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Abstract. Recent studies have shown that semi-arid ecosys-
tems in Australia may be responsible for a significant part
of the interannual variability in the global concentration of
atmospheric carbon dioxide. Here we use a multiple con-
straints approach to calibrate a land surface model of Aus-
tralian terrestrial carbon and water cycles, with a focus on in-
terannual variability. We use observations of carbon and wa-
ter fluxes at 14 OzFlux sites, as well as data on carbon pools,
litterfall and streamflow. We include calibration of the func-
tion describing the response of heterotrophic respiration to
soil moisture. We also explore the effect on modelled interan-
nual variability of parameter equifinality, whereby multiple
combinations of parameters can give an equally acceptable
fit to the calibration data. We estimate interannual variabil-
ity of Australian net ecosystem production (NEP) of 0.12–
0.21 PgC yr−1 (1σ ) over 1982–2013, with a high anomaly
of 0.43–0.67 PgC yr−1 in 2011 relative to this period associ-
ated with exceptionally wet conditions following a prolonged
drought. The ranges are due to the effect on calculated NEP
anomaly of parameter equifinality, with similar contributions
from equifinality in parameters associated with net primary
production (NPP) and heterotrophic respiration. Our range of
results due to parameter equifinality demonstrates how errors
can be underestimated when a single parameter set is used.

1 Introduction

The growth rate of carbon dioxide (CO2) in the atmosphere
has significant interannual variability, mostly driven by vari-
ability in CO2 uptake by terrestrial ecosystems (Rayner et al.,
2008; Bastos et al., 2013; Le Quéré et al., 2015). Recent

studies have shown that while mean terrestrial CO2 uptake
is dominated by tropical forests, the trend and interannual
variability in terrestrial uptake are dominated by semi-arid
ecosystems (Poulter et al., 2014; Ahlström et al., 2015; Liu
et al., 2015). Uptake of CO2 by land (net ecosystem pro-
duction, NEP) is the balance between net primary produc-
tion (NPP) and heterotrophic respiration, and NPP rather
than heterotrophic respiration appears to be the main driving
mechanism behind variability in the land sink (Poulter et al.,
2014; Ahlström et al., 2015). Evidence from ecosystem mod-
els, atmospheric inversions and satellite observations (Poul-
ter et al., 2014; Detmers et al., 2015) suggests that a strong
land carbon sink in 2011 (Le Quéré et al., 2015; Bastos et al.,
2013) was driven by growth of semi-arid vegetation in the
Southern Hemisphere, with a large contribution from Aus-
tralia associated with wet conditions of an extraordinary La
Niña event following a prolonged drought.

Here we use the BIOS-2 implementation for Australia
(Haverd et al., 2013a) of the Community Atmosphere Bio-
sphere Land Exchange (CABLE) land surface model (Wang
et al., 2010, 2011), described in detail in Sect. 2.1, to explore
interannual variability (IAV) in Australian carbon fluxes be-
tween 1982 and 2013. This work builds on the study by
Haverd et al. (2013b) that used BIOS-2 to estimate the mean
carbon budget for Australia. We use a multiple constraints
approach (Raupach et al., 2005) to optimise model parame-
ters. We include some improvements to the model structure
and forcing data (specifically, optimisation of the function
describing the sensitivity of heterotrophic respiration to soil
moisture, which has been shown by Exbrayat et al. (2013a)
to be important for modelling NEP, and an improved prod-
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uct for vegetation cover). The implementation of the model
described here is denoted BIOS-2.1.

We are also interested in the effect of uncertainty in model
parameters on modelled IAV. It is now widely recognised
in many areas of research that there is usually no single
“true” parameter set, but that there may be many parame-
ter sets for a given model structure that are equally accept-
able for simulating the data. There are different aspects to
this. First, two or more parameters may have a similar effect
on model outputs, so can be difficult to distinguish. This is
called equifinality (Aalderlink and Jovin, 1997; Beven, 2006;
Tang and Zhuang, 2008) and leads to correlated errors in
the estimates of model parameters. Whether parameters are
uniquely identifiable from comparison of model outputs with
observations will depend on how the model is formulated
(over-parameterisation will increase the chances of equifi-
nality), and what types of observations are used to calibrate
the model. Different kinds of measurements, or measure-
ments with information about processes acting on different
timescales, will constrain different model parameters (Luo
et al., 2009); therefore, thought should be given to whether
the available observations are likely to contain information
about parameters of interest. Second, even without compen-
satory parameters, all models and the observations used to
calibrate them are in error to some extent. Therefore, there
is no reason to believe that the global optimum parameter
set is more correct than other parameter sets that fit the ob-
servations to a lesser, but still acceptable, extent (Beven and
Binley, 1992).

Although global search methods like Markov chain Monte
Carlo can usually do a more thorough search of parameter
space than down-gradient methods, they are much more com-
putationally expensive. Ziehn et al. (2012) showed that both
can do a good job at obtaining the probability density func-
tion for parameters in a land surface model. Here we use a
down-gradient search method to optimise a set of model pa-
rameters, with an efficient method (null-space Monte Carlo)
to explore parameter equifinality.

The objectives of this study are to use multiple observa-
tion types to constrain the IAV of terrestrial carbon fluxes for
Australia. Specifically, multiple observation types are used to
optimise parameters in BIOS-2.1, by generating an ensemble
of acceptable parameter sets that will allow us to see the ef-
fect of parameter equifinality. We then use these parameter
sets in the model to calculate IAV in Australian NEP over
recent decades. We are interested in the following questions.
What is our best estimate of IAV in Australian carbon fluxes?
How does parameter equifinality affect modelled estimates of
IAV and the 2011 anomaly for Australia? How does parame-
ter equifinality effect estimates of the processes contributing
to IAV in NEP, including NPP and heterotrophic respiration
and the effect of soil moisture on heterotrophic respiration?
The outline of the paper is as follows. In Sect. 2 we describe
the model, the forcing data, the observations used for calibra-
tion and validation, and the optimisation method. In Sect. 3

we present results, followed by a discussion in Sect. 4 and
conclusions in Sect. 5.

2 Methods

2.1 BIOS-2.1 model

Haverd et al. (2013a) described an implementation of the
CABLE land surface model (Kowalczyk et al., 2006; Wang
et al., 2011), CASA-CNP biogeochemical model (Wang
et al., 2010) and Soil–Litter–Iso (SLI) soil model (Haverd
and Cuntz, 2010) for Australia at fine spatial resolution
(0.05◦×0.05◦ grid, which is roughly 5 km×5 km) using daily
meteorology (downscaled for CABLE using a weather gen-
erator). This composite model and environment was referred
to as BIOS-2, and makes use of the modelling environment
built for the Australian Water Availability Project (AWAP)
(King et al., 2009; Raupach et al., 2009). Modifications to
CABLE, SLI and CASA-CNP for use in BIOS-2 are de-
scribed in Haverd et al. (2013a). Some of the main features
are as follows: plant functional types are not used; instead,
each cell is partitioned into woody and grassy tiles. CABLE
was run at an hourly time step, and daily values of GPP (gross
primary production), soil moisture and soil temperature were
used to drive CASA-CNP at daily time steps. Nitrogen and
phosphorous cycles in CASA-CNP were disabled, and land
management was not considered explicitly.

Here we extend this work as described in the follow-
ing sections, with a new implementation for Australia de-
noted BIOS-2.1. We optimise model parameters for CABLE
and CASA-CNP separately, using the method described in
Sect. 2.4. The model parameters that are optimised are given
in Tables 1 and 2. We run the model from 1900, but focus our
analysis on the period between 1982 and 2013, for which we
have consistent remotely sensed vegetation cover (Sect. 2.2).

2.1.1 Heterotrophic respiration function of soil
moisture

Soil moisture has an important effect on heterotrophic res-
piration (Exbrayat et al., 2013a, b; Sierra et al., 2015). Soil
moisture simulated by land surface models is known to be
very model dependent (Koster et al., 2009), so a function of
soil moisture that performs well in one model may not per-
form well in other models. The standard version of CASA-
CNP uses a function from Kelly et al. (2000) for the depen-
dence of heterotrophic respiration on soil moisture (Exbrayat
et al., 2013b). The function is

f (s)=

(
s− 1.70

0.55− 1.70

)6.6481

×

(
s+ 0.007

0.55+ 0.007

)3.22

, (1)

where s is the root-mass-weighted mean soil moisture con-
tent relative to the saturated content.

Here we optimise the heterotrophic respiration depen-
dence on soil moisture, using a new function with six pa-
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Table 1. CABLE parameters to be tuned.

Parameter Description

alloclg, alloclw Allocation of C to leaves (grassy and woody)
ratiojv Jmax/Vcmax
fsatmax Multiplier for litter depth
dleaf_g, dleaf_w Leaf length (grassy and woody)
vcmax_g, vcmax_w Maximum ribulose-1,5-bisphosphate (RuBP) carboxylation rate to leaf (grassy and woody)
hc_g, hc_w Canopy height (grassy and woody)
f10_g, f10_w Fraction of roots in top 10 cm (grassy and woody)
zr_g, zr_w Maximum rooting depth (grassy and woody)
lgamma_g, lgamma_w (log10 of) parameter in root efficiency function (grassy and woody)
a1 Parameter in stomatal conductance function
ds0 Sensitivity of stomatal conductance to VPD (vapour pressure deficit)

Table 2. CASA-CNP parameters to be tuned.

Parameter Description

soilc0_frac Fraction of soil C in top 15 cm
age_leaf_g, age_leaf_w Leaf turnover time (grassy and woody)
age_wood Woody biomass turnover time (yr)
age_clitt1 Base metabolic litter turnover time (yr)
age_clitt2 Base fine structural litter turnover time (yr)
age_clitt3 Base coarse woody debris turnover time (yr)
age_csoil1 Fast soil C pool turnover time (yr)
age_csoil2 Slow soil C pool turnover time (yr)
age_csoil3 Passive soil C pool turnover time
fallocc_w Fraction of non-leaf C allocated to wood
rsratio_g, rsratio_w Fine root to shoot ratio (grassy and woody)
q, c, w0, w1, w2, w3 Six parameters to define function for effect of soil moisture on soil respiration

rameters. These parameters are optimised along with other
model parameters in CASA-CNP. The form of the function
was designed such that the function in Eq. (1) can be repli-
cated with a particular choice of parameters, but the function
also allows for the type of behaviour seen in many of the
functions compared in Fig. 4c of Sierra et al. (2015). The
equations for the function, with parameters q, c, w0, w1, w2
and w3 to be optimised, are as follows:

f (s)=



max

{
q × s2

0.5
1−f (0) ×

[
1− cos

(
π
s−w0 + (c− 1)×w1

w1 × c

)
− f (0)

]
if s < w0+w1

1.0 if w0+w1 ≤ s ≤ w0+w1+w2

0.5
[
1+ cos(π (s−w0−w1−w2)/w3)

]
if s > w0+w1+w2 ,

(2)

where

f (0)= 0.5×
[

1− cos
(
π

0−w0+ (c− 1)×w1

w1× c

)]
. (3)

The function and parameters are shown in Fig. 1. The first
part of the function (in red in Fig. 1a) is a quadratic with
the rate of increase described by the parameter “q”. The sec-
ond part of the curve (green) is an increasing part of a co-
sine curve. The curvature is controlled by the parameter “c”
as it determines whether the full range of the cosine curve
from −1 to +1, or just part of it near the top, is used. The
solid and dashed green lines in Fig. 1a demonstrate the effect
of parameter c, with different values of c (1.0 and 5.0, re-
spectively) but identical values of the other parameters. The
width of this part of the curve is set by parameter “w1”. As
this function starts from zero at s = w0, in order to match up
with the first (quadratic) part of the function, the maximum of
the two functions is used where they overlap (the solid green
line in Fig. 1a shows the maximum of the quadratic and co-
sine functions where they overlap, the dotted lines show the
parts of the functions that are not used). Ifw0+w1 has not al-
ready exceeded the maximum s value of 1.0, the next part of
the curve (yellow) is a constant value of 1.0. The width is set
by parameter “w2” and can be zero if no flat top is required.
Then if w0+w1+w2 < 1.0, the final part of the function
(blue) is a decrease described by a cosine, with width “w3”.
If w0+w1 is greater than 1.0, then w2 is not used. Simi-
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larly, if w0+w1+w2 is greater than 1.0, w3 is not used. The
function is continuous throughout the full range, but there is
a discontinuity in the gradient when the quadratic meets the
first cosine part of the function.

The parameters required for our function to approximately
match the equation from Kelly et al. (2000) are (q, c, w0, w1,
w2, w3)= (0.0, 1.0, 0.025, 0.522, 0, 0.64). We use these as
prior values in the parameter optimisation. The Kelly et al.
(2000) function is shown by the dashed line in Fig. 1b. We
chose not to optimise the temperature dependence of soil res-
piration because soil moisture (due to precipitation) has a
much greater influence on interannual variability in soil res-
piration than temperature (see Supplement Fig. S1). Exbrayat
et al. (2013a) noted that the impact of the soil moisture re-
sponse function on heterotrophic respiration is intimately
connected with the skill of the land surface model to simu-
late soil moisture. It has been demonstrated elsewhere (Frost
et al., 2015; Holgate et al., 2016) that BIOS-2 performs well
for soil moisture. Haverd et al. (2013a) manually adjusted
the soil moisture dependence of soil respiration but did not
include it in their formal parameter estimation.

2.2 Forcing data

The model is forced using gridded meteorological data, soil
properties and vegetation cover at 0.05◦×0.05◦ spatial reso-
lution. The meteorological data and soil properties used here
are as described in Haverd et al. (2013b). Briefly, they consist
of daily meteorology from the Bureau of Meteorology’s con-
tribution to the Australian Water Availability Project (Grant
et al., 2008; Jones et al., 2009), downscaled to hourly time
steps for CABLE using a weather generator, and soil proper-
ties taken from the McKenzie and Hook (1992) and McKen-
zie et al. (2000) interpretations of soil types mapped in the
Digital Atlas of Australian Soils (Northcote et al., 1960,
1975).

In BIOS-2 (Haverd et al., 2013a, b), vegetation cover came
from LAI (leaf area index) derived from fPAR (fraction pho-
tosynthetic absorbed radiation) estimates obtained from the
AVHRR and MODIS time series. These time series cov-
ered the periods 1990–2006 and 2000–2011, respectively.
Here, vegetation cover is derived from the third generation
(NDVI3g) of the GIMMS NDVI time series (Tucker et al.,
2005; Zhu et al., 2013). This gives us a consistent vegetation
cover time series over several decades (1982–2013). Total
fPAR is partitioned into persistent (mainly woody) and recur-
rent (mainly grassy) vegetation components, following the
methodology of Donohue et al. (2009) and Lu et al. (2003).
This methodology takes advantage of low levels of seasonal
change in LAI in woody vegetation, allowing seasonal vari-
ation in fPAR to be attributed principally to grassy vegeta-
tion. The remaining and relatively constant fPAR signal is
attributed to woody vegetation. LAI for woody and grassy
components are estimated by Beer’s law (e.g. Houldcroft

et al., 2009):

LAIW =−
1
k

loge (1− fPARW) , (4)

LAIG =−
1
k

loge

(
1−

fPARG

1− f PARW

)
, (5)

where “W” denotes the persistent or mainly woody vegeta-
tion type, “G” denotes the recurrent or mainly grassy vegeta-
tion type and k is an extinction coefficient, set here to 0.5. In
contrast to earlier BIOS-2 simulations (Haverd et al., 2013a,
2016b), Eq. (5) accounts for the effect of shading of grass by
woody vegetation. We include one case without this correc-
tion for shading of grass, i.e. using

LAIG =−
1
k

loge (1− fPARG) (6)

instead of Eq. (5), but all other results presented here use the
shade correction.

2.3 Observations

The following observations were used for calibration of
model parameters. We used monthly eddy flux data (evap-
otranspiration (ET), GPP and NEP) from 14 OzFlux sites
(Beringer et al., 2016a; Isaac et al., 2016) listed in Table 3.
The eddy flux data were processed using the DINGO (Dy-
namic INtegrated Gap filling and partitioning for OzFlux)
methodology for processing raw flux tower data, as described
in Donohue et al. (2014), Haverd et al. (2016a) and Beringer
et al. (2016b). The period for which we have observations at
each site is shown in column 4 of Table 3 (giving a total of
70 site years of data). A subset of these monthly observations
(40 site years of data) was used for parameter estimation (col-
umn 5 of Table 3). We excluded eddy flux observations at
Tumbarumba around 2003 because it is known that an insect
attack combined with drought stress had a significant effect
on growth at this site (Keith et al., 2012), but BIOS-2 does not
currently simulate the impact of disturbance including insect
attacks. Although the model produces daily carbon and water
fluxes, we used monthly rather than daily flux observations
because the precipitation data are more reliable at monthly
timescales (Jones et al., 2009). Precipitation is spatially very
variable at daily timescales, thus difficult to observe accu-
rately with the relatively sparse gauge network. The spatial
pattern of precipitation at monthly timescales is significantly
smoother, therefore more accurately interpolated between the
measurement locations. The daily precipitation data we use
in the model have been rescaled (Jones et al., 2009), so that
the sum of the daily values over a month is consistent with
the interpolated monthly values.

We also used long-term-averaged streamflow at 51 unim-
paired catchments (Vaze et al., 2011; Zhang et al., 2011).
Monthly mean streamflow was calculated from daily mea-
surements for months with data available for at least 90 %
of the days. The long-term means were then calculated by
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Figure 1. Function describing the heterotrophic respiration dependence on soil moisture, s. (a) Schematic figure to explain the form and
parameters in the function in Eq. (2). Parameters used for the example shown by the solid line were (q, c, w0, w1, w2, w3)= (0.3, 0.2, 0.6,
1.0, 0.2, 2.0). (b) The dashed black line shows the function given in Kelly et al. (2000) for heterotrophic respiration dependence on soil
moisture. The solid lines show our estimated function for the ensemble of parameters, coloured by the corresponding value of 8 for both
CABLE and CASA-CNP combined.

Table 3. Location and type of vegetation at the OzFlux sites (Beringer et al., 2016a; Isaac et al., 2016; http://www.ozflux.org.au) used in this
study. Data period is for all of the data we have used at each site, with a subset of these data used for calibration.

Site Coordinates Ecosystem Data period Calibration Reference
period

1. Howard Springs 12.4952◦ S, 131.1501◦ E Open woodland 01/2001–12/2013 2001–2011 Hutley et al. (2005)
savanna Beringer et al. (2011)

2. Adelaide River 13.0769◦ S, 131.1178◦ E Savanna 01/2007–05/2009 – Beringer et al. (2007)
Beringer et al. (2011)

3. Daly River Savanna 14.1592◦ S, 131.3833◦ E Woodland savanna 01/2007–12/2013 2007–11 Beringer et al. (2011)
4. Dry River 15.2588◦ S, 132.3706◦ E Open forest savanna 07/2008–12/2013 2008–11 Beringer et al. (2011)
5. Sturt Plains 17.1507◦ S, 133.3502◦ E Open grassland 01/2008–12/2013 – Beringer et al. (2011)
6. Alice Springs Mulga 22.283◦ S, 133.249◦ E Mulga woodland 09/2010–12/2013 2010–2013 Cleverly et al. (2013)
7. Great Western Woodland 01/2013–10/2013 –

Woodland
8. Gingin (Gnangara) 31.3764◦ S, 115.7139◦ E Banksia woodland 01/2011–11/2013 –
9. Calperum 34.0027◦ S, 140.5877◦ E Mallee 01/2010–10/2013 2010–2013 Meyer et al. (2015)
10. Tumbarumba 35.6566◦ S, 148.1517◦ E Cool temperate 01/2001–12/2013 2004–2010 Leuning et al. (2005)

wet sclerophyll van Gorsel et al. (2007)
11. Nimmo Plains 36.2159◦ S, 148.5528◦ E Grassland 01/2007–12/2013 2007–2011
12. Whroo 36.6731◦ S, 145.0262◦ E Woodland 12/2011–12/2013 – Beringer (2013a)
13. Wombat 37.4222◦ S, 144.0944◦ E Cool temperate 01/2010–12/2013 2010–2013

dry sclerophyll
14. Wallaby Creek 37.4262◦ S, 145.1872◦ E Old growth 08/2005–01/2009 – Martin et al. (2007)

temperate Beringer (2013b)

averaging the monthly means where they exist, for compar-
ison with modelled long-term means (calculated by averag-
ing modelled streamflow for the same months). Long-term
means are used for streamflow observations because BIOS-
2 does not model streamflow dynamics well, something that
we plan to address in future work. Long-term means of leaf

NPP, above-ground phytomass, above-ground litter and soil
carbon density in the top 15 cm (Barrett, 2001; Raison et al.,
2003) were also used. Figure 2 shows the location of the ob-
servations used for calibration.

The observations used to optimise CABLE parameters
were ET, GPP, streamflow and leaf NPP. The observations
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Figure 2. Location of observations used for calibration. All OzFlux
sites used in this study are shown (i.e. those used for both calibration
and validation).

used to optimise CASA-CNP parameters were NEP, soil car-
bon and above-ground phytomass and litter. Haverd et al.
(2013b) used many of the same observations, except in that
study NEP was not used for parameter optimisation and the
eddy flux data were processed in a different way.

2.4 Optimisation method

To optimise parameters, we used the PEST implementation
(Parameter ESTimation; http://www.pesthomepage.org) of
the Gauss–Marquardt–Levenberg method (Doherty, 1999).
This is a down-gradient search method, meaning that it uses
information about the gradient of the cost function with re-
spect to the parameters to decide how to iteratively alter pa-
rameters to locate parameter values corresponding with the
minimum in the cost function (Raupach et al., 2005). The
cost function that was minimised was the sum of weighted
square residuals (8) plus the mismatch of some parame-
ters from prior estimates (8P), where we were confident in
our prior estimates based on the literature. Flux observations
were weighted in8 so that each flux site contributed equally
to the cost function, regardless of the length of the record
used for calibration. The weights for each observation group
(e.g. ET, GPP, etc.) were then scaled so that each group con-
tributed approximately equally to8 calculated with the prior
parameters. This is important because the different types of
observations can have vastly different magnitudes, and the
relative contribution of each group to 8 should not depend
on the units that are used. We first optimised CABLE pa-
rameters using PEST, then used the optimised CABLE pa-
rameters to generate GPP, soil moisture and soil temperature
inputs for CASA-CNP. Subsequently, we optimised CASA-

CNP parameters with PEST. We used the parallel implemen-
tation of PEST called BEOPEST.

Due to the large number of processes and parameters,
calibration of land surface models is generally an under-
determined problem, where there is no unique, correct pa-
rameter set and multiple parameter combinations can give
an adequate match to observations. Doherty et al. (2010) de-
scribed some of the issues involved in optimisation of highly
parameterised models. Some combinations of parameters are
informed by the calibration dataset, and these are described
as comprising the “calibration solution space”. Errors in so-
lution space parameter combinations are due to measurement
noise. Orthogonal to the calibration solution space is the
“calibration null space”, containing combinations of param-
eters that are not informed by the calibration dataset. Expert
knowledge, where available, gives the best estimates of pa-
rameters that are part of the calibration null space. Often, pa-
rameters that have little effect on model outputs for compar-
ison with the calibration dataset are fixed at prior values, this
is sometimes called regularisation. As discussed by Doherty
(2015), “the purpose of regularisation is to attain uniqueness
where none in fact exists”. We should avoid simply fixing pa-
rameters to possibly incorrect values just because the model
outputs that correspond to calibration observations are not
sensitive to them. If models are used to make predictions of
quantities unlike those used for calibration of parameters, we
need to be aware that the prediction may be sensitive to pa-
rameters (or parameter combinations) that were not well con-
strained through the calibration process (Doherty and John-
ston, 2003). If this occurs, the uncertainties in these predic-
tions are likely to be under-estimated.

Haverd et al. (2013b) used parameter sensitivity analysis
to choose which parameters to optimise, avoiding parameters
that were unlikely to be constrained by the available obser-
vations. Here we optimise a larger number of parameters, in-
cluding some of the parameters that are not well constrained
by the calibration dataset, in order to explore the effect of dif-
ferent values of the poorly constrained parameters on model
predictions. Instead of aiming to estimate a single parameter
set, we generate an ensemble of parameter sets, to represent
parameters that are not well constrained. We can then use this
ensemble of parameter sets to see the effect of uncertainty
due to parameter equifinality in model predictions, similar
to Chen et al. (2011). We use some of PEST’s linear analy-
sis tools, including null space Monte Carlo (NSMC). NSMC
(Tonkin and Doherty, 2009) is an efficient way to generate
multiple parameter sets that are consistent with the observa-
tions. As described in Doherty et al. (2010) and Sepúlveda
and Doherty (2015), the NSMC method consists of the fol-
lowing steps: (i) identify the null space of the model’s param-
eter field from sensitivities calculated during optimisation;
(ii) generate many stochastic realisations of model parame-
ters; (iii) project these realisations onto the null and solution
spaces; (iv) retain the null space component, but replace the
solution space component with that of the calibrated model;
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(v) recalibrate these stochastic parameter sets (only a few it-
erations), as recalibration is required due to non-linearities
in the model and an indistinct boundary between the solu-
tion and null spaces; and (vi) eliminate any parameter sets
that are not considered plausible. Utilities exist as part of the
PEST package to perform these steps after initial optimisa-
tion of parameters (specifically, we used routines SUPCALC
to calculate the dimension of the solution space, RAND-
PAR to generate random parameter sets, PNULPAR to re-
tain the null-space components of the random parameter sets
and replace the solution space components with that of the
calibrated model, and PARREP to replace parameters in the
model’s control file with the new parameter sets in prepara-
tion for recalibration by PEST).

The ensemble from the NSMC analysis will include the ef-
fect of uncertainty in parameters to which model outputs for
comparison with observations are not sensitive, as well as pa-
rameters to which the model outputs are sensitive but that are
correlated with other parameters, as both of these are part of
the calibration null space. In addition, the recalibration pro-
cess and the fact that solutions with a range of values of8 are
retained means that the ensemble also accounts for the uncer-
tainty in parameters that are well constrained by observations
but affected by measurement noise or model structural error
(Sepúlveda and Doherty, 2015).

We generated ensembles of parameter sets in the follow-
ing way. After optimising CABLE parameters with PEST,
we used the NSMC method to generate 30 additional param-
eter sets for CABLE. Based on their values of 8, we chose
the best 20 of these CABLE parameter sets from the NSMC
and used them to generate GPP, soil moisture and soil tem-
perature inputs for CASA-CNP, and then we optimised the
CASA-CNP parameters with PEST for each of these inputs.
This gave us 20 corresponding parameter sets for both mod-
els, and we call this ensemble of parameters for both models
the “CABLE parameter ensemble” because they originated
from null space Monte Carlo applied to CABLE. We then
used the null space Monte Carlo method to generate 30 pa-
rameter sets for CASA-CNP, all using a single set of CASA-
CNP inputs calculated with parameters from the original op-
timisation of CABLE. We retained the best 20 of these pa-
rameter sets; we call this the “CASA-CNP parameter ensem-
ble” because it originated from null space Monte Carlo ap-
plied to CASA-CNP. Overall, this gave us 40 combinations
of CABLE and CASA-CNP parameters. The NSMC method
does not specifically calculate the posterior parameter proba-
bility distributions; however, it is an efficient way to generate
multiple parameter sets that span a significant amount of the
uncertainty due to the equifinality in both models.

Down-gradient methods such as the Gauss–Marquardt–
Levenberg method have the important advantage of be-
ing much more computationally efficient than global search
methods. However, they can suffer from the disadvantage of
finding only a local minimum, and not the global minimum
(Raupach et al., 2005; Wang et al., 2009). There are a num-

ber of ways to reduce the chances of getting stuck in a local
minimum with PEST (Doherty, 1999). One way is by the
choice of the parameter increments in the different stages of
the optimisation (large increments at first, then smaller incre-
ments), and how the derivatives are calculated. Another way
is by the choice of the initial parameter values (as good as
possible, such as based on expert knowledge) or by repeat-
ing the optimisation with different initial parameter values.
The use of the NSMC method allows for a much more thor-
ough search of parameter space than a single PEST optimisa-
tion, but in a computationally efficient way. Skahill and Do-
herty (2006) described additional ways to significantly im-
prove the chances of finding the global minimum with PEST.
Here, we reduce the chances of PEST getting stuck in a lo-
cal minimum by basing our choices for parameter increments
and the derivative calculation method on recommendations in
Doherty (1999), and by using the NSMC method.

3 Results

In this section, we will focus first on the results of the param-
eter optimisation (e.g. how well the model matches the ob-
servations, which observations inform which parameters, and
parameter equifinality), then look at modelled IAV in carbon
fluxes (what the model predicts for Australia, and how pa-
rameter equifinality affects our estimates) and our modelled
2011 NEP anomaly.

3.1 Optimisation results

3.1.1 Comparison of model outputs with observations

Figures 3 and 4 show monthly and annual time series of
GPP, ET, ecosystem respiration and the anomaly in NEP
at three contrasting OzFlux sites: Howard Springs (tropical
savanna), Tumbarumba (cool temperate) and Alice Springs
Mulga (sparsely vegetated). Time series for all 14 OzFlux
sites considered here are shown in the Supplement (Figs. S2–
S9). Our best case corresponds to the case that has the lowest
total 8 (where total 8 is the sum of 8 for both CABLE and
CASA-CNP calculated separately, i.e. 8CABLE+8CASA).
This also happens to be the case with the lowest8CASA. The
annual time-series plots also show model results for the en-
sembles of parameter sets. In addition, we include one case
of ecosystem respiration and NEP calculated with the Kelly
et al. (2000) soil respiration function (parameters other than
those used in Eq. (1) have been re-optimised for this case).
When anomalies are shown for ensemble members here and
in subsequent figures, they are calculated for each ensemble
member by subtracting the temporal average of the quantity
for that ensemble member.

Figure 5 shows results for monthly and annual ET, GPP
and ecosystem respiration for the best case plotted as scat-
ter plots of model vs. observations, with different colours
used for each site. Figure 6 shows the modelled vs. measured
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Figure 3. Monthly time series of ET (mm d−1), GPP (gC m−2 d−1), ecosystem respiration (ER, gC m−2 d−1) and NEP (gC m−2 d−1) at
OzFlux sites Howard Springs, Tumbarumba and Alice Springs Mulga. Black lines show observations used for calibration, grey lines show
observations left for validation. Green lines show modelled quantities for optimised parameters corresponding to the lowest combined 8 for
both CABLE and CASA-CNP. Blue lines (for ecosystem respiration and NEP) show the case using the Kelly et al. (2000) soil respiration
function. Red lines show model quantities corresponding to prior parameters. Note that the ER and NEP from CASA-CNP calculated with
prior parameters have used inputs from CABLE with optimised parameters, to indicate the effect of optimisation of CASA-CNP parameters
only.

soil carbon density in the top 15 cm for the best case. Mod-
elled vs. measured streamflow, leaf NPP, above-ground litter
and above-ground phytomass for the best case are shown in
Fig. S10. Table S1 in the Supplement compares our flux and
pool estimates averaged over 1990–2010 for the best case
and ensemble mean with values from BIOS-2 in Haverd et al.
(2013b). We also show our uncertainty range due to param-
eter equifinality (1σ ) calculated from the ensemble and the
total uncertainty from Haverd et al. (2013b) due to parame-
ter and forcing uncertainty.

There was no apparent relationship between 8CABLE and
8CASA, indicating that a better fit to the observations in
CABLE did not lead to a better fit to CASA-CNP ob-

servations. Monthly ET, GPP and ecosystem respiration at
Howard Springs and Tumbarumba are both dominated by
a strong seasonal cycle, whereas the variability at Alice
Springs Mulga is very episodic. NEP is the difference be-
tween two large fluxes of opposite sign, and it is difficult
to model the seasonal cycle well, particularly at Howard
Springs where GPP and ecosystem respiration are highly cor-
related at monthly timescales.
8 for the best case divided by8 for prior parameters, split

into observation groups, is as follows: ET 0.88, GPP 0.46,
NPP 0.08 and streamflow 1.06 for CABLE observations, and
NEP 0.32, soil carbon 0.80, phytomass 0.95 and litter 0.78
for CASA-CNP observations. The best-to-prior ratio for total
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Figure 4. Annual mean time series of ET (mm d−1), GPP (gC m−2 d−1), ecosystem respiration (ER, gC m−2 d−1) and NEP (gC m−2 d−1)
at OzFlux sites Howard Springs, Tumbarumba and Alice Springs Mulga. Line colours are as in Fig. 3 with the addition of light green lines
for the CABLE parameter ensemble and pink lines for the CASA-CNP parameter ensemble.

8 was 0.36. Note that the prior CASA-CNP case used prior
CASA-CNP parameters but inputs from CABLE calculated
with optimised CABLE parameters, and therefore shows the
change in the agreement with observations due to optimisa-
tion of only CASA-CNP parameters. Optimisation of param-
eters has improved the agreement with many of the obser-
vations, but has degraded the fit to a few observations. For
example, run-averaged NPP is significantly improved by pa-
rameter optimisation, but run-averaged streamflow is slightly
worse. Figure 4d shows that mean GPP at Howard Springs
has moved away from the observations (the parameter re-

sponsible for this change is vcmax_g, the maximum ribulose-
1,5-bisphosphate (RuBP) carboxylation rate to leaf for grass,
that has moved away from its prior value). The degradation
of the fit to some observations is a consequence of trying to fit
many different types of observations at once with a complex
model, and it is not entirely surprising that there are some
discrepancies. Richardson et al. (2010) pointed out that this
often occurs. Nonetheless, it is an indication of deficiencies
in the model, including the forcing and specification of pa-
rameters, and/or the observations and their uncertainty char-
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acterisation, but we have not yet been able to identify the
specific causes of these deficiencies in our model.

Overall we capture the observed level of NEP variability
well. The agreement with observed annual NEP flux anoma-
lies at the OzFlux sites has improved relative to the origi-
nal BIOS-2 calculations: RMSE 0.39 gC m−2 d−1 (this work)
compared with 0.58 gC m−2 d−1 (Haverd et al., 2013a), an
improvement that is possibly attributable to optimisation of
the heterotrophic respiration response to soil moisture. How-
ever, the correlation between modelled and observed annual
NEP values is poor (R2

= 0.1, Fig. 5f). IAV in NEP at flux
sites is difficult to capture well in the model for a number
of reasons. (1) NEP is the difference between two very large
fluxes, and these fluxes are temporally highly correlated in
the non-temperate regions, with both fluxes being highly sen-
sitive to soil moisture. (2) Flux measurements are quite local,
whereas the model has a resolution of 0.05◦× 0.05◦. (3) We
are missing some processes from the model, such as distur-
bance (e.g. the insect attack at Tumbarumba) and fire that
may be important at the local scale of the flux measurements.
(4) Flux measurements are also subject to errors, particularly
due to the partitioning algorithm.

3.1.2 Observation worth

Figure 7 shows how each observation group contributes to
the reduction of uncertainty in CABLE parameters. In Fig. 7a
we show how the post-calibration uncertainty variance in-
creases as each observation group is left out one at a time.
A rise in uncertainty variance occurs for observation groups
that contain unique information about a parameter that is
not contained in the other groups. Figure 7b shows the de-
crease in pre-calibration uncertainty variance for each obser-
vation group used on its own. A decrease will occur when
any observation group contains information about a param-
eter, even if this information is redundant. For example, the
parameter lgamma_g (that controls the drought response of
grass stomatal conductance) is constrained by all observa-
tion groups, and leaving out any individual observation group
makes little difference to the post-calibration uncertainty, in-
dicating redundancy in the information provided by the ob-
servation groups. Many of the CABLE parameters are con-
strained by more than one observation group. In contrast,
parameters alloclg and alloclw (describing allocation of car-
bon to leaves) are mainly constrained by NPP observations,
and leaving NPP observations out of the optimisation sig-
nificantly increases the uncertainty in these parameters. The
eddy flux data (ET and GPP) provide the tightest constraints
on the biophysical parameters, as also found by Haverd et
al. (2013a), presumably because they contain temporal infor-
mation. Streamflow seems to contain mostly redundant in-
formation that is available from the other observations, but
is still worth including to mitigate against the effect of bi-
ases in any single observation type. In future work, we plan
to improve streamflow dynamics in the model, and would

then hope to take advantage of temporal information in the
streamflow measurements.

The value of observation groups to estimation of CASA-
CNP parameters is shown in Fig. S11. Many of the CASA-
CNP parameters are not well constrained by the calibration
observations. Most of those that are constrained to some ex-
tent are influenced by only one observation group, demon-
strating the benefit of including all four observation groups.
Specifically, parameters age_leaf_w and age_clitt2 describ-
ing turnover times of woody leaves and fine structural lit-
ter are influenced by observations of above-ground litter;
age_wood describing turnover of wood and falloc_w describ-
ing the fraction of carbon allocated to wood are influenced
by measurements of above-ground phytomass; and parame-
ter soilc0_frac for the fraction of soil carbon in the top 15 cm
and soil carbon pool turnover times age_csoil1, age_csoil2
and age_csoil3 are influenced by observations of soil carbon.
The function describing the effect of soil moisture on soil
respiration is constrained by observations of both NEP and
soil carbon. This analysis of which observation groups con-
strain which parameters for both CABLE and CASA-CNP
gives results that are as we would have expected. The obser-
vation worth is calculated using PEST’s linear analysis tools
(routine GENLINPRED).

3.1.3 Parameter equifinality

Figure 8 shows scatter plots of the model–data mismatch for
CABLE observations,8CABLE, against each CABLE param-
eter, where the range of the x axis corresponds to the prior
range for the parameter. For reference, 8CABLE with prior
parameters was 3962. Relative to their prior range, some
parameters cover a small range for low values of 8CABLE,
such as alloclw, alloclg (leaf carbon allocation coefficients
in leaves and grass) and lgamma_g (controls drought re-
sponse of grass stomatal conductance), indicating that they
are relatively well constrained by the optimisation. Other
parameters, such as f10_w (fraction of woody roots in the
top 10 cm), dleaf_g (grassy leaf length) and zr_g (maximum
grassy rooting depth) cover a wide range of parameter val-
ues (relative to their prior range) for very little variation in
8CABLE, implying that their value is not so well constrained
by the optimisation. In some cases, combinations of param-
eters might be well constrained by the optimisation but the
individual parameters are not. We can see this by looking at
the parameter identifiability (Doherty and Hunt, 2009), based
on analysis of the posterior parameter covariance matrix us-
ing tools that are available with PEST (routine IDENTPAR).
Figure 9 shows the identifiability of combinations of param-
eters in CABLE. Early eigenvectors (dark colours) are most
identifiable (comprise the calibration solution space); later
eigenvectors (pastel colours) are least identifiable (comprise
the calibration null space). Eigenvectors split across parame-
ters indicate whether combinations of parameters, rather than
individual parameters, are identifiable. In general, parame-
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Figure 5. Scatter plots of modelled vs. observed (best case) monthly and annual ET (mm d−1), GPP (gC m−2 d−1) and NEP (gC m−2 d−1)
at 14 OzFlux sites. Symbols are colour-coded according to site.
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Figure 6. Scatter plot of modelled vs. observed (prior and best case)
long-term-averaged soil carbon density in the top 15 cm.

ters with the smallest ranges for low 8CABLE in Fig. 8 are
part of the most identifiable eigenvectors, as expected. The
parameter f10_w (fraction of grass roots in the top 10 cm),
which had a wide range for low values of 8CABLE in the
scatter plots in Fig. 8, has identifiability that is comprised of
a number of the most identifiable eigenvectors, as indicated
by the dark colours. Whether it is a problem that parameters
are not individually identified depends on what the model is
being used to predict or calculate.

Scatter plots and parameter identifiability for CASA-CNP
are shown in Figs. S12 and S13. 8CASA for prior parameters
(but using inputs from CABLE calculated with optimised pa-
rameters) was 1449. Many of the CASA-CNP parameters are
not well constrained relative to their prior ranges by the ob-
servations. The soil respiration function seems to be fairly

well constrained compared to the range of curves shown in
Fig. 4c of Sierra et al. (2015), and parameters s andw1 in this
function are among some of the best constrained parameters.
Parameters w2 and w3 are unconstrained, but due to the val-
ues of the other parameters in this function they are not used
they so are irrelevant to the model.

3.1.4 Model structural choices

Without the shade correction (Eq. 5), the agreement with cal-
ibration observations is a bit worse than our best case for
some observation types (e.g. the ratio of optimised to prior
8 for the no-shade case for NPP and soil carbon are 0.27 and
0.91, compared to 0.08 and 0.80 for our best case) and a bit
better for others (GPP and NEP8 ratio for the no-shade case
are 0.32 and 0.29, compared to 0.46 and 0.32 for our best
case), but overall the total8 is not significantly different. We
have used the shade correction here because it is more phys-
ically realistic, although the comparison with observations
does not favour either parameterisation.

The function describing the effect of soil moisture on soil
respiration for our ensemble of parameter sets is shown in
Fig. 1b, with lines coloured by the total8 from both models.
The optimised functions are all quite different to the func-
tion from Kelly et al. (2000), with the optimised functions
increasing throughout the range of s from 0 to 1.0, rather
than having a peak followed by a decrease. A case using the
Kelly et al. (2000) function with the other CASA-CNP pa-
rameters re-optimised has a higher value of 8, particularly
for NEP observations, but this is to be expected when we op-
timise fewer parameters.
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Figure 7. Worth of the different observation groups to the estimate of each CABLE parameter. (a) Increase (%) in post-calibration parameter
uncertainty variance incurred through loss of observation groups (i.e. leaving out each group in turn). (b) Decrease (%) in pre-calibration
parameter uncertainty variance incurred through addition of observation groups (i.e. each observation group is used on its own).

3.2 Interannual variation in NEP for Australia

Figure 10 shows modelled annual values of NEP anomaly for
six bioclimatic regions and the continent. Results are shown
for both the CABLE and CASA-CNP ensembles of parame-
ters in grey. The red lines show the case re-optimised with-
out the shade correction for deriving vegetation cover from
fPAR, and the blue lines show the case re-optimised with
the Kelly et al. (2000) soil respiration dependence on soil
moisture. The bioclimatic regions, shown in Fig. 10h, are an
aggregation of the agro-climatic classification of Hutchinson
et al. (2005) into six classes, as described and used by Haverd
et al. (2013a, b). Annual values of GPP and heterotrophic res-
piration anomaly for the bioclimatic regions and Australia
are shown in Figs. S14 and S15. Figure S14 shows total NPP
as well as the contributions from grassy and woody vegeta-
tion. IAV in NPP for grassy vegetation types is larger than the
IAV in NPP for woody types in the tropics, savanna, Mediter-
ranean and Australia. IAV in NPP for woody vegetation is
similar to or larger than IAV in NPP for grassy vegetation in
warm and cool temperate regions.

Figure 11 shows the modelled annual NEP anomaly to-
gether with annual precipitation for each region and the con-

tinent, and the Southern Oscillation Index. There is a strong
relationship between NEP and precipitation in all regions,
as has been shown in many previous studies. Precipitation
is clearly the most important factor influencing interannual
variations in NEP, predominantly precipitation in the current
year but also to some extent precipitation in the years lead-
ing up to the current year due to “memory” effects (Schimel
et al., 2005; Poulter et al., 2014). Our results show high-
NEP anomalies for Australia in 1983–1984 (after a strong
El Niño), 1989 (after a strong El Niño), 2000 (in the mid-
dle of a prolonged La Niña although Australian precipitation
was very high) and very high values in 2010 and particularly
2011 (precipitation was very high, at the end of a decade-
long drought). We see low-NEP anomalies in 1982 (during
a strong El Niño), 1994 (during the third of three consec-
utive El Niños, with very low precipitation), 2002 (at the
beginning of an El Niño, with very low precipitation) and
2014 (at the beginning of an El Niño). Using an earlier ver-
sion of the BIOS-2.1 configuration (but without the correc-
tion to the vegetation cover for shaded grass), Haverd et al.
(2016b) found no significant change in the sensitivity of Aus-
tralian NEP to rainfall, contrary to the suggestion by Poulter
et al. (2014) of a shift during recent decades in the sensitivity
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Figure 8. Model–data mismatch for CABLE observations, 8CABLE, plotted against parameter values for CABLE. Grey symbols are all
parameter sets tested during the null space recalibration. Light green symbols show the CABLE parameter ensemble plus the original
CABLE optimisation. The dark green symbol shows the parameter set that gives the lowest combined 8 for both models. Red vertical lines
show the prior parameter constraints (not all parameters had prior constraints).

of vegetation activity to moisture availability. Haverd et al.
(2016c) also used the BIOS-2.1 model and showed that at
continental scale, annual variations in production are damp-

ened by annual variations in decomposition, with both fluxes
responding positively to precipitation anomalies, in contrast
to previous global modelling results (Poulter et al., 2014),
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Figure 9. Parameter identifiability for CABLE parameters from PEST’s linear analysis tools. Dark colours indicate eigenvectors that are
more identifiable than light colours.

suggesting that IAV in Australian net carbon uptake is am-
plified by lags between production and decomposition.

Some years have a significant range in NEP anomaly due
to parameter equifinality, usually when the anomaly is fur-
thest from zero (either positive or negative), while at other
times the range is quite small. The range is particularly large
compared to the calculated IAV in the tropics, medium in the
warm and cool temperate, and fairly small in the other re-
gions and Australia as a whole. The range in heterotrophic
respiration is larger than the range in NPP in the tropics and
temperate regions, but they are similar in other regions and
for Australia as a whole (Figs. S14 and S15).

Annual NEP anomalies for a case optimised without the
shade correction are shown by the red lines in Fig. 10 and are
mostly within the range given by the ensemble of cases with
the shade correction. We generated an ensemble of results
for the case without the shade correction (not shown here but
used in Haverd et al., 2016b) and it had a similar spread of
results to the cases shown here. Therefore, we place no im-
portance in the difference between the red lines and our other
cases. Annual NEP anomalies for a case calculated using the
Kelly et al. (2000) soil respiration function are shown by the
blue lines in Fig. 10 and fall at the high-IAV end of the range
given by the other cases.

We estimate that IAV in Australian NEP is 0.12–
0.21 PgC yr−1 for the period 1982–2013. This quantity is the
standard deviation of annual NEP anomalies calculated sepa-
rately for each ensemble member, with the range given by the
ensemble. NEP IAV relative to mean NPP is 6–10 %. In the
earlier BIOS-2 implementation, Haverd et al. (2013b) gave a
continental value of 8 % for NEP variability (1σ ) relative to

mean NPP for the period 1990–2011. Over this shorter pe-
riod, our range is 7–10 %.

3.3 2011 NEP anomaly

Our estimate for the 2011 NEP anomaly (relative to the
1982–2013 mean) is 0.43–0.67 PgC yr−1. In Fig. 12a, we
show the ensemble of estimates of the 2011 anomaly plot-
ted against the corresponding model–data mismatch (total
8). There seems to be no relationship between the modelled
magnitude of the 2011 peak and how well the model fits the
calibration observations, as we see quite different values of
2011 NEP for very similar values of total 8. Figure 12b
shows the size of the 2011 anomaly against 8 for just the
monthly NEP flux measurements (8NEP). While there is a
suggestion of a relationship here (lower 8NEP corresponds
to lower 2011 anomaly values), we note that the flux mea-
surements are not without error, NEP at the flux sites is dif-
ficult to model well and the model does not include all of
the processes that may be important at the local scale. We
therefore do not have particularly higher confidence in the
estimates that have better agreement with flux observations,
but prefer to take account of the agreement of the model to
all of the different types of measurements. Previous studies
(e.g. Fox et al., 2009; Richardson et al., 2010; Keenan et al.,
2012b; Luo et al., 2015; Du et al., 2015) have emphasised
the importance of using both pool- and flux-based datasets
to constrain land surface models, and a strength of our work
is that we have used observations of both types in this study.
In Fig. 12c, we show the ensemble of estimates of the 2011
anomaly plotted against IAV (1σ ), indicating a strong rela-
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Figure 10. Annual anomalies in net ecosystem production for six bioclimatic regions and Australia. The best case is shown in black, with the
other ensemble members in grey to indicate the influence of parameter equifinality. The red line corresponds to the case re-optimised without
the correction to the vegetation cover for shaded grass. The blue line corresponds to the case re-optimised with the Kelly et al. (2000) soil
respiration function. The y axis range is the same in all panels. Units are gC m−2 d−1, but (g) also shows units of PgC yr−1 on the right.
(h) shows the location of the bioclimatic regions.

tionship between the size of the 2011 anomaly and overall
IAV of each ensemble member.

The 2011 NEP anomaly stands out as extreme compared
to all other years. The best case (with lowest total 8)
has 2011 NEP anomaly near the lower end of the range

(0.47 PgC yr−1). However, during the development of this
work we generated a few different ensembles of parameter
sets with only small differences to the model and inputs,
and found that the range stayed quite constant but that the
2011 anomaly for the best case could be anywhere within the
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Figure 11. (a)–(g) Annual anomalies in net ecosystem production for six bioclimatic regions and Australia. Black lines show the case with
lowest 8 and the grey band is the range due to parameter equifinality. Blue lines show annual precipitation (mm) for each region. Note that
the y axis range is different for each region. (h) Southern Oscillation Index from http://www.bom.gov.au/climate/current/soihtm1.shtml.

range. Parameter equifinality has an important effect on our
estimate of the 2011 NEP anomaly, and we are currently not
able to identify where within the range 0.43–0.67 PgC yr−1

the true value is most likely to sit. Further constraints on the
model parameters are needed to reduce the uncertainty in this
estimate.

Using the Lund–Potsdam–Jena (LPJ) dynamic global veg-
etation model, Poulter et al. (2014) estimated a 2011 NEP
anomaly relative to the 2003–2012 mean for Australia of
0.66 PgC yr−1. Our estimate for the 2011 NEP anomaly rel-
ative to the 2003–2012 mean is 0.40–0.61 PgC yr−1, just un-
der the estimate from Poulter et al. Like Poulter et al., we
see that the IAV in NEP (including the 2011 anomaly) is

Biogeosciences, 13, 6363–6383, 2016 www.biogeosciences.net/13/6363/2016/

http://www.bom.gov.au/climate/current/soihtm1.shtml


C. M. Trudinger et al.: Interannual variability in Australia’s terrestrial carbon cycle 6379

1960 1980 2000 2020 2040 2060 2080
Φ

0.40
0.45

0.50

0.55

0.60

0.65

0.70
20

11
 N

E
P

 (
P

gC
 y

r 
 ) (a)

140 160 180 200 220 240 260 280
ΦNEP

0.40
0.45

0.50

0.55

0.60

0.65

0.70

20
11

 N
E

P
 (

P
gC

 y
r 

 ) (b)

0.12 0.14 0.16 0.18 0.20 0.22
IAV (1 σ  PgC yr  )

0.40
0.45

0.50

0.55

0.60

0.65

0.70

20
11

 N
E

P
 (

P
gC

 y
r 

 ) (c)

–1

–1
–1

–1

Figure 12. (a) Australian NEP anomaly in 2011 relative to 1982–
2013 for the ensemble of estimates plotted against the value of the
total8 from both models. (b) Australian 2011 NEP anomaly plotted
against the value of 8 from just the monthly NEP flux observations
(8NEP). (c) Australian 2011 NEP anomaly plotted against the IAV
for Australia over 1982–2013, expressed as 1σ . In all panels the
best case (lowest total 8) is shown in red.

dominated by IAV in NPP rather than respiration. Our uncer-
tainty in the NEP anomaly has roughly equal contributions
from equifinality in parameters important for NPP and het-
erotrophic respiration for Australia and the savanna, sparsely
vegetated and Mediterranean regions. Uncertainty in NEP in
the tropical and temperate regions is dominated by the uncer-
tainty due to parameter equifinality in ecosystem respiration
rather than NPP.

4 Discussion

Our correlation of modelled and observed annual NEP at the
flux sites is quite poor and, despite a reduction in 8NEP by
optimisation of parameters, IAV in annual NEP at the flux
sites appears not to be significantly improved by optimisa-
tion. Previous studies have found that land surface models
have difficulty simulating the correct timing of IAV in car-

bon fluxes (e.g. Urbanski et al., 2007; Keenan et al., 2012a,
b); in contrast see Desai (2010). A key point is that IAV in
NEP at the flux sites is not particularly representative of IAV
in NEP for the country as a whole. Other than Alice Springs,
measurements at the flux sites do not show a strong relation-
ship between NEP and available soil water. This is in contrast
to the parts of the country that most influence the continen-
tal NEP, where vegetation growth is mostly water limited.
Using BIOS-2.1, Haverd et al. (2016c) found that 90 % of
Australian IAV in NEP is due to the savanna and sparsely
vegetated regions, and the majority of the flux sites are out-
side these regions.

Without many flux observations at sites that are water lim-
ited (the record from Alice Springs is currently only a few
years long), it is difficult for us to assess how well the model
simulates regional and continental carbon fluxes for Aus-
tralia. Additional flux observations at sites that are water lim-
ited, and therefore more representative of Australian carbon
fluxes, might help us to assess how well the model matches
observations, and would also be valuable for parameter es-
timation and model development. It is not clear whether the
meteorological drivers can explain the IAV at the current flux
sites, and a study similar to Abramowitz et al. (2008) using
statistical models but focused on the interannual timescale at
Australian sites may be useful to answer that question.

Differences between the present study and Haverd et al.
(2013a) include the use of an improved product for veg-
etation cover (GIMMS NDVI3g) that extends over several
decades, the correction for shaded grass used in calculating
the vegetation cover, the use of OzFlux NEP observations for
parameter optimisation, inclusion of the function describing
the effect of soil moisture on soil respiration in the optimi-
sation (Haverd et al., 2013a, manually tuned this function),
optimisation of a greater number of parameters and more rig-
orous analysis of parameter uncertainty by the generation of
multiple parameter sets that are used to explore parameter
equifinality. Our estimates for the carbon pools and fluxes
generally agree with Haverd et al. (2013a) within the uncer-
tainty ranges (Table S1). An exception is the fraction of con-
tinental NPP attributable to recurrent (assumed grassy) vege-
tation, which is 0.40±0.04 (1σ ), compared with 0.67±0.14
in the 2013 analysis. Litter pools are also higher: continental
average of 8.4±2.3 tCha−1, compared with 2.5±1.3 tCha−1

in the BIOS-2 analysis. The increase in litter in the cur-
rent work is attributable to a correction to the Haverd et al.
(2013a) analysis in which litter observations were incorrectly
assumed to be comparable with total (above- and below-
ground) fine-structural litter, when in fact they should be
compared with only the above-ground component. We have
now increased confidence in our estimates for IAV, princi-
pally due to the use of the improved product for vegetation
cover, optimisation of the soil respiration function and more
rigorous parameter uncertainty analysis.

We have focused here on the range of model results that
come from parameter equifinality when many other choices

www.biogeosciences.net/13/6363/2016/ Biogeosciences, 13, 6363–6383, 2016



6380 C. M. Trudinger et al.: Interannual variability in Australia’s terrestrial carbon cycle

are fixed, such as model structure, choice of the cost function
and weights for observations and prior estimates of param-
eters, observations and forcing data. Many of these choices
can also lead to uncertainty in the results. We have not cal-
culated the total uncertainty here. Our range of results due to
equifinality highlights the dangers of taking a single param-
eter set. In particular, comparison of model results for the
single best parameter set for two different model configura-
tions could easily lead to incorrect conclusions if the effect
of parameter equifinality was ignored. Different types of ob-
servations can be tested to see whether they would reduce
the uncertainty in parameters that are not well constrained.
Future work already underway will include the effect of nu-
trients, land-use change, fire and tree demography on Aus-
tralian carbon fluxes, with a more comprehensive assessment
of the uncertainties.

5 Conclusions

We have used a multiple constraints approach to optimise
model parameters in BIOS-2.1, an updated fine-resolution
implementation of the CABLE, CASA-CNP and SLI models
for Australia, with a particular focus on interannual variabil-
ity. In addition to other parameters, we optimised a function
for the dependence of soil respiration on soil moisture. We
have explored the effect of parameter equifinality on calcu-
lated interannual variation in NEP anomalies. The timing of
interannual variations in NEP at the flux sites is not particu-
larly well captured by the model, as has been found in pre-
vious modelling studies; however, most of the flux measure-
ments are from locations that are not water limited, in con-
trast to the parts of the country that most influence Australian
NEP. We estimate that the 1σ variation in IAV in Australian
NEP is 0.12–0.21 PgC yr−1. The value of the IAV in NEP is
dominated by NPP, but the range of estimates due to parame-
ter equifinality has roughly equal contributions from param-
eters associated with both heterotrophic respiration and NPP.
The 2011 Australian NEP anomaly relative to the 1982–2013
mean is 0.43–0.67 PgC yr−1. We find a strong relationship
between the size of the 2011 anomaly and the overall IAV.
Our range of results due to parameter equifinality demon-
strates how errors can be underestimated when a single pa-
rameter set is used.

6 Data availability

The data used in this study were obtained from the authors
of references listed in Sect. 2.2 (forcing data) and 2.3 (obser-
vations).

The Supplement related to this article is available online
at doi:10.5194/bg-13-6363-2016-supplement.
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