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Abstract. Ocean gliders have become ubiquitous observa-
tion platforms in the ocean in recent years. They are also
increasingly used in coastal environments. The coastal ob-
servatory system COSYNA has pioneered the use of gliders
in the North Sea, a shallow tidally energetic shelf sea.

For operational reasons, the gliders operated in the North
Sea are programmed to resurface every 3–5 h. The glider’s
dead-reckoning algorithm yields depth-averaged currents,
averaged in time over each subsurface interval. Under op-
erational conditions these averaged currents are a poor ap-
proximation of the instantaneous tidal current.

In this work an algorithm is developed that estimates the
instantaneous current (tidal and residual) from glider obser-
vations only. The algorithm uses a first-order Butterworth
low pass filter to estimate the residual current component,
and a Kalman filter based on the linear shallow water equa-
tions for the tidal component. A comparison of data from a
glider experiment with current data from an acoustic Doppler
current profilers deployed nearby shows that the standard de-
viations for the east and north current components are better
than 7 cm s−1 in near-real-time mode and improve to better
than 6 cm s−1 in delayed mode, where the filters can be run
forward and backward.

In the near-real-time mode the algorithm provides esti-
mates of the currents that the glider is expected to encounter
during its next few dives. Combined with a behavioural and
dynamic model of the glider, this yields predicted trajec-
tories, the information of which is incorporated in warn-
ing messages issued to ships by the (German) authorities.
In delayed mode the algorithm produces useful estimates of
the depth-averaged currents, which can be used in (process-
based) analyses in case no other source of measured current
information is available.

1 Introduction

Ocean gliders, or gliders for short, have become ubiquitous
observation platforms in the ocean in recent years. In the
Coastal Observing SYstem for Northern and Arctic seas ob-
servatory system (COSYNA; (Baschek et al., 2016), the use
of Teledyne Webb Research Slocum electric gliders has been
pioneered in the North Sea, a tidally energetic shelf sea. The
gliders operated within COSYNA are equipped with CTD,
optical backscatter, fluorescence and microstructure sensors,
intended to observe more or less directly parameters such as
temperature, salinity, (proxies for) suspended sediment (via
optical backscatter) and chlorophyll a concentrations (via
fluorescence), and turbulence dissipation rates.

Gliders have found application in a wide range of research
topics; see Rudnick (2016) for a recent review. In particular
the availability of small size and low power optical backscat-
ter and fluorescence sensors makes gliders suitable for stud-
ies on biochemical processes. For example, the occurrence
of phytoplankton blooms is strongly influenced by mixing,
as mixing affects light conditions and nutrient budgets in the
water column (e.g. Xu et al., 2013). The structure of the water
column in shelf seas such as the North Sea is a balance be-
tween stabilising surface heating and destabilising turbulence
generated by shear close to the sea bed and at the surface by
tidal currents and wind-driven currents, respectively (Simp-
son and Hunter, 1974). In addition, pelagic mixing caused
by shear across the thermocline couples the euphotic and the
eutrophic zones above and below the thermocline and there-
fore has an important effect on the benthic and pelagic food
web (Rippeth et al., 2005). Consequently, the analysis and in-
terpretation of the biochemical parameters measured by the
glider require understanding of the mixing, which in shelf
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seas in turn depends strongly on tidal and wind-driven cur-
rents.

Shelf seas are often shallow enough that tidal and wind-
driven currents lead to resuspension and deposition events
of sediment (Glenn et al., 2008; Tropp, 2013). Similar to
fluorescence sensors, optical backscatter or turbidity sensors
are commonly fitted to gliders, often even in the same hous-
ing. Optical backscatter intensity, when calibrated against fil-
trated water samples, is a proxy for sediment concentration.
Also here, the analysis and interpretation of resuspension
events and transport of suspended sediments require infor-
mation on the local currents.

Although currents can be measured from gliders using low
power acoustic Doppler current profilers (ADCPs) (Johnston
et al., 2013), their high cost and (still) relatively high power
consumption makes the use of ADCPs on gliders prohibitive,
except for dedicated experiments. Instead, moored or ship-
borne ADCPs could be used; however, this would restrict the
moving space of the glider or the currents measured would
not co-locate with the glider data. Alternatively, current es-
timates from the glider itself, resulting from its navigation
algorithm, could be used (Sect. 2). However, the loss of in-
formation due to averaging in time can become substantial in
situations when subsurface times become of the same order
of magnitude as the timescale of the variability of the cur-
rent. As an example, in the North Sea, which is dominated
by the semidiurnal M2 tide, the current reverses every 6 h or
so. During glider operations the typical subsurface time is
about 3 h, and therefore poorly resolves the tidal variability.

From an operational point of view, any significant vari-
ation in the currents that, from a glider’s perspective, ap-
pears to have a timescale that is similar to its subsurface time
will cause it to have trouble maintaining the pre-programmed
course. Methods have been developed in order to plan tra-
jectories for optimal sampling purposes (e.g. Garau et al.,
2009) or to reconstruct the underwater trajectory to localise
the data that are gathered by the glider (e.g. Smith et al.,
2010). The source of information on the water motion is usu-
ally an ocean current model. Elaborating on this work, Smith
et al. (2012) developed a system aiming at the effective exe-
cution of a planned path; that is, designing the mission such
that the glider is capable of travelling along the planned path
within given constraints. Effective execution also improves
safety at sea, as smaller regions can be defined where gliders
can be present.

Safety at sea is in fact a major aspect in glider operations
with the COSYNA coastal observatory. Since glider opera-
tions take place mostly in the German sector of the North
Sea, the planning and execution of glider missions need to
comply with the regulations set by the governing German
shipping authority Wasser- und Schifffahrtsamt (WSA). This
involves the application for permission to run gliders in a
given region within a certain time frame. Since there is a
risk of a ship–glider collision (Merckelbach, 2013), which
may damage vulnerable fast off-shore vessels (Drücker et al.,

2015), WSA requires mitigating measures to be taken by pro-
viding the German Vessel Traffic Control Centre (Seewarndi-
enst) with 12-hourly forecasts of the region where the glider
will be, given by the four coordinates defining a rectangle.
The system that has been set up to provide these forecasts
(not discussed herein) relies on a model simulating the be-
haviour of the glider by emulating the glider software and
hardware, as well as modelling the dynamics (i.e. its flight
through water). However, a realistic prediction requires in-
formation on the local currents up to 12 h ahead.

In the present work ocean current models are not relied
upon to provide information on the water motion. Instead, the
aim is to reconstruct the instantaneous currents by recovering
(most of) the information in the observed currents lost due to
the time averaging.

To that end, an algorithm is proposed that is composed
of a simple low pass filter for low frequency variations in
the currents due to atmospheric influence, for example, and
a Kalman filter based on the shallow water equations to esti-
mate the tidally induced variation in the currents.

2 Depth- and time-averaged currents from the glider
platform

The Teledyne Webb Research Slocum electric glider uses
a dead-reckoning algorithm for underwater positioning. The
algorithm combines the depth rate of change from the pres-
sure transducer and heading and pitch from the attitude
sensor to compute the horizontal velocity components. The
dead-reckoned underwater position follows from integrating
the current vectors with respect to time, starting from the lat-
est known GPS position. The difference between the dead-
reckoned resurface position and the actual GPS position is
attributed to a depth- and time-averaged current; see also
Merckelbach et al. (2008), for example. The glider user can
define whether or not the glider navigation algorithm should
apply this current estimate to compensate for drift when cal-
culating the heading for the current waypoint during the next
dive. Doing so only makes sense, however, when the time
variability is sufficiently resolved.

3 An algorithm for short-time current estimates

In this work, estimates of time-averaged currents are used to
reconstruct instantaneous currents. The reconstructed instan-
taneous time series contain more information than the ob-
served time-averaged currents. Since the extra information
required does not come from other measurements or obser-
vations, it will have to be provided by a model.

The currents in a coastal sea as considered herein, are
dominated by the tide, so that a (simple) model, such as the
shallow water equations, can provide this additional infor-
mation on the tidal motion. Besides tidal currents, non-tidal
currents due to atmospheric conditions and fresh water in-
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flux, for example, can have significant effects. The non-tidal
or residual current, however, is hard to model without resort-
ing to complex numerical models. Therefore the current is
decomposed in a tidal current and a slowly varying residual
current. The tidal current component is then estimated from
a Kalman filter based on the shallow water equations, includ-
ing at most a few of the main tidal constituents. The slowly
varying residual current is estimated by removing the semid-
iurnal tidal components and their higher harmonics using a
low pass filter.

3.1 Residual currents

Generally, low pass filters show a gradual the transition from
pass to no-pass at the cut-off frequency (the transition band).
In addition, low pass filters introduce a frequency-dependent
lag to the filtered signal (the group delay) so that the phase of
the signal is not preserved. The design of a low pass filters is
a trade-off between how broad the transition band is allowed
to be and how much lag is acceptable.

For this purpose, an efficient low pass Butterworth filter is
implemented (e.g. Oppenheim et al., 1997). The properties
of the filter are determined by cut-off frequency fc and its
order N . The order of the filter determines the width of the
transition band and affects the group delay. Figure 1 shows
the filter responses of a number of Butterworth filters of the
order N = {1,2}. The top panel shows the (power) gain as a
function of frequency and the bottom panel the group phase
delay as function of frequency.

In order to effectively remove the main tidal signals
(semidiurnal components and their higher harmonics), the
cut-off frequency of each filter can be chosen such that
the gain of frequencies with a period of 12 h or smaller
have a gain less than 0.01, yielding cut-off frequencies of
fc = {1/119,1/38} cph for N = {1,2}. Figure 1 shows that a
higher-order filter has a narrower transition band but also has
a larger (detrimental) effect on the group delay. The effect of
increasing the cut-off frequency is that less of the tidal signal
is damped and the group delay is reduced, as shown in the fig-
ure for the cut-off frequencies fc = 1/24 and fc = 1/12 cph.

In a practical application the filter can be implemented
such that every time a new current measurement becomes
available; that is, when the glider resurfaces, the measured
value is fed into the low pass filter and yields an estimate of
the residual current. This estimate has an error not only be-
cause of a time delay but also because of tidal signals that
may still be present if the attenuation is insufficient. In the
post-processing, when all data are available, the filtering can
be improved by running the filter forward and backward: the
time delay introduced is compensated, and unwanted signals
are further damped.

At this stage it is not clear what filter setting would give the
optimum results, so that, for now, a low pass filter is designed
with N = 1 and fc = 1/24 cph. Although this filter passes
about 40 % of the semidiurnal tidal signal, corresponding to

Figure 1. Filter responses of Butterworth filters of the first and
second order for various cut-off frequencies. Top panel shows the
power gain as a function of frequency, and the bottom panel shows
the group delay as a function of frequency.

a power gain of about 0.2, the filter setting introduces little
group delay; see also Fig. 1. In Sect. 6 the implications of
this choice are discussed.

3.2 Tidal currents

In contrast to the residual currents, the evolution of tidal cur-
rents can be captured to a large extent by a simple model. In
this section we will cast such a simple model into a Kalman
filter to provide an optimal estimate of the tidal current com-
ponents that the glider will face during its next dive, based
on all previous depth- and time-averaged water current data
it has collected.

Intermezzo on Kalman filtering

For an introduction to Kalman filters and their derivation, the
reader is referred to e.g. Simon (2006). Here, for the sake
of brevity, we will state the general computational procedure
only.

The Kalman filter is formulated as a dynamical system (Si-
mon, 2006):

xk = Fk−1xk−1+wk−1

yk =Hkxk + vk (1)
wk ≈N {0,Qk}

vk ≈N {0,Rk},

where x is the state vector, F the transition matrix, y the mea-
surement vector, H the measurement matrix, w the process
noise vector (normal distributed with zero mean and known
variance Qk), v the measurement noise vector (normal dis-
tributed with zero mean and known variance Rk) and k the
measurement index number. When, for example, the state

www.biogeosciences.net/13/6637/2016/ Biogeosciences, 13, 6637–6649, 2016



6640 L. Merckelbach: Depth-averaged instantaneous currents in a tidally dominated shelf sea

vector is composed of the eastward and northward veloc-
ity components, then the transition matrix describes how the
currents would change from one time step k to the next. The
measurement matrix relates the observed parameters, y, to
the state vector.

The procedure for the Kalman filter is given by the follow-
ing equations for k = 1,2,3, . . .

P−k = Fk−1P
+

k−1FTk−1+Qk−1 (2)

Kk = P−k HT
k (HkP

−

k HT
k +Rk)−1 (3)

x̂−k = Fk−1x̂
+

k−1 (4)

x̂+k = x̂−k +Kk(yk −Hkx̂
−

k ) (5)

P+k = (I−KkHk)P
−

k (I−KkHk)
T
+KkRkKT

k , (6)

where x̂−k is the a priori estimate, P−k the a priori covariance,
x̂+k the a posteriori estimate, P+k the a posteriori covariance,
Kk the gain matrix and I the identity matrix.

The procedure involves sequentially evaluating the set of
Eqs. (2)–(6) every time a measurement vector becomes avail-
able. First the measurement index k is advanced by 1. Then
the a priori covariance estimate is computed from the a pos-
teriori covariance estimate and the transition matrix at the
previous index (Eq. 2). Subsequently, the a priori estimate of
the state vector is computed from the transition matrix and
the a posteriori estimate of the state vector at the previous
level (Eq. 4); that is, only the model is used to produce a first
estimate of the new state vector. The estimate of the state
vector is further improved (to yield the a posteriori estimate)
by including the measurement vector. The improvement is
equal to the difference of the measured value and the mod-
elled value (a priori estimate), multiplied by the gain matrix
Kk , (Eq. 5). Herein the gain matrix is computed previously
in the second step (Eq. 3). In the final step the estimate of the
covariance is improved (the a posteriori covariance estimate)
using (Eq. 6). The cycle is repeated with the arrival of the
next measurement vector.

The filter is initialised with estimates for

x̂−0 = x̂0 and (7)

P−0 = P 0. (8)

If no a priori information on the system is available, the
state vector can be set to zeros, accompanied by a relatively
high valued diagonal covariance matrix, expressing the un-
certainty of the initial guess.

3.3 Kalman filter formulation

For a model to capture the main tidal oscillation, it is as-
sumed that the shallow water equations are a reasonable

model for the water dynamics:

∂u

∂t
− f v+ g

∂η

∂x
= 0 (9)

∂v

∂t
+ f v+ g

∂η

∂y
= 0,

where u and v are the eastward and northward velocity com-
ponents, respectively, x and y the eastward and northward
coordinates, respectively, f the Coriolis parameter, η the sur-
face elevation and g the acceleration due to gravity. The shal-
low water equations (Eq. 9) can be cast as

∂2u

∂t2
+ f 2u=−g

(
f
∂η

∂y
+
∂2η

∂t∂x

)
(10)

∂2v

∂t2
+ f 2v =−g

(
f
∂η

∂x
+
∂2η

∂t∂y

)
.

The right-hand side terms in Eq. (10) can be regarded as the
forcing of the system, which we try to seek. To that end, the
surface level gradients are represented by harmonic functions
with unknown coefficients A{x,y} and B{x,y}:

∂η

∂x
= Ax cosωt +Bx sinωt and (11)

∂η

∂y
= Ay cosωt +By sinωt, (12)

where ω is the main tidal frequency (M2, for example). The
addition of more tidal frequencies is trivial, however.

Defining the dynamical system (Eq. 1) the state vector is
chosen as

x = [Ax,Bx,Ay,By]
T . (13)

Furthermore, the coefficients A{x,y} and B{x,y} are modelled
as constants, so that, as an example, the process for Ax be-
comes

Axk = Axk−1+ process noise, (14)

leading to the simple transition matrix

F= diag(1,1,1,1). (15)

The measurements (y) are depth-averaged water veloci-
ties, averaged in time from the time of diving until the time
of resurfacing. In order to determine the elements in the mea-
surement matrix H that relate the measurements to the state
vector as y =Hx, the surface elevation gradients (Eqs. 11
and 12) are substituted into Eq. (10), which gives the expres-
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sions for the instantaneous current components:

u=
1

f 2−ω2 [a0 cosωt + a1 sinωt] , (16)

v =
1

f 2−ω2 [b0 cosωt + b1 sinωt] , (17)

where

a0 =−gfAy − gωBx

a1 =−gfBy + gωAx

b0 =−gfAx − gωBy

b1 =−gfBx + gωAy .

The averaged currents are then found by integrating the
instant current components with respect to time and dividing
the result by the subsurface time T . It follows that

H=
g

T (f 2−ω2)
(18)[

−C −S −f/ωS +f/ωC

−f/ωS +f/ωC −C −S

]
.

Herein C = cos(ωt1)−cos(ωt0) and S = sin(ωt1)−sin(ωt0),
in which t0 and t1 are the dive and resurface times, respec-
tively, and T = t1− t0.

The measurement error is assumed to be directionally un-
correlated, so that

R= rdiag(1,1), (19)

where r is the variance of the measurements. The numerical
value can be estimated relatively easy. Factors that influence
the accuracy of the measurement are the accuracy of the dive
and resurface positions and the dead-reckoning algorithm.
Dive and resurface positions are derived from GPS measure-
ments, which have a finite precision, roughly 10–20 m. How-
ever, since it takes time for a valid GPS position to be re-
ceived, the resurface position and the position when the first
valid GPS value is acquired do not necessarily co-locate. In
addition, the dead-reckoning algorithm uses input data, such
as depth rate, heading and pitch, provided by several sen-
sors, each introducing a degree of uncertainty. A value of
1 cm s−1 is taken as a reasonable estimate for the accuracy of
the depth- and time-averaged current measurement from the
glider platform.

It is less obvious how to quantify the process noise ma-
trix Q. The process noise accounts for uncertainties in the
model description of the process. Clearly, using the steady
state solution of the shallow water equations, assuming the
only forcing is due to the tides, the model underpinning
the Kalman filter is not fully representing reality. The pro-
cess noise allows for some distrust in the model description,
favouring the measurements, or, put differently, it allows for
flexibility of the model to adapt by “forgetting” old measure-
ments. It is assumed that the process noises for each tidal

component and direction is uncorrelated, so that

Q= qdiag(1,1,1,1). (20)

The variance parameter q is then regarded as a tuning pa-
rameter. The value is considered optimal when the variance
or standard deviation of ε is minimal. The elements in ε are
given by (see also Eq. 5)

εk = yk −Hkx̂
−

k . (21)

That is, the averaged current estimate is computed from the
measurement matrix H at the current level, but with the esti-
mate for the amplitudes of the previous level/surfacing. Note
that due to the virtue of Eq. (15), x̂−k = x̂+k−1.

4 Assessment of the performance of the algorithm

4.1 Instrumentation and field data

Below, data of measured currents are used to assess the per-
formance of the current prediction algorithm. Two data sets
were used for this purpose. The first data set was obtained
from measured currents from a bottom mounted acoustic
Doppler current profiler, from which synthetic, but realistic,
depth- and time-averaged currents were constructed. These
data time series mimic the glider data but have predefined
and controllable subsurface times. In addition, the synthetic
data set removes any uncertainty introduced by the glider’s
dead-reckoning algorithm, rendering this a useful data set to
assess the performance of the prediction algorithm per se.
The second data set uses current estimates from glider data
obtained during a field experiment. Analysing the results for
both data sets allows us to quantify the effects on accuracy
of the subsurface time and the glider’s dead-reckoning algo-
rithm.

The data used in this study were collected during a field
experiment that took place in the German Bight, in the Ger-
man sector of the North Sea in August 2014 (see Fig. 2a). An
upward-looking RDI Workhorse 600 kHz ADCP was bottom
mounted near buoy NSB3 (54◦40.7′ N, 6◦47.1′ E) at about
40 m depth (Fig. 2a). The deployment period ranges from
16 July until 31 August 2014. The instrument was config-
ured with bin sizes of 40 cm yielding a current profile ev-
ery 10 min. Each measured profile is the ensemble mean of
32 pings.

The glider Sebastian, a Teledyne Webb Research Slocum
Electric littoral glider (Jones et al., 2005), was deployed on
24 July 2014 and recovered on 26 August 2014. Its track is
shown in Fig. 2a. From 4 until 10 August and from 13 until
17 August, the glider was programmed to fly in a spiralling
mode (with the steering fin set to a fixed position).

The target area for the glider operation was near the buoy
NSB3 and the ADCP. Figure 2b shows that most of the time
the glider was within 10 km distance from the ADCP. There-
fore, the tidal currents and the mesoscale circulation that are
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(a)

(b)

Figure 2. (a) Track of glider Sebastian during 2014 experiment and location of the bottom mounted ADCP near buoy NSB3; (b) distance
between glider and bottom mounted ADCP.

(a)

(b)

-1
-1

Figure 3. Eastward and northward currents are shown in the top and bottom panel, respectively. The synthetic 3 h averaged currents are
shown in transparent blue, and the forward and forward–backward filtered residual currents are shown in red and green, respectively.

subject to the ADCP and glider measurements are expected
to be the same.

4.2 Algorithm assessment

As a first step, the ADCP measurements were used to evalu-
ate the performance of the filter. The instantaneous currents
measured with the ADCP are considered as the true currents.
Synthetic glider measurement data were obtained by time
and depth averaging the ADCP measurements, followed by
adding white noise. The time averaging was performed over a
window representing the subsurface time of the glider. This
interval was set to 3 h, which is a typical value during op-
erations in the North Sea. Below, however, the influence of
the subsurface time on the accuracy on the prediction algo-
rithm is addressed specifically. The added noise is Gaussian
with zero mean and a standard deviation of 1 cm s−1, in cor-
respondence with Eq. (19).

Firstly, the synthetic measurements were low pass filtered
using a first-order Butterworth filter as outlined above. The

purpose of this filter is to remove the main semidiurnal and
faster tidal signatures from the total signal. For the present
data set the M2 tidal component accounts for 80 and 65 %
of the total variance for the eastward and northward currents,
respectively. The result is shown in Fig. 3 for the forward
filter (red) and the phase-preserving forward–backward filter
(green). The synthetic measurement data are shown in trans-
parent blue. The figure shows that the residual current does
not vary too much, except for a few short periods, notably in
the northward current. One of these periods with significant
variation in the residual current is the time window of some
3 days starting at 10 August, which can be linked to the pas-
sage of a low pressure system (remnants of the Hurricane
Bertha). The graphs show that, compared to the forward–
backward filter, the forward filter leaves about 40 % of the
main semidiurnal tidal component present in the filtered sig-
nal but introduces only a marginal phase lag.

Secondly, the synthetic current measurements, corrected
for the residual current using the low pass filtered cur-
rents, were subjected to the Kalman filter. The initial con-
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-1

Figure 4. Standard deviations of the errors of the eastward (blue) and northward (red) current components, as a function of the variance
parameter q (process noise). The solid lines were obtained using a forward low pass filter to remove the residual current (near-real-time
mode), whereas the dashed lines were obtained using a forward–backward low pass filter (delayed mode). The black line indicates q =
4× 10−16, which is the optimal value taking into account eastward and northward currents as well as near-real-time and delayed mode
scenarios.

(a)

(b)

(c)

(d)

-1 -1

-1 -1

Figure 5. Errors in the estimated currents. Upper left panel: histogram for eastward direction; bottom left panel: histogram for northward
direction; upper right panel: estimated probability density function for eastward current; and bottom right panel: estimated probability density
function for northward current. The dashed lines indicate the 50 and 95 % levels.

ditions were set by the state vector x0 = [0,0,0,0]T (zero
tidal amplitude components) and a high covariance matrix
P 0 = diag(1000,1000,1000,1000)m2 s−2, which signifies
that the current state of the system is unknown. Further-
more, the measurement noise variance parameter was set to
r = 1× 10−4 m2 s−2, in correspondence to the added noise,
r = σ 2.

In order to find the optimal value for the variance param-
eter q, the Kalman filter was run for a number of differ-
ent values of q. The Kalman filter yielded the lowest stan-
dard deviation of the error in the estimated currents in both
near-real-time mode and delayed mode (see Sect. 4.3) for
q ≈ 4×10−16; see Fig. 4. The value of q = 4×10−16 is used
throughout this work.

The Kalman filter (Eqs. 2–6) was updated when a new cur-
rent measurement becomes available, i.e. at 3 h intervals. The
error of the estimate of the depth- and time-averaged current
components for each time step is given by Eq. (21). The re-
sults are summarised in histograms in Fig. 5. The top and
bottom left panels show the histograms of the eastward and
northward (time integrated) currents, respectively. The distri-
butions of the errors seem Gaussian and have standard devi-
ations of 3.5 and 3.1 cm s−1 for the eastward and northward
currents, respectively. The means are ≈ 0 for both the east-
ward and northward components. The panels on the right-
hand side show the cumulative probability density. The mean
error is approximately 2.0 and 2.5 cm s−1 for the eastward
and northward components, respectively. Furthermore, 95 %
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(a)

(b)

-1
-1

Figure 6. Seventeen-day time series of measured currents and Kalman filter estimated currents for the eastward component (top panel) and
the northward panel (bottom panel).

(a) (b)

-1 -1

Figure 7. Probability density function estimates of the errors for the eastward current component (left panel) and the northward component
(right panel). The black and red curves are derived from the results of the Kalman filter run in near-real-time mode for the glider data and
ADCP data, respectively. The blue and green curves are derived from the Kalman filter modified for delayed mode (post-processing); see
Sect. 4.3.

of the estimates have an error margin smaller than 6.9 and
5.8 cm s−1 for the eastward and northward components, re-
spectively. Put into context, this means that for 3 h subsurface
times about 95 % of the estimates of the resurfacing positions
are accurate within 1000 m; see also the application of a vir-
tual automatic identification system (AIS) in Sect. 5.

In practice, the errors due to the dead-reckoning algorithm
that get absorbed into the current measurements by the glider
will degrade the performance of the current prediction al-
gorithm. To quantify this degradation, the algorithm is ap-
plied to the observed current measurements from the glider
and compared with the currents as measured by the ADCP,
which are considered the ground truth. Since the glider oper-
ated within 10 km of the ADCP during most of the mission
time (see Fig. 2b), this seems a reasonable assumption.

In contrast to the synthetic data, the glider data do not have
a fixed interval. For the present glider data set, most of the

subsurface times were between 2.6 and 3.0 h, as during most
of the mission the glider was programmed to resurface at
3 h intervals, interpreted as resurface time-to-resurface time.
The reason for the mean subsurface time to be less than 3 h
is due to the fact that at resurfacing the glider spent about
10–15 min afloat to transmit data. Leaving all parameter set-
tings of the low pass filter and the Kalman filter unchanged,
the depth- and time-averaged current estimates are compared
with those computed from the ADCP current measurements,
where time intervals for averaging the ADCP data were
matched to the factual subsurface times of the glider. The
results are summarised in Fig. 7. In this figure the left panel
represents the eastward current error and the right panel the
northward current error. Comparing the near-real-time glider
data results (black curves), which are forward filtered only,
with the results of the synthetic data set from ADCP data
(red curves), it is seen that the performance dropped, as ex-
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pected. On average the errors (50 and 95 % levels) increase
by a factor of 1.4.

The instantaneous currents are readily computed once the
amplitude estimates of the tidal components are computed.
At surfacing, when a new time- and depth-averaged cur-
rent estimate becomes available, the low pass filter and the
Kalman filter provide new estimates for the residual current
component and the a posteriori state vector, respectively. The
residual current component during the dive is computed from
linear interpolation of the estimates obtained prior to diving
and just after resurfacing. The time-varying tidal component
is computed from Eqs. (16) and (17), with the amplitudes
linearly interpolated from the a posteriori estimates, also ob-
tained just before diving and just after resurfacing. Figure 6
shows an example of a 17-day period of instantaneous cur-
rents (synthetic data set). In particular for the north compo-
nent, one instance where the residual current changes in time
is discernible, namely around 8 August. Due to the lagging
response of the Butterworth filter, the estimated currents de-
viate most from the measured currents when sudden changes
occur in the residual currents.

The near-real-time instantaneous current estimates are po-
tentially useful for assimilation into circulation models; see
for example Stanev et al. (2015). Every time the glider sur-
faces, the low pass filter and the Kalman filter can be run,
using the latest available measurement estimate of the depth-
and time-averaged current. In this way, estimates of the in-
stantaneous current during the dive can be used in the assim-
ilation process, whereas time-averaged value of the current
may provide little useful information, depending on the sub-
surface time.

Comparing the estimates of the instantaneous (depth-
averaged) current components with the instantaneous cur-
rents measured with the ADCP, the standard deviations of the
differences amount to 6.5 cm s−1 for both the eastward and
northward components. The linear correlation coefficients
for the observed and estimated current components are in the
range [0.93,0.97], confirming the strong linear relationship
between estimates and observations suggested by the data
in Fig. 6. A summary of mean and standard deviations of
the differences between current estimates and observations
in near-real-time mode is given in Table 1 (top panel).

It is noted that since for the synthetic data set the “mea-
surement data” and “observations” are constructed from the
same source, namely the ADCP currents, any bias in ADCP
currents will go unnoticed. Indeed, the mean value of the
difference between estimated and observed current for the
synthetic data set amounts to 0; see Table 1. For the glider
data set, however, the table shows that the mean values are
not equal to 0. In this case the measurement data (glider) and
reference data (ADCP) are independent. The non-zero means
can be caused by a bias in the ADCP measurements, which
is on the order of 1 cm s−1, or a bias in the dead-reckoning
algorithm of the glider (see also Sect. 4.3).

4.3 Glider-derived currents in delayed mode
(post-processing)

The approach proposed herein can also be used to repro-
cess the glider data to obtain estimates of the instantaneous
barotropic currents once the glider mission has been com-
pleted. In delayed mode, a number of improvements can be
applied. First, the depth- and time-averaged current estimates
can be improved by recalculating the dead-reckoned posi-
tion. The glider’s dead-reckoning algorithm computes the
horizontal velocity component from the pitch and the pres-
sure rate, ignoring the angle of attack. Although the angle
of attack is generally small, the glider algorithm may over-
estimate its horizontal speed by a few cm s−1. An improved
dead-reckoning calculation can be done post-mission by im-
plementing the dynamical glider model of Merckelbach et al.
(2010).

Another source of error in the estimated currents is the
phase lag introduced by the Butterworth filter; see Sect. 3.1.
This effect can be mitigated by running the filter forwards
and backwards in time, as demonstrated in Fig. 3.

Third, a Kalman filter can be formulated that uses both
“historic” and “future” observations. To that end the Kalman
filter described above is run forward and backward, whereas
the final estimate of the vector x̂k for time index k is com-
bined from the forward and backward quantities (Simon,
2006):

K= P−b,k(P
+

f,k +P−b,k)
−1, (22)

x̂k =Kx+f,k + (I−K)x−b,k, (23)

where the subscripts “f” and “b” denote forward and back-
ward filter results, respectively.

Figure 7 shows the improvement achieved due to addi-
tional backward filtering step. For both the synthetic and the
glider data sets, the errors in the depth- and time-averaged
currents are reduced. The averaged factor of improvement
for the synthetic and glider data is approximately 1.2–1.3.
The improvement for the instantaneous current estimates is
similar. The mean and standard deviation values of the dif-
ferences between observed and estimated currents for the de-
layed mode algorithm are summarised in Table 1 (bottom
panel).

5 Virtual AIS

Developed in the 1990s, the AIS, which is based on VHF ra-
dio communications, allows ships to both see and be seen by
other marine traffic in their area. The system augments radar
and has increased the safety at sea. Since AIS instrumenta-
tion is generally bulky and would take a substantial cut from
the glider’s energy resources, and AIS signals do not pene-
trate water, it is for technical reasons not feasible to equip a
glider with an AIS transmitter. Being able to broadcast its po-
sition to surrounding ships would, however, reduce the prob-
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Table 1. Mean (µ) and standard deviation (σ ) of the difference between ADCP observations and (a) near-real-time current estimates and
(b) delayed mode current estimates. The correlation coefficient (ρ) is calculated from the instantaneous estimated values and observations,
for both the near-real-time and delayed mode data. The synthetic data set is derived from ADCP measurements, with added noise (see text).
Dive-averaged current estimates assume 3 h dives.

(a) Near-real time

Data set Time base Eastward current Northward current

µ σ ρ µ σ ρ

(cms−1) (cms−1) (–) (cms−1) (cms−1) (–)

Synthetic data Dive averaged 0.0 3.5 0.0 3.1
Instantaneous 0.0 4.8 0.97 0.0 4.1 0.96

Glider data Dive averaged 1.4 5.2 0.2 5.7
Instantaneous 1.5 6.5 0.96 0.8 6.5 0.93

(b) Delayed mode

Data set Time base Eastward current Northward current

µ σ ρ µ σ ρ

(cms−1) (cms−1) (–) (cms−1) (cms−1) (–)

Synthetic data Dive averaged 0.0 1.6 0.0 1.1
Instantaneous 0.0 3.5 0.99 0.0 2.6 0.99

Glider data Dive averaged 0.7 4.3 1.6 4.6
Instantaneous 0.6 5.7 0.97 1.6 5.5 0.95

ability of a collision between a glider and a ship drastically.
An alternative to AIS is virtual AIS, whereby the position
of an object (glider) is broadcasted from an AIS transmitter
elsewhere (a land station). In Germany the authority Wasser-
und-Schifffahrtsverbund (WSV) regulates the use of virtual
AIS and has shown interest in this approach.

The principle of operation of a virtual AIS system is as fol-
lows. Two situations are discerned, namely the period when
the glider is at the surface and when it is underwater. When
the glider is at the surface and has established a (satellite)
communication link with a server on shore, its actual GPS
position is known. This information is instantly and automat-
ically relayed to an operator room of WSV, from which the
positional information of the glider is broadcasted as an AIS
message. When the glider is underwater, and no actual GPS
position is available, an estimated position can be broad-
casted. To estimate a position, information is required on
the local current field (drift) and the behaviour of the glider
in terms of hardware behaviour (how it is programmed and,
consequently, how it reacts to the environment) and dynamic
behaviour (how and how fast it flies through the water). The
modelling of the glider behaviour is considered beyond the
scope of this study and therefore not discussed.

Assuming that an adequate model of the glider behaviour
is available, it is furthermore required to quantify the drift
due to the current whilst the glider is underwater. The drift
can be estimated from integrating the estimated instanta-
neous (depth-averaged) currents over the period of the dive.

The instantaneous current is computed as outlined in the pre-
vious section, except for some modifications. Since no new
information can be taken into account until the glider resur-
faces again, the residual current component cannot be com-
puted from a linear interpolation during the dive. Instead, the
residual current component is taken equal to its estimate at
the time of diving and held constant during the dive. For the
same reason, using Eqs. (16) and (17), the tidal current com-
ponent is computed from the a posteriori estimate of the state
vector at the time of diving only1.

It is expected that the uncertainty in the underwater glider
position grows the longer it is underwater. The synthetic data
set can be used to quantify the effect of subsurface time on
the uncertainty in position, as this data set can easily be di-
vided in predefined subsurface times. Running the (forward)
low pass and Kalman filters repeatedly for subsurface times,
spanning 12 h with 10 min intervals, ensembles of six con-
secutive runs are formed. Figure 8 shows the ensemble aver-
aged errors in estimated position for the mean, the 75 and 95
percentile errors, drawn by blue, green and red solid curves,
respectively. The identically shaded areas indicate the varia-
tion present in each ensemble. As anticipated, the errors in-
crease with increasing subsurface time. Because of the longer
integration times, the errors in the estimated velocities in fact

1It is, in fact, possible to use interpolated amplitudes, based on
the a posteriori estimates at the time of diving and the a priori es-
timates at the time of resurfacing; however, this brings no benefit
because of Eq. (15). See also the conclusion of Sect. 4.3.
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M

Figure 8. Error in estimated resurfacing position as a function of
subsurface time.

reduce slightly with increasing subsurface time, expressed by
the flattening of the curves for longer subsurface times.

As the position error increases from zero at the time of
diving, the errors shown in Fig. 8 are the maximum errors,
i.e. the expected errors just prior to resurfacing. Depending
on the required limit of this error, the maximum allowable
subsurface time can be defined. Here the data suggest that
for a subsurface time of 3 h, the average error is less than
700 m and that virtually all estimates are within double that
distance.

Presently, this system is not implemented yet. The author-
ity WSV has expressed its interest and also indicated that
the errors in the prediction for 3-hourly dives are acceptable.
Technical limitations of the AIS system in use by WSV pre-
vents a (semi-)automatic implementation. Furthermore, the
range of the land stations to broadcast the AIS messages
is limited to about 70 km offshore and would not reach far
enough to cover the outer parts of the German sector of the
German Bight.

6 Discussion

The approach presented herein comes with a number of ad-
vantages. First, with a focus on glider path prediction, previ-
ous experience has shown that an unjustifiable amount of ef-
fort is required to guarantee current model output to be avail-
able at all times. Using glider estimated currents removes
this vulnerability, as this information is always available, as-
suming a glider operates normally. Second, the proposed al-
gorithm provides independent estimates of the instantaneous
currents. In near-real time these estimated currents can be as-
similated into the COSYNA-run ocean current models of the
German Bight in a fashion similar to how radar observations
of surface currents are assimilated (Stanev et al., 2015).

In delayed mode, when all data are available, the accu-
racy of the current estimates can be further improved. Still,
the accuracy would remain inferior to the accuracy that can
be achieved with direct measurements from devices such as
ADCPs. However, as often, for practical and logistical rea-
sons, few, if any, independent current data are available that
co-locate with glider data, so that a third advantage is that

for many applications the improved glider based current esti-
mates may be the only information on instantaneous currents
available. This can facilitate the data analysis in studies in-
volving gliders in tidal waters, similar to those published on
phytoplankton blooms (e.g. Xu et al., 2013), sediment resus-
pension events (e.g. Glenn et al., 2008) or oxygen depletion
events (e.g. Queste et al., 2016).

We chose to decompose the currents into a tidally driven
part and a residual current. Lacking a realistic model for the
residual currents, this component was quantified by a sim-
ple low pass filter, whereas the tidally driven currents were
estimated using a Kalman filter based on the shallow water
equations. Instead of this approach, a variety of other formu-
lations could have been considered.

Instead of using a low pass filter, a Kalman filter for the
residual current could be formulated based on the model

u̇r = 0, (24)

where the subscript “r” refers to residual. This model states
that the current is constant. The Kalman filter will update
the prediction of the current with every new measurement.
How much the measurements are trusted over residual cur-
rent modelled as a constant depends on the predefined model
noise. Similar to the forward low pass filter, this Kalman fil-
ter introduces a lag, the magnitude of which depends on the
model uncertainty. As the purpose of this Kalman filter is
to filter out the residual component of the current, it is not
straight forward to set the process noise such that right model
stiffness is achieved. This is in contrast with the low pass fil-
ter, the behaviour of which is well-defined given the order
and the cut-off frequency. If the model would be based on
the assumption that ȧr = 0, the same arguments still would
apply, although this variant has the advantage that between
measurements the estimated residual current is assumed to
vary linearly rather than being constant.

A different approach could be to incorporate the resid-
ual current Kalman filter based on Eq. (24) directly in the
Kalman filter developed in Sect. 3.2, by modifying Eqs. (15)–
(18). The major drawback of this formulation is that the filter
has no means to discriminate between the residual and tidal
components of the measured currents, other than specifying
different model noises for the tidal and residual current mod-
els and may therefore not converge.

The robust solution, therefore, is to apply a low pass fil-
ter to the measured currents to separate the residual and tidal
current components. Butterworth low pass filters of various
orders and cut-off frequencies were considered. A first-order
filter with a cut-off frequency of 1/24 cph was chosen a pri-
ori. This filter introduces a small group delay at the expense
of attenuating only part of the main tidal signal. This raises
the question of whether or not a filter with other settings
could fare better. Each of the filters discussed in Sect. 3.1
(see also Fig. 1) was applied to compute the time- and depth-
averaged currents in near-real-time mode from the synthetic
data.
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Figure 9. Mean error in estimated resurfacing position as a func-
tion of subsurface time for various Butterworth low pass filters with
order N and cut-off frequency 1/Tc cph.

Figure 9 shows the mean absolute error in the velocity es-
timate as function of the subsurface time for various filter
settings. For the sake of convenience, the filter setting is de-
noted by a tuple consisting of the order and cut-off frequency
in cph. The figure shows that if the filter design is based
on removing almost all of the tidal signal, i.e. filter settings
(1,1/119) and (2,1/38), both filters perform equally well.
An improved overall performance is achieved, however, if
the cut-off frequency is increased. This increase reduces the
group delay introduced by the filter, but it also decreases the
effectiveness of damping the main tidal signal. Although the
filter settings (1,1/12) and (2,1/12) would also be accept-
able, the filter setting (1,1/24) is considered performing best
and has been used throughout this work. Increasing the fre-
quency further, however, degrades the results, as is shown by
the filter with setting (1,1/6).

7 Conclusions

Although the navigational algorithm implemented on board
the (Slocum) glider yields depth- and time-averaged cur-
rents, the time resolution, set by the subsurface time, is often
too coarse for the purpose of data analysis. This is particu-
larly the case in regions where the currents are dominated
by the tides. In this work an algorithm, tailored to coastal
seas with strong tidal currents, was presented that can be
used to estimate the instantaneous currents from the time-
averaged current measurements obtained by the glider. The
algorithm considers a current component driven by the tides
and a residual current.

During a glider mission, the algorithm can be used to pre-
dict the currents, which is essential to make a projection of
the glider trajectory up to 12 h or so ahead. Run as a predic-
tive tool, both the low pass filter and the Kalman filter are
run forward in time only, which inevitably leads to lagging
effects. This can particularly be apparent in the residual cur-
rents resulting from the low pass filter. For a typical applica-
tion of a glider run in the North Sea, a first-order Butterworth
filter with a cut-off frequency of 1/24 cph was selected, be-

ing a trade-off between the amount of damping of the main
tidal signal and the group delay.

To assess its performance, the algorithm was first applied
to depth- and time-averaged currents, constructed from in-
stantaneous currents measured with an ADCP, with known
noise levels added (synthetic data). By averaging over time,
information is lost, so that the measurements presented to
the Kalman filter contain less information than the original
ADCP measurements. The loss of this information is mostly
compensated by information provided by the shallow water
model. For an anticipated subsurface time of 3 h, the cor-
relation coefficients calculated for the estimated and ADCP
measured instantaneous currents were found to be 0.97 and
0.96 for the eastward and northward components, respec-
tively. This result indicates that the algorithm as such lives
up to the expectations and is capable of reconstructing the
instantaneous currents to a large extent.

When applied to the glider-derived current measurement,
and compared with ADCP data measured within a radius of
about 10 km, the algorithm performs slightly worse, with cor-
relation coefficients of 0.96 and 0.93 for the eastward and
northward current components, respectively. This regression
is attributed to the additional uncertainty caused by the nav-
igation algorithm. Still, for subsurface times of 3 h, which
is a typical operational setting, the estimate of the instanta-
neous current has standard deviation of 6–7 cm s−1, which is
considered low enough to be used for data assimilation pro-
cedures.

A further application could be to incorporate the present
algorithm in a virtual AIS system to enhance the safety at
sea. Herein the glider’s position between surfacings can be
estimated. The uncertainty in the estimated position grows
with the time that the glider is underwater. Quantifying the
effect of the uncertainty in the currents on the positional ac-
curacy, it was found that subsurface times up to 3 h would
yield a positional accuracy that was still acceptable for the
German authority WSV.

In delayed mode, the performance of the algorithm can
be increased by running the low pass filter and the Kalman
filter in forward–backward mode. The backward run in ef-
fect counters the lag introduced in the forward sweep. The
standard deviation of the instantaneous current estimate was
found to drop below 6 cm s−1. This means that for the pur-
pose of data analysis, where the (depth-averaged) current is
often regarded as an important driving force, the proposed al-
gorithm provides a way to reconstruct the instantaneous cur-
rents with a sufficiently degree of accuracy.

8 Data availability

The glider data used in this work are available
from the CODM, the Cosyna data portal (Bre-
itbach et al., 2016), or using the direct links
http://sos.hzg.de/sos.py?request=GetObservation&service=
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SOS&eventTime=2014-07-17T00:00:00Z/2014-08-31T23:
59:52Z&offering=sebastian&observedProperty=dive_
averaged_eastward_current and http://sos.hzg.de/sos.
py?request=GetObservation&service=SOS&eventTime=
2014-07-17T00:00:00Z/2014-08-31T23:59:52Z&offering=
sebastian&observedProperty=dive_averaged_northward_
current. The depth-averaged ADCP data are made available
in the Supplement.

The Supplement related to this article is available online
at doi:10.5194/bg-13-6637-2016-supplement.
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