-

self, since it is stationary and therefore not appropriate for

change detection. Both GIMMS and VIP are aggregated to

a 15-day time step from daily data and are calibrated with

higher spatial resolution sensors in the period that overlaps

NOAA 7, 9, 11, and 14 and NOAA 16, 17, 18, and 19.

However, before aggregation, the former undergoes minor ra-

diometric and spectral correction, while the later undergoes

rigorous atmospheric correction. Perhaps most importantly,

GIMMS is developed solely from AVHRR, while VIP is a

blend of the AVHRR 1981–1999 Long-Term Data Record

(LTDR) (Nagol et al., 2009; Pedelty et al., 2007) and MODIS

2000–present. Finally, the VIP product includes EVI2 (Jiang

et al., 2008), which is a red–NIR version of EVI that has

not been widely evaluated and can potentially provide addi-

tional biophysical information and improve the accuracy of

long-term global change analyses (Rocha and Shaver, 2009).

Given these differences, studies have been performed at the

global (Beck et al., 2011) and regional (Scheftic et al., 2014)

scale to assess the performance of older product versions.

Only one recent study compared the product versions ana-

lyzed in this study globally, but only for the consistency of

trends (Tian et al., 2015). There remains no general consen-

sus on which product is superior; however, GIMMS NDVI

tends to be more appropriate than VIP NDVI for trend anal-

ysis, because the combination of poor orbital drift correction

and blending between LTDR and MODIS potentially con-

tributes to large interseasonal variations in VIP NDVI. VIP

NDVI, on the other hand, may be more appropriate for es-

timating phenology (start of season, length of season, and

timing of peak NDVI) and other applications that require ab-

solute NDVI values. In each case, the performance of EVI2

was not evaluated nor was in situ data used for intercompar-

ison.

The aim of this study was to perform a global assessment

of the latest version of GIMMS and VIP over a 30-year pe-

riod (January 1982 to December 2011) in order to aid the

user (global change) community in interpreting results that

involve these data. In doing so, we helped resolve the su-

periority of one product over another. The assessment was

performed with three experiments that address the three ma-

jor themes of global change research that involve Earth ob-

servation remote sensing. Unlike other intercomparison stud-

ies, we evaluated EVI2 and used an agro-ecosystem database

comprised of relatively high spatial resolution Landsat and in

situ LAI sample pairs to assess the performance of each prod-

uct for agro-ecosystems in absolute terms. In addition, unlike

other studies, the trend analysis was performed not only on

the magnitude of change across the globe on an annual basis,

but also on the change in the timing of NDVI according to

the unique phenology in each hemisphere.

2 Data, processing, and analytical methods

2.1 Global Inventory Modeling and Mapping Studies

(GIMMS) normalized difference vegetation index

version 3 (NDVI3g)

The GIMMS vegetation index record evaluated is version

three, which is labeled as NDVI3g for the remainder of the

paper. Full details on the product version can be found in

Pinzon and Tucker (2014). The new product includes a se-
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ries of updates since the original GIMMS NDVI and second

generation NDVIg (Tucker et al., 2005) products. Like ND-

VIg, it is a non-stationary NDVI series at 15-day intervals

and 1/12◦ (∼ 8 km at the equator) resolution; corrected for or-

bital drift, Rayleigh scattering, and radiometric and spectral

inconsistencies over deserts; furthermore, takes an empirical

(Bayesian) approach to normalize overlapping AVHRR pe-

riods with another higher-resolution sensor that overlaps the

two periods. In addition, daily NDVI data are scaled to 15-

day composites using a maximum value compositing (MVC)

algorithm (Holben, 1986), which reduces further inconsis-

tencies in the daily data. The most unique development in

NDVI3g is the use of Sea-viewing Wide Field-of-view Sen-

sor (SeaWiFS) for intercalibration instead of the System Pour

I’Observation de la Terre (SPOT) sensors. This is intended to

reduce significant bias in NDVI at extreme northern latitudes

that has been observed in SPOT imagery (Guay et al., 2014).

2.2 Vegetation Index and Phenology Lab version 3

NDVI3v and enhanced vegetation index 2 (EVI3v)

The VIP vegetation index record evaluated is also in its

third version, which is labeled as NDVI3v and EVI3v for

NDVI and EVI2 data, respectively, for the remainder of the

paper. Further information on the product version can be

found in Didan (2014). Like previous versions, it is a non-

stationary series at 15-day intervals and 1/20◦ (∼ 5 km at

the equator) resolution; corrected using radiometric, drift,

and cloud screening procedures recommended in El Saleous

et al. (2000); an atmospheric algorithm that reduces the ef-

fects of Rayleigh scattering, ozone, aerosols, and water va-

por (Vermote et al., 1997); and takes an empirical (linear re-

gression by land cover type) approach for intercalibration.

Unlike GIMMS, SPOT is used for intercalibration and daily

data are aggregated to 15-day composites using the con-

strained view angle – maximum value composite (CV-MVC)

approach (Cihlar et al., 1997). Unlike MVC, CV-MVC does

not give preference to off-nadir values that may be higher

than true (at-nadir) values. Version three includes one no-

table improvement over version two, namely, the correction

of NDVI and EVI2 for sparsely vegetated areas pre-MODIS

era (Scheftic et al., 2014). EVI2 is derived from the following

equation and responds similarly to EVI (Jiang et al., 2008):

EVI2= 2.5
ρNIR− ρRED

ρNIR+ 2.4ρRED+ 1
. (1)

The VIP product contained persistent data gaps due to cloud

cover and other noise and was at a higher spatial reso-

lution than the GIMMS product, so additional steps were

taken to process it before the assessment. A MODIS filter-

ing algorithm described in Xiao et al. (2003) and Fensholt

et al. (2006). Data gaps due to cloud cover and poor data

quality were not gap-filled. The algorithm was considered a

compromise between preserving the actual data as much as

possible and filling missing data so that a reasonable com-

Figure 1. Percentage increase in pixels added (i.e. gaps filled) after

applying the temporal filter to Vegetation Index and Phenology Lab

version 3 records.

parison could be made. Figure 1 shows the percentage of

missing data filled by the filtering algorithm. On a monthly

basis, less than 20 % of the data was filled for the majority

of pixels. Notable exceptions were primarily in the mid- and

extreme latitudes during wintertime. The most severe case

was in southern Asia during the monsoon (June–September)

where more than 50 % of the pixels were filled by the fil-

tering algorithm. After the filter was applied, NDVI3g was

resampled to NDVI3v/EVI3v resolution using the gdalwarp

utility (http://www.gdal.org/gdalwarp.html) with default pa-

rameters. Missing values were then made consistent across

GIMMS and VIP, so that the summary statistics (experiment

two below) and trends (experiment three below) were cap-

tured only for the 15-day values that the two products shared.

The data sets were then resampled back to the native NDVI3g

spatial resolution for evaluation.

www.biogeosciences.net/13/625/2016/ Biogeosciences, 13, 625–639, 2016
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2.3 First experiment: evaluation of NDVI3g, NDVI3v,

and EVI3v with biophysical data

NDVI and EVI are most commonly used in global change

studies to capture FPAR, which drives canopy and light inter-

actions in soil–vegetation–atmosphere (SVAT) models and

other process-based models that estimate plant productiv-

ity and evapotranspiration (Glenn et al., 2008). Monsi and

Saeki (1953) found that light attenuation in the canopy fol-

lowed Beer’s law (Beer, 1852). This means that for a ran-

dom canopy with a spherical leaf angle distribution, LAI, the

second most commonly derived biophysical parameter from

NDVI and EVI, can be approximated from FPAR using the

following equation (Norman et al., 1995)

LAI=
− ln(1−FPAR)

k
, (2)

where k is an extinction coefficient and LAI is the leaf

area index (m2 m−2). Given the importance of NDVI and

EVI in estimating FPAR and LAI, standard regression tech-

niques were used to measure the relative ability of NDVI3g,

NDVI3v, and EVI3v to capture in situ LAI variability. It

is difficult to compare these records to in situ LAI di-

rectly, because the NDVI/EVI–LAI relationship is typically

scale dependent or non-linear (Friedl et al., 1995; Gao et

al., 2000; Hall et al., 1992; Huete et al., 2005). Therefore

FPAR derived from Landsat Thematic Mapper/The Enhanced

Thematic Mapper Plus (TM/ETM+) 30 m resolution sur-

face reflectance data was used intermediately to downscale

NDVI3g, NDVI3v, and EVI3v to 30 m resolution to facili-

tate the comparison.

2.3.1 Landsat Thematic Mapper/The Enhanced

Thematic Mapper Plus and in situ LAI

The Landsat TM/ETM+ surface reflectance and in situ LAI

data were extracted from a database that was developed to de-

termine the ability of Landsat-based NDVI, EVI2, and other

vegetation indices to predict LAI for field crops around the

world. Results of the analysis, along with a full description

of the database can be found in Kang et al. (2015). Figure 2

shows the distribution of the Landsat–LAI sample pairs in

the database. It includes nine major global field crops (bar-

ley, cotton, maize, pasture, potato, rice, soybean, sugar beet,

and wheat) and several less common fields crops classified

as “other” for purposes of this analysis. The in situ LAI was

determined using ground-based optical (LAI 2000, AccuPar,

and hemispherical) and destructive techniques and compiled

from a number of sources. These include AmeriFlux (http:

//ameriflux.ornl.gov/) and AsiaFlux (http://asiaflux.net/) re-

gional flux networks; experimental and validation projects

(e.g. Marshall and Thenkabail, 2015); the VALidation of

European Remote sensing Instruments project (Baret et al.,

2014); the Australian Airborne Cal/val Experiments for

SMOS project (Peischl et al., 2012); as well as data re-

trieved from peer-reviewed journals. For each LAI record

in the database, Landsat TM/ETM+ radiance was extracted

from the US Geological Survey archive within a ±15-day

window encompassing the date of in situ measurement and

converted to surface reflectance with the Landsat Ecosys-

tem Disturbance Adaptive Processing System (Masek et al.,

2006). NDVI and EVI2 were computed using the equations

above. In rare cases where more than one LAI observation

fell in a single Landsat pixel, the LAI values were averaged,

so that each in situ entry corresponded to a unique Landsat

NDVI/EVI2 value. After averaging, the data set consisted of

2086 LAI–Landsat pairs, which was subsequently reduced

to 1459 measurements after further quality control measures

described in Kang et al. (2015) were taken to remove incon-

sistent samples.

2.3.2 Downscaling long-term records with the fraction

of photosynthetically active radiation intercepted

by the canopy (Fpar) and evaluation with in situ

LAI data

Downscaling was performed by converting AVHRR and

Landsat vegetation indices to FPAR. Unlike the NDVI/EVI–

LAI relationship, the NDVI/EVI–FPAR relationship is quasi-

scale invariant (Asrar et al., 1992; Friedl et al., 1995; Gutman

and Ignatov, 1998; Myneni et al., 2002; Sellers, 1985), mean-

ing a coarse-resolution FPAR pixel is approximately equal

to the average of overlapping higher-resolution FPAR pixels.

In this study, on a per pixel basis, most of the in situ LAI

was retrieved only once, so using a ratio-based approach was

not feasible. Therefore, the AVHRR vegetation indices were

downscaled to 30 m spatial resolution by regressing (linearly)

Landsat FPAR and NDVI3g, NDIV3v, and EVI3v FPAR. In

order to reduce the impact of land cover dependence, the

models were developed for each crop.

The fraction of photosynthetically active radiation inter-

cepted by the canopy was computed using the ratio method

first proposed in Gutman and Ignatov (1998):

FPAR=
VI−VImin

VImax−VImin

, (3)

where VImin is the vegetation index (NDVI or EVI2) for bare

soil (LAI→ 0), and VImax is the vegetation index (NDVI or

EVI2) for dense vegetation (LAI→∞). VImin and VImax for

NDVI and EVI2 were set to 0.05 and 0.95 (Fisher et al., 2008;

Mu et al., 2007). These limits are sometimes considered de-

pendent on the spatial and temporal resolution and land cover

type (Zeng et al., 2000). However, the limits proved arbitrary

for downscaling purposes and using the range 0.05 to 0.95

guaranteed that fractions ranged from zero to one.

Once NDVI3g, NDVI3v, and EVI3v FPAR were down-

scaled to corresponding Landsat data, their performance was

evaluated by regressing them (linearly) with the in situ LAI

data. Since the relationship between FPAR and LAI is log-

arithmic, as shown in Eq. (2), standardized residual plots

(not shown) were made and linear transformations were per-
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Figure 2. Sites where in situ (destructive or optical) measurements and Landsat Thematic Mapper/The Enhanced Thematic Mapper Plus

ground reflectance data were compiled, resulting in more than 1400 data pairs. The sites are overlaid with 1 km grid cells that contain 5 % or

more crop area (Ramankutty et al., 2008).

formed to verify that the assumptions of normality were met.

In most cases, transformations were not required. The perfor-

mance of the final model selected in each case was charac-

terized by the coefficient of determination (R2), significance

tests, and root mean square error (RMSE).

Of the original 1459 Landsat–LAI data pairs, only 242

were used for the final analysis. The majority of the data

loss was due to considerable overlap of LAI data in space

and time, because they were collected without remote sens-

ing applications in mind: (1) LAI values that were captured

by the same coarse-resolution pixels were averaged along

with Landsat NDVI/EVI2 and (2) due to the presence of

missing values in the long-term records, LAI and Landsat

NDVI/EVI2 were averaged on a 15-day basis. These reduc-

tions led to small sample sizes for each crop. The sample

sizes for cotton and rice were so small that they were omit-

ted to avoid over-fitting. In order to increase the sample size

on a per-crop basis, two aggregations based on the presumed

similarity of crop spectral/canopy characteristics were made:

(1) barley and wheat (winter and spring varieties) were clas-

sified as wheat and (2) garlic, onion, potato, and sugar beet

were classified as tuber.

2.4 Second experiment: comparison of NDVI3g and

NDVI3v climatology used to parametrize SVAT

models

SVAT models traditionally were stand-alone and used to sim-

ulate the interaction of incoming solar radiation with the

canopy driven by FPAR and biogeochemical processes for

a single location, but are becoming increasingly coupled to

regional and global scale climate models and run over regu-

larized grids, given the importance of vegetation feedbacks

on the atmosphere (Quillet et al., 2010). A common data

set used to parameterize the FPAR component of SVATs is

the 0.15◦ resolution monthly climatology of AVHRR NDVI

(Gutman and Ignatov, 1998). Given the importance of the

FPAR climatology in SVATs, long-term summary statistics

for NDVI3g and NDVI3v were computed as part of the as-

sessment. EVI3v was not included in this experiment, be-

cause it does not have a GIMMS counterpart to compare it

to, has different and more well-documented statistical prop-

erties than NDVI, and it is derived from the same visible

red and NIR channels and underwent the same corrections

as NDVI3v making its comparison redundant. The summary

statistics were computed from the 15-day data, but the re-

sults are presented here on a monthly basis to reflect the

NDVI climatology used in SVATs. The summary statistics

included: mean, standard deviation, R2 from linear regres-

sion, and slope from linear regression. The mean and stan-

dard deviation statistics are most critical for understanding

the differences in NDVI climatology, while R2 and slope in-

dicate the strength, magnitude, and direction of the correla-

tion between the two data sets. All summary statistics are

presented with significance (p) ≤ 0.05. Non-linear correla-

tion statistics were also computed, but were not included, be-

cause they showed similar spatial patterns as the linear statis-

tics.

www.biogeosciences.net/13/625/2016/ Biogeosciences, 13, 625–639, 2016
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2.5 Third experiment: comparison of NDVI3g and

NDVI3v trends in magnitude and timing

(phenology)

Changes in the magnitude and timing (phenology) of plant

productivity are important for understanding how ecosys-

tems respond to climate change (Nemani et al., 2003). In

North America, for example, trend analysis of these changes

has revealed that global warming is driving an increase in

plant productivity and a lengthening of the growing season

(i.e. earlier green-up in the spring and later senescence in

the fall; Barichivich et al., 2013). The characterization of

the magnitude and phenology of productivity over a year

is typically estimated with empirical methods that include

NDVI and other bioclimatic predictors such as temperature

and relative humidity (e.g. Brown et al., 2012). In order to

avoid confounding the assessment of GIMMS and VIP with

other variables, harmonic regression (Eastman et al., 2009;

Jakubauskas et al., 2001) was performed on the vegetation

index records to measure the magnitude and timing of NDVI

on an annual basis. As with experiment two, EVI3v was not

evaluated in this experiment. A trend analysis was then per-

formed on the regression parameters to compare NDVI3g

and NDVI3v as surrogates for the change in magnitude and

timing of plant productivity over time.

The primary parameters of harmonic regression are the

amplitude (in this case the difference between peak and mean

NDVI) and phase (in this case timing of NDVI peaks and

troughs). Amplitude and phase are computed by fitting a se-

ries of sinusoidal functions to the time series (Eq. 3). The har-

monic regression was performed on a monthly basis for each

year. Monthly values were determined by taking the maxi-

mum NDVI of the two 15-day composites per month.

NDVIt = NDVI0+

j∑
i=1

Ai cos

(
2πit

N

)
+Bi sin

(
2πit

N

)
, (4)

where NDVIt is the predicted normalized difference vegeta-

tion index at month (t), NDVI0 is the annual monthly mean,

i is the number of harmonics up to the jth harmonic, N is

the number of samples (months) in the year, and A and B

are coefficients used to compute the amplitude and phase.

The regression was performed for the first harmonic, which

represents the primary growing season, because multimodal

systems (harmonics > 1) are uncommon and capturing them

risks over-fitting.

The change in amplitude and phase over time was quan-

tified using the Theil–Sen technique (Gilbert, 1987). The

Theil–Sen technique takes the median slope over all possi-

ble pairwise slopes through time. Unlike linear regression,

it does not require normality or homoscedasticity, making

it appropriate for trend analyses involving NDVI data (de

Beurs and Henebry, 2005). The significance of the amplitude

Figure 3. Scatter plots of the the fraction of photosynthetically ac-

tive radiation intercepted by the canopy (Fpar) vs. Landsat Fpar for

wheat (a–c) and pasture (d–f) estimated by the Global Inventory

Modeling and Mapping Studies normalized difference vegetation

index version 3, Vegetation Index and Phenology Lab version 3

normalized difference vegetation index, and Vegetation Index and

Phenology Lab version 3 enhanced vegetation index 2. The solid

lines represent the linear model used to downscale the vegetation

record for evaluation with in situ leaf area index.

and phase trends (p ≤ 0.05) was identified using the non-

parametric Mann–Kendall test. Since the primary growing

season in the Southern Hemisphere occurs over two given

calendar years, the trend analysis was repeated for the South-

ern Hemisphere by advancing the regression 6 months ahead

each year. This resulted in one less year or a 29-year trend

analysis for the Southern Hemisphere.

3 Results

3.1 First experiment: performance of long-term

records using Landsat FPAR and in situ LAI

The accuracy of each long-term record when compared to in

situ LAI was mixed, but NDVI3g performed moderately bet-

ter than NDVI3v and EVI3v. The scatter plots of predicted

(downscaled) NDVI3g, NDVI3v, and EVI3v FPAR vs. Land-

sat FPAR for wheat and pasture are shown in Fig. 3, while

the summary statistics of the linear models used to down-

scale the records for all crops with sufficient samples sizes

and reasonable correlations are shown in Table 1. The models

used to downscale NDVI3g yielded higher correlations and

lower error than the models used to downscale NDVI3v for

maize and wheat, while NDVI3v yielded higher correlations

and lower error for soybean and pasture, and EVI3v was the

most difficult to downscale of the three. Specifically, 1R2

for NDVI3g over NDVI3v was 0.04 for maize and 0.18 for

wheat, while 1R2 for NDVI3v over NDVI3g was 0.06 and

Biogeosciences, 13, 625–639, 2016 www.biogeosciences.net/13/625/2016/
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Table 1. Summary statistics (R2 is coefficient of determination,

m is slope, b is intercept, p is significance, and RMSE is root

mean square error) of the linear relationships between the frac-

tion of photosynthetically active radiation intercepted by the canopy

(FPAR) estimated by Landsat Thematic Mapper or Enhanced The-

matic Mapper Plus and FPAR estimated by the long-term vegetation

records (NDVI3g is Global Inventory Modeling and Mapping Stud-

ies normalized difference vegetation index version 3, NDVI3v is

Vegetation Index and Phenology Lab version 3 normalized differ-

ence vegetation index, and EVI3v is Vegetation Index and Phenol-

ogy Lab enhanced vegetation index 2).

Crop Product R2 m b p RMSE

Maize NDVI3g 0.33 0.61 0.416 < 0.001 0.178

N = 98 NDVI3v 0.29 0.73 0.201 < 0.001 0.183

EVI3v 0.26 0.65 0.178 < 0.001 0.163

Pasture NDVI3g 0.62 0.72 0.106 < 0.001 0.110

N = 22 NDVI3v 0.68 0.85 −0.100 < 0.001 0.101

EVI3v 0.71 0.81 −0.038 < 0.001 0.071

Soybean NDVI3g 0.40 0.82 0.146 < 0.001 0.168

N = 39 NDVI3v 0.47 1.09 −0.212 < 0.001 0.158

EVI3v 0.40 0.86 0.086 < 0.001 0.125

Wheat NDVI3g 0.59 0.86 0.222 < 0.001 0.148

N = 28 NDVI3v 0.40 0.84 0.058 < 0.001 0.177

EVI3v 0.27 0.74 0.096 0.004 0.140

0.04 for pasture and soybean. It is important to note, how-

ever, that the strength of the relationships were low across all

records with the exception of pasture, which could be due to

the homogeneity of pasture over large areas. The relationship

for tuber was so poor that it was not included in the LAI eval-

uation. The relationship between the downscaled NDVI3g,

NDVI3v, and EVI3v FPAR and in situ LAI are shown for

wheat and pasture is in Fig. 4, while the model statistics and

transformation for a linear comparison, are presented in Ta-

ble 2. The NDVI3g–LAI models captured in situ variabil-

ity better than NDVI3v and EVI3v for maize (1R2
= 0.06),

pasture (1R2
= 0.11), and wheat (1R2

= 0.10), with com-

parable results between NDVI3g and NDVI3v for soybean.

EVI3v tended to perform better than NDVI3v for two of the

crops: pasture (1R2
= 0.05) and wheat (1R2

= 0.04). As

can be seen in Fig. 4, however, the predictive power of EVI3v

could be inflated by leveraging at high LAI, i.e. EVI3v tends

to be more variable than NDVI3v at higher LAI.

3.2 Second experiment: similarity of NDVI3g and

NDVI3v climatology

On a monthly basis, NDVI3g and NDVI3v showed a high

level of consistency in terms of relative magnitude expressed

as R2 (Fig. 5) and direction expressed as slope (Fig. 6). Both

metrics were computed with the slopes forced through the

origin (0, 0). In the Northern Hemisphere, R2 approached

one after green-up (May) and progressively got stronger over

the boreal summer months (June, July, and August). The

poorest correlations (R2 < 0.7) were seen primarily at the

Figure 4. Scatter plots of in situ leaf area index for wheat (a–c) and

pasture (d–f) vs. corresponding Landsat resolution pixels down-

scaled from the Global Inventory Modeling and Mapping Studies

normalized difference vegetation index version 3, Vegetation Index

and Phenology Lab version 3 normalized difference vegetation in-

dex, and Vegetation Index and Phenology Lab version 3 enhanced

vegetation index 2 data sets. The solid lines represent the least-

squares model fit.

northern-most latitudes during the transition between boreal

winter and spring. Correlations were more consistent in the

Southern Hemisphere where snow and cloud cover was no-

tably less than in the north. A glaring exception, however,

was the Strut Stony Desert of South Central Australia, which

showed poor correlations during the transition between aus-

tral summer (December, January, and February) and fall. The

tropics showed high and significant correlations throughout

most of the year as well. The slopes followed a similar pat-

tern as the correlations, with values approaching a one-to-

one relationship (slope= 1.0) after the transition from winter

to spring in the Northern Hemisphere and consistently over

much of the year in the tropics and Southern Hemisphere.

The great deserts of the world and sparsely vegetated areas

had slopes approaching zero throughout the year. Since the

slopes were expressed with NDVI3v as the dependent vari-

able and the slopes were always less than one, NDVI3g was

always less than NDVI3v. The difference in NDVI3g and

NDVI3v magnitudes is more clearly shown in Fig. 7, which

illustrates the monthly latitudinal mean and standard devi-

ation for both. Mean NDVI3v was always higher and more

variable than NDVI3g. In addition, large divergence in means

between the two records occurred during senescence in the

Northern Hemisphere. Other patterns were more consistent:

NDVI3g and NDVI3v were high in the tropics throughout the

year and peaked and declined following the seasons in the

Northern and Southern hemispheres; and the standard devia-

tions for both were higher in the Northern Hemisphere than

the Southern Hemisphere due to continentally.
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Table 2. Summary statistics (R2 is coefficient of determination, m is slope, b is intercept, p is significance, and RMSE is root mean square

error) of the relationships between in situ leaf area index (LAI) and fraction of photosynthetically active radiation intercepted by the canopy

(FPAR) estimated by the downscaled long-term vegetation records (NDVI3g is Global Inventory Modeling and Mapping Studies normalized

difference vegetation index version 3, NDVI3v is Vegetation Index and Phenology Lab version 3 normalized difference vegetation index,

and EVI3v is Vegetation Index and Phenology Lab enhanced vegetation index 2). A logarithmic transformation was performed for soybean

to meet the assumptions of normality, while the in situ LAI from the other crops were not transformed.

Crop Product R2 m b p RMSE Transformation

Maize NDVI3g 0.28 7.02 −1.942 < 0.001 1.405 Linear

N = 98 NDVI3v 0.22 6.67 −1.695 < 0.001 1.461 Linear

EVI3v 0.21 7.87 −0.739 < 0.001 1.474 Linear

Pasture NDVI3g 0.49 4.65 −0.532 < 0.001 0.665 Linear

N = 22 NDVI3v 0.38 3.90 −0.244 0.002 0.733 Linear

EVI3v 0.43 5.46 0.097 < 0.001 0.704 Linear

Soybean NDVI3g 0.50 5.56 −3.264 < 0.001 0.756 Logarithmic

N = 39 NDVI3v 0.51 5.12 −2.991 < 0.001 0.753 Logarithmic

EVI3v 0.39 6.89 −2.713 < 0.001 0.838 Logarithmic

Wheat NDVI3g 0.35 4.29 −0.482 < 0.001 1.029 Linear

N = 28 NDVI3v 0.25 4.34 −0.504 0.007 1.107 Linear

EVI3v 0.29 7.92 −0.806 0.003 1.077 Linear

3.3 Third experiment: similarity of NDVI3g and

NDVI3v trends in magnitude and phenology

The two NDVI records exhibited a high level of correspon-

dence in maximum primary season NDVI (first harmonic

amplitude), both in direction and location (Fig. 8). In terms

of magnitude trends, however, NDVI3v was higher than

NDVI3g. The figure was masked for pixels that had complete

NDVI records to facilitate curve fitting in a given year and

then again for trends that were statistically significant over

the 30-year period. This resulted in no trends over much of

the northern latitudes. In addition, NDVI amplitudes ≥ 0.03

per year (or 1.0 over the 30-year period) and NDVI am-

plitudes ≤−0.03 (or −1.0 over the 30-year period) were

flagged as missing, since NDVI ranges from−1 to 1. In most

cases, however, the increase in absolute amplitude per year

was less than 0.01 or 0.3 over the 30-year period. Overall,

the positive NDVI3g trends appeared to be more consistent

spatially in several important cropping and grazing regions,

including the Great Plains of the United States; the Region

del Norte Grande of Argentina; the Iberian Peninsula (par-

ticularly Portugal); Lesotho, South Africa (east), and Swazi-

land; Ganges (India) and Indus (Pakistan) plains; the Sahel

of West Africa; and Cape York Peninsula (Australia). Neg-

ative trends (also more consistent in NDVI3g) appeared to

be primarily in the great deserts of the Northern Hemisphere.

In the Southern Hemisphere, however, some negative trends

were seen in the tropical forests of the Amazon and Congo

River basins.

The two records in terms of primary season timing (first

harmonic phase) showed a lower level of correspondence

than for amplitude (Fig. 9). As above, trends were not seen

over much of the Northern Hemisphere. In addition, the

NDVI phases ≥ 0.07 per year (or ∼ 2 months over the 30-

year period) and NDVI phases ≤−0.07 (or ∼−2 months

over the 30-year period) were flagged as missing, because

changes of more than 2 months were deemed aberrant. In

most cases, however, the absolute change in timing was less

than 2 months. As with trends in amplitude, the trends in

phase were more consistent spatially over both hemispheres

from NDVI3g. Earlier green-up (negative trend) represented

the majority of trends in the two data sets, though consid-

erably less than the increase in amplitude shown in Fig. 8.

Negative trends were seen over many important cropping and

grazing areas: California and the southwestern United States,

the Iberian Peninsula, the Sahel of sub-Saharan Africa, Iran

(east), South Africa (west), Turkmenistan (north), and over

much of the areas bordering the deserts of Australia. Later

green-up (positive trend) was primarily concentrated in the

great deserts (e.g. the Great Sandy and Gibson deserts of

northwestern Australia).

4 Discussion

This study assessed the latest versions of two non-stationary

and long-term vegetation index records used in global change

studies. The assessment was performed with three experi-

ments that addressed important global change applications,

namely, FPAR and LAI, vegetation climatology, and trend

analysis of vegetation magnitude and phenology. The results

of the analysis highlight important similarities and differ-

ences between the two records that the global change com-

munity should be aware of before using them for these ap-

plications: (1) NDVI3v was consistently higher and more

variable than NDVI3g, which in Tian et al. (2015) has been

attributed to artificial jumps in the record between AVHRR
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Figure 5. The coefficient of determination (R2) on a per-pixel basis

for the Vegetation Index and Phenology Lab version 3 normalized

difference vegetation index vs. the Global Inventory Modeling and

Mapping Studies normalized difference vegetation index version 3.

R2 was determined using a 30-year time series of 15-day compos-

ites for each month. The images have been masked for significance

≤ 0.05 and latitudes ranging from 60◦ N–60◦ S.

and MODIS periods and may contribute to relatively lower

correlations and higher errors with in situ LAI; (2) the per-

formance of EVI3v with in situ LAI compared to NDVI3g

was unexpectedly poor; (3) correlations between GIMMS

and VIP were the highest during the primary growing sea-

son; therefore, trends in peak NDVI were fairly consistent

between the two, both showing increases over much of the

globe and decreases in tropical rainforests; and (4) correla-

tions between GIMMS and VIP were lower during green-up

and senescence, which were most pronounced at high lati-

tudes where the NDVI3g product is expected to have much

lower bias due SeaWiFS inter-calibration. Overall, we rec-

ommend using NDVI3g over NDVI3v and EVI3v for vege-

tation climatology and trend analysis, because it is spatially

and temporally more consistent. Unlike previous studies,

however, the in situ LAI experiment revealed that NDVI3g

is better suited for absolute measurements as well.

Figure 6. The slope (intercept= 0) determined from linear regre-

sion on a per-pixel basis for the Vegetation Index and Phenology

Lab version 3 normalized difference vegetation index vs. the Global

Inventory Modeling and Mapping Studies normalized difference

vegetation index version 3. Slope was determined using a 30-year

time series of 15-day composites for each month. The images have

been masked for significance ≤ 0.05 and latitudes ranging from

60◦ N–60◦ S.

4.1 First experiment: performance of long-term

records using Landsat FPAR and in situ LAI

Unlike previous inter-comparison studies, a unique moder-

ate resolution remote sensing and in situ LAI database for

agro-ecosystems was used for accuracy assessment. In most

cases, NDVI3g was more accurate than NDVI3v or EVI3v.

EVI3v performed considerably worse than NDVI3g, which

is surprising, because EVI tends to be better correlated than

NDVI from other sensors with canopy structural properties

(Huete et al., 2002). Earlier studies have suggested that the

LTDR NDVI from which MODIS data are merged in the VIP

product is more appropriate for modeling applications requir-

ing absolute values (Beck et al., 2011), meaning NDVI3v

should reproduce more accurate estimates of FPAR and LAI

than NDVI3g, but this was not the case in this study. Tian

et al. (2015) assessed NDVI3v. They attributed jumps in the

www.biogeosciences.net/13/625/2016/ Biogeosciences, 13, 625–639, 2016
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Figure 7. The latitudinal mean (solid line) and standard deviation

(ribbon) of the Global Inventory Modeling and Mapping Studies

normalized difference vegetation index version 3 (blue) and Vegeta-

tion Index and Phenology Lab version 3 normalized difference veg-

etation index (black) over 30 years. Values are shown from 60◦ N–

60◦ S.

NDVI3v record to poor orbital drift correction and the break

in the LTDR and MODIS records in 2000. The reason for the

poor performance of EVI2 is less clear, but clearly needs to

be addressed in future work, given its potential importance to

advancing global change research.

If users require the higher spatial resolution offered by VIP

and the added biophysical information afforded by EVI3v

for application purposes, several options exist for improving

their accuracy. Perhaps the most important would be to fill

the remaining data gaps in the filtered VIP data sets gener-

ated here with smoothed data (see Kandasamy et al., 2013

for examples), which will address some of the noise in the

data observed in Tian et al. (2015) and this study. Another

option widely used in the climate modeling community, is to

generate an ensemble mean of NDVI3v and NDVI3g to ac-

count for some of the bias and uncertainties in each product.

Finally, instead of using EVI3v, the red and NIR channels

included in the VIP database could be used to calculate the

Soil Adjusted Vegetation Index (SAVI; Huete, 1988) instead.

Unlike EVI2, SAVI has undergone extensive evaluation.

4.2 Second experiment: similarity of NDVI3g and

NDVI3v climatology

NDVI3g and NDVI3v showed a high level of agreement with

one another at mid-latitudes during the primary growing sea-

son and in the densely vegetated tropics throughout most of

the year, and a low level of agreement at high latitudes dur-

ing winter months and in the sparsely vegetated sub-tropics

throughout most of the year. The high level of agreement is

expected, because data gaps, cloud contamination, and atmo-

spheric water vapor is less at mid-latitudes during summer

months (Beck et al., 2011; Moulin et al., 1997). The high

level of agreement in the tropics was more surprising, be-

cause data gaps and cloud contamination are persistent there

throughout much of the year, typically leading to large dis-

crepancies among records (Brown et al., 2006). However,

as previously stated, many contaminated pixels were omit-

ted from the analysis. The large discrepancy at high latitudes

could have been due to factors other than cloud contami-

nation and other noise, including the (1) presence of snow

cover; (2) high frequency of off-nadir pixels, which would

impact the results of the compositing algorithm (MVC vs.

CV-MVC); and, perhaps most importantly, (3) use of Sea-

WiFS over SPOT for GIMMS inter-calibration (Hall et al.,

2006). The large discrepancy in deserts and sparsely vege-

tated areas on the other hand was most likely due to the dom-

inance of soil in the signal and sensitivity of NDVI to soil

wetness (Jiang et al., 2006). With the high level of correlation

during the primary growing season and higher and more vari-

able NDVI3v, users should expect NDVI3v climatology dur-

ing the primary growing season to be higher at mid-latitudes

and in the tropics throughout most of the year, but consis-

tent with changes in NDVI3g. During winter months, es-

pecially at high latitudes and in semi-arid to arid subtropi-

cal regions, where SeasWiFS inter-calibration is less biased,

NDVI3v will be higher, more variable, and less accurate than

NDVI3g.

4.3 Third experiment: similarity of NDVI3g and

NDVI3v trends in magnitude and timing

NDVI3g and NDVI3v both showed greening (positive

NDVI amplitude) globally, with localized browning (neg-

ative NDVI amplitude) over a 30+ year time frame, but

the magnitude of the trends in the latter was higher. There-

fore, trend analyses of peak NDVI or annual means will be

higher in NDVI3v than NDVI3g, but the direction will be

the same. The direction of change in general corroborated

previous global studies. The gain or loss of plant produc-

tivity is generally attributed to biophysical drivers (tempera-

ture and precipitation), human-related change, and disconti-

nuities in the long-term record (de Jong et al., 2012). At mid-

latitudes, warming (cooling) at the beginning of the growing

season can lead to greening (browning) in areas where wa-

ter supplies are ample. In North America east of the Great
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Figure 8. The change in maximum normalized difference vegetation index (NDVI) per year (yr) from the (a) Global Inventory Modeling and

Mapping Studies (GIMMS) and (b) Vegetation Index and Phenology Lab (VIP) records. The upper panals represent the Northern Hemisphere

(30-year change) and the lower panels represent the Southern Hemisphere (29-year change). The trends have been masked for significance

≤ 0.05.

Figure 9. The change in timing of the normalized difference vegetation index (NDVI) per year (yr) from the (a) Global Inventory Modeling

and Mapping Studies (GIMMS) and (b) Vegetation Index and Phenology Lab (VIP) records. The upper panals represent the Northern

Hemisphere (30-year change) and the lower panels represent the Southern Hemisphere (29-year change). Negative values indicate earlier

green-up/scenence, while positive values indicate later green-up/scenence. The trends have been masked for significance ≤ 0.05.
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Plains, for example, greening was observed in NDVI3g and

NDVI3v, which has been attributed to temperature-driven in-

creases in plant productivity in previous studies (Wang et al.,

2011). Increased rainfall (droughts) proceeding or during the

growing season can lead to greening (browning) particularly

in water-limited regions such as the Sahel. As shown here,

the Sahel has experienced greening over the past 30+ years.

This greening, typically referred to as the “re-greening of the

Sahel” is defined in other studies as the increase in woody

biomass (Brandt et al., 2015) that followed the recovery of

rains in the 1990s after 2 decades of severe droughts driven

by below normal sea surface temperatures in the subtropical

North Atlantic (Giannini et al., 2013). Deforestation is per-

haps the most appreciated human driver of plant productiv-

ity. Browning in the Amazon and Congo River basins, as was

shown in this study, has been attributed to widespread defor-

estation in previous studies (Hansen et al., 2010; Mayaux et

al., 2013), though other drivers, such as the shift in Walker

circulation potentially contribute to the loss as well (Zhou et

al., 2014). Greening was observed in tropical rainforests as

well and this has been attributed in previous studies to rapid

regrowth after deforestation, the way VIs are composited,

and the methods by which trends are detected (Beck et al.,

2011). Some of the trends disagree with previous research

and should be addressed in future studies. Most prominent

were that no trend was detected at extreme northern latitudes,

though previous studies have shown summer drought-driven

declines in boreal forest productivity (Goetz et al., 2005),

and positive trends were detected for the Region del Norte

Grande of Argentina, though previous studies have shown

negative trends attributed to the rapid encroachment of agri-

culture into subtropical forests of the region (Paruelo et al.,

2004).

NDVI3g and NDVIv both showed earlier green-up (nega-

tive NDVI phase) more than later green-up (positive NDVI

phase), but they were less consistent with one another com-

pared to trends in peak NDVI. NDVI3g and NDVI3v showed

low correlations during green-up and diverging climatology

during senescence, which could lead to discrepancies in the

timing of start of season (SOS) and end of season (EOS).

Global studies seldom analyze trends in vegetation timing.

On a regional basis, however, the findings appear to be less

consistent with previous studies. Over the majority of north-

ern regions, for example, SOS has been retreating as shown;

however unlike this study, previous studies have shown that

EOS has been advancing. The combination of the two pro-

cesses has led to a longer growing season attributed primar-

ily to asymmetric and rising global temperatures. One of the

limitations of the harmonic approach taken in this study is

that it is rigid, i.e. it assumes that the time series oscillates

at a regular interval over the year. In the future, a harmonic

or other phenological model that accounts for SOS and EOS

asymmetry may be more appropriate for accurate trend anal-

ysis.

5 Conclusions

This paper revealed important similarities and differences

of two new long-term vegetation databases: (1) Global In-

ventory Modeling and Mapping Studies normalized differ-

ence vegetation index version 3 (NDVI3g) and (2) Vegeta-

tion Index and Phenology Lab version 3 NDVI (NDVI3v)

and enhanced vegetation index 2 (EVI3v). Overall, NDVI3g

performed better and more consistently than NDVI3v and

EVI3v in the three experiments designed to evaluate the

two products in absolute terms and changes in magnitude

and timing. VIP tended to be higher in magnitude, more

variable, and less consistent in terms of trends, due primar-

ily to the blending of two sensors with different attributes

(AVHRR with MODIS). GIMMS, on the other hand only

uses AVHRR. The two databases showed a high level of

consistency during the primary growing season, which con-

tributed to similar changes in the relative magnitude and

direction of plant productivity climatology and dynamics,

which are critical to global change research. The two prod-

ucts were less consistent in timing, especially at the start

and end of the primary growing seasons at high latitudes.

It is suspected that these poor correlations are attributed to

the higher-resolution sensors each product uses for intercal-

ibration. In conclusion, we suggest users requiring a long-

term product to measure biophysical parameters, vegetation

climatology, and trends in plant productivity magnitude and

timing to use NDVI3g and to avoid using EVI3v.
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