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Abstract. Leaf seasonality impacts a variety of important

biological, chemical, and physical Earth system processes,

which makes it essential to represent leaf phenology in

ecosystem and climate models. However, we are still lack-

ing a general, robust parametrisation of phenology at global

scales. In this study, we use a simple process-based model,

which describes phenology as a strategy for carbon optimal-

ity, to test the effects of the common simplification in global

modelling studies that plant species within the same plant

functional type (PFT) have the same parameter values, im-

plying they are assumed to have the same species traits. In a

previous study this model was shown to predict spatial and

temporal dynamics of leaf area index (LAI) well across the

entire global land surface provided local grid cell parameters

were used, and is able to explain 96 % of the spatial varia-

tion in average LAI and 87 % of the variation in amplitude.

In contrast, we find here that a PFT level parametrisation is

unable to capture the spatial variability in seasonal cycles,

explaining on average only 28 % of the spatial variation in

mean leaf area index and 12 % of the variation in seasonal

amplitude. However, we also show that allowing only two

parameters, light compensation point and leaf age, to be spa-

tially variable dramatically improves the model predictions,

increasing the model’s capability of explaining spatial vari-

ations in leaf seasonality to 70 and 57 % of the variation

in LAI average and amplitude, respectively. This highlights

the importance of identifying the spatial scale of variation of

plant traits and the necessity to critically analyse the use of

the plant functional type assumption in Earth system models.

1 Introduction

The ability to understand and predict leaf seasonal cycles, a

process known as leaf phenology, is essential to our under-

standing of Earth systems processes, through its impact on

the carbon and water cycles (White et al., 1999; Wilson and

Baldocchi, 2000) and climate (Hayden, 1998). As such, phe-

nology is an essential component of global vegetation models

and an improvement in our understanding of, and ability to

predict, leaf phenology would improve Earth system model

predictions.

One of the aspects of global vegetation models that is

currently under scrutiny is the way parameters are assigned

to the simulated vegetation within a given model grid cell.

Traditionally, models make use of the plant functional type

(PFT) concept. In this approach, a small number of PFTs are

defined, each with a corresponding set of parameters, then a

given grid cell is assigned to one, or a mixture of, these PFTs.

However, more recently efforts are being made to include a

more biologically detailed representation in the form of plant

traits. PFTs are classes of plant species with similar char-

acteristics and roles within ecosystems (Box, 1996; Smith,

1997) and found within certain bioclimatic regions (Prentice

et al., 1992; Haxeltine and Prentice, 1996). All model pa-

rameter values are then assigned to each PFT either based

on ground measurements or through parameter estimation.

This approach has the underlying assumption that all plants

within such a PFT show an identical behaviour (Sitch et al.,

2003), an assumption applied to all processes represented in

such models, including leaf phenology. Such an assumption

is necessary because of the lack of available measurements
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across the globe needed for models, which are not data con-

strained.

The main advantage of using PFTs in vegetation models

is the simplicity of the concept and the relatively small num-

ber of parameters, minimising both the amount of data and

computational effort required. Using PFTs to represent eco-

logical processes at global scales would be the obvious ini-

tial choice for parameter inference because the number of

parameters can be kept low while still representing the var-

ious types of vegetation. PFTs are also a useful concept for

future climate predictions where expected changes in vege-

tation type can be easily represented in this way. Dynamic

global vegetation models predict PFT distributions based ei-

ther on pre-defined climate envelopes (Prentice et al., 1992)

or pre-defined competitive outcomes, both approaches being

based on existing PFT distributions (Arora and Boer, 2006).

Recent studies have attempted to use a more physiological-

based approach (Fisher et al., 2015).

However, there are a number of disadvantages to using the

PFT approach, mainly due to the fact that a PFT-type cate-

gorisation imposes fixed parameter values and cannot cap-

ture the continuous variation observed in plant traits within

and among PFTs (see review by Van Bodegom et al., 2012).

Capturing such heterogeneity not only may improve the pre-

diction of biogeochemical and physical dynamics in Earth

system models but also may improve predictions of other

longer-term vegetation processes such as shifts in vegetation

composition to climate change. Recent studies have therefore

focussed on replacing the PFT method with using plant traits

(Sakschewski et al., 2015; Verheijen et al., 2013; Pavlick

et al., 2013) and identifying the distribution of traits to use

in different locations across the Earth’s surface (Kattge et al.,

2011; Reich et al., 2007).

Given the potential advantages and disadvantages of the

PFT approach, it is important to formally evaluate it in com-

parison to alternative approaches, such as using location-

specific traits, but such a formal comparison has not been

carried out to date.

In the current paper we aim to investigate the use of PFT

and trait-based parameters within the framework of a data-

constrained global phenology model. We have chosen to

use a previously developed leaf phenology model (Caldararu

et al., 2014) as a simpler case than a full-scale dynamic

global vegetation model (DGVM). For the purpose of this

paper, we use the term phenology to encompass seasonal tra-

jectories of leaf area index (LAI) as well as the timing of leaf

off and leaf on, which is what the term refers to in its stricter

sense. We explore the extent to which the PFT assumption

can capture the spatial variability in leaf seasonality. To this

end, we use three main different model parametrisations: the

local parametrisation, the fitted parameters at the PFT level

and a novel approach, which combines PFT level parameters

with local traits, and two additional ones – a global and re-

gional parametrisation (Sect. 3). We explore the differences

between the different parametrisations (Sect. 4) and we aim

to explain the effects shown by local parameters and their

relationships with plant traits (Sect. 5).

2 Data sets used

2.1 LAI data

We use LAI data from the Moderate Resolution Imaging

Spectroradiometer (MODIS) on board the Terra platform.

We use the MODIS collection 5 product MOD15A, which

is available at 1 km spatial resolution and an 8-day time

step (https://lpdaac.usgs.gov/). The MODIS LAI is based

on a reflectance algorithm, which uses the red and near-

infrared bands and includes corrections for canopy structure

and background soil reflectance (Knyazikhin et al., 1999). In

cases where this main algorithm fails, a backup algorithm is

used, which is based on an empirical relationship between

LAI and NDVI (normalised difference vegetation index). We

use the quality assurance flags provided with this product to

filter pixels that were derived using the backup algorithm or

which are classified as snow covered, as described in Cal-

dararu et al. (2012). We use data for the globe with a spatial

resolution of 1 km, which we then aggregate to the GEOS-4

base resolution of 2◦ latitude by 2.5◦ longitude, by calcu-

lating the mean of all pixels within a grid cell. All pixels

classified as cropland were excluded prior to averaging. The

aggregation to the coarser resolution was done both to re-

duce computational effort and to obtain time series without

the gaps resulting from our filtering procedure. The data were

split into a training (2001–2005) and an evaluation (2006)

data set.

2.2 Environmental variables

To drive the model, we use temperature and photosynthet-

ically active radiation (PAR) data from assimilated mete-

orological data products of the Goddard Earth Observing

System (GEOS-4) (Bey et al., 2001), which is available at

a spatial resolution of 2◦ latitude by 2.5◦ longitude and a

temporal resolution of 3 h, which we average to a 1-day

temporal resolution. The soil moisture data required in the

model were obtained from the NCAR/NCEP reanalysis daily

average surface flux data set (http://www.esrl.noaa.gov/psd/

data/gridded/data.ncep.reanalysis.surfaceflux.html) (Kalnay

et al., 1996), which is provided at a 1-day temporal resolution

and has been regridded to the GEOS-4 spatial resolution.

2.3 Plant functional type map

We use a global PFT map, which is used in the Integrated

Biosphere Simulator Model (IBIS) (Kucharik et al., 2000).

This differentiates between 13 different plant functional

types based on general plant properties (trees vs. grasses),

temperature tolerance (tropical vs. temperate), and leaf habit

(deciduous vs. evergreen). The PFT data are provided at a

Biogeosciences, 13, 925–941, 2016 www.biogeosciences.net/13/925/2016/

https://lpdaac.usgs.gov/
http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.surfaceflux.html
http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.surfaceflux.html


S. Caldararu et al.: The PFT paradigm in a phenology model 927

Table 1. Model parameters for leaf gain and loss processes.

Symbol Units Description

Cdirect Wm−2 Leaf-level light compensation point for direct PAR

Cdiffuse Wm−2 Leaf-level light compensation point for diffuse PAR

p days Lag in response to incoming light

gainmax m2 m−2 Maximum gain

φ µmol s−1 W−1 Photosynthetic efficiency

q µmol m−2 s−1 Canopy level compensation point

s1 – Plant water uptake parameter

s2 – Plant water uptake parameter

ε mm Evapotranspiration per unit leaf area

u mm Plant water use per unit leaf area

acrit years Age after which leaves start ageing

µ yr−1 Decay constant of photosynthesis with age

Amin µmol m−2 s−1 Assimilation rate equal to leaf maintenance costs

1 km spatial resolution, which we re-grid at the GEOS 4 na-

tive resolution based on majority land cover in each grid cell.

3 Model fitting

3.1 Model description

We use a global-scale mechanistic phenology model (Cal-

dararu et al., 2014), which is based on a carbon benefit ap-

proach, so that leaf gains and losses are adjusted to achieve

the optimal carbon assimilation at the canopy level. The phe-

nological timing predicted by traditional models arises im-

plicitly by predicting LAI values. At each time step t and for

each location x, the model calculates leaf gain and loss, and

hence overall change in LAI as

dLAI(x, t)

dt
= P(I0(x, t),LAI(x, t−1))−

amax∑
a=0

L(x, t,a), (1)

where P refers to leaf production processes, which are cal-

culated as a function of solar radiation I0 and the LAI at the

previous time step LAI(x, t − 1), and L refers to leaf loss

summed over all groups of leaves of the same age a (see Ta-

ble 1 for a full list of parameters). The model allows for con-

tinuous leaf gain and loss and does not include abrupt leaf on

and leaf off thresholds, thus being able to capture irregular

seasonal cycles (Caldararu et al., 2012, 2014).

To describe leaf gain, we define the concept of target LAI

as the optimum number of leaf layers for a given light level

at the top of the canopy I0 so that the bottommost leaf layer

receives sufficient light for photosynthesis, that is light at the

compensation point C (Wm−2). The target is calculated us-

ing Beer’s law of light extinction and expressed as

LAItarg =−
1

α
ln

(
C

I0

)
, (2)

where α is the canopy extinction coefficient calculated as a

function of day of year and latitude (Brock, 1981; dePury and

Farquhar, 1997). The solar radiation at the top of the canopy

I0 is averaged over a number of p days. We calculate separate

values for LAItarg for direct and diffuse radiation to account

for the different response of photosynthesis to the two. The

overall target is then calculated as the minimum of the two

values. We choose to use a direct and diffuse compensation

point as a simplified representation of light distribution in the

canopy. At any time step, if the existing LAI is lower than the

target value, new leaves are gained to reach the target LAI.

We introduce a parameter gainmax to limit the new leaves that

can be added at each time step to reflect the physiological

limits to building new leaves. The gain at any time t and for

all locations x is then calculated as

P(x, t)=


gainmax,

LAItarg(x, t)−LAI(x, t − 1),

0,

LAItarg(x, t)−LAI(x, t − 1) > gainmax

0< LAItarg(x, t)−LAI(x, t − 1) < gainmax

LAItarg(x, t)−LAI(x, t − 1) < 0.

(3)

To account for the effects of temperature, we set a threshold

of 0 ◦C mean daily temperature under which no leaves are

gained. Initial parameter optimisations where this threshold

is a free parameter have shown that the model is not very

sensitive to its value (Caldararu et al., 2014).

Following the optimality hypothesis, leaves are lost when

their carbon assimilation is less than their respiration and

maintenance costs, defined as the limit assimilation value

Amin. We calculate the carbon assimilation as a linear func-

tion of PAR absorbed by the canopy, Itot, per unit leaf area:

Alight =
φItot− q

LAI
. (4)
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here φ and q are model parameters representing photosyn-

thetic efficiency (µmol s−1 W−1) and canopy level light com-

pensation point (µmol m−2 s−1). Due to the lack of data con-

straints for carbon assimilation in our modelling framework,

we normalise assimilation values and associated parameters.

As a result, parameter values for φ and q in the above equa-

tion do not represent measurable values in the field, but in-

stead scale between potential minimum and maximum pho-

tosynthetic rates within the model. While the absolute values

of these two parameters have been scaled, the relative dis-

tributions across the globe can still be interpreted as having

physical meaning. It is worth noting that the canopy level

compensation point q and the direct and diffuse compensa-

tion points used in the calculation of the target LAI have dif-

ferent units (µmol m−2 s−1 and Wm−2, respectively), due to

the units that the original PAR data are in as well as the struc-

ture of the model.

To account for water limitation to assimilation and, implic-

itly, phenological processes, we introduce a factor fW calcu-

lated as

fw =
s1(Ws)

s2

εLAI
−
u

ε
, (5)

where Ws is volumetric soil moisture (unit less) obtained

from the NCAR/NCEP data set, s1 and s2 are parameters as-

sociated with water extraction capacity from the soil, ε rep-

resent potential evapotranspiration and u is plant water use.

Similarly, we define an age factor fage to describe the de-

clining carbon assimilation of leaves as they age:

fa =min(1,expµ(acrit−a)), (6)

where µ is the rate of decrease with age (yr−1) after a limit

age acrit (years). Using both these factors, the overall assimi-

lation is calculated as

Atot = Alightfwfa . (7)

Overall, the leaf loss at any point in time t and all locations

x for any group of leaves of the same age a (cohort) is

L(x, t,a)=

{
LAI(x, t,a), Atot(t,a) < Amin

0, Atot(t,a)≥ Amin.
(8)

To calculate the overall canopy LAI loss, we can then sum

over all age groups.

3.2 Model setup

We use five different model parametrisation to explore the

extent to which the PFT approach is applicable to a data-

constrained phenology model. The first such model setup,

previously used in Caldararu et al. (2014), is to fit a unique

parameter set to each grid cell. We will term this the local

model. This approach involves a very large number of param-

eters (14 parameters at each grid cell, for 2041 vegetated grid

cell results in a total of 28 574 parameters). It is important to

note, however, that the total amount of data available from

sources such as MODIS is also very large, making it possible

to parametrise extremely parameter-rich models, depending

on the exact nature of the data.

The second model setup is using one set of parameters

for each PFT, resulting in only 182 parameters for the en-

tire globe. We term this the PFT model. To investigate the

potential effects of geographical separation, we further sep-

arate each PFT into geographical regions (e.g. North Amer-

ican temperate deciduous broadleaf and European temperate

deciduous broadleaf), resulting in 44 regions. This was done

to test the assumption that species evolving in different ge-

ographical locations have different physiological parameters

even when belonging to the same PFT. This setup is referred

to as the region model and has 616 parameters. As a point

of reference, we also introduce a global model where pa-

rameters are common for all grid cells, under the assumption

that there is no difference in phenological behaviour between

vegetation types or geographical regions.

To test the extent to which each parameter represents local

characteristics, in the final model setup one or more parame-

ters are location specific while the rest have PFT-wide values.

We then term a parameter local if it has a specific value at

each grid cell. This setup is the combination model. As there

are a very large number of possible combinations of local pa-

rameters, we perform an initial analysis to determine which

parameters would most improve the model performance, if

local. We performed a principal components analysis (PCA)

of the spatial variation in parameter values fitted for the local

model. This highlighted that the principal axis of variation in

all parameter values was strongly correlated with variation

in Cdirect, while the second axis was dominated by variation

in acrit (Appendix Table A1). We also fit 14 different model

parametrisations, allowing each parameter in turn to be lo-

cal, while the other parameters are fitted at the PFT level.

The two parameters identified by the PCA, the light compen-

sation point Cdirect and the leaf age limit acrit, also show an

increase in model performance, especially in terms of spatial

variation explained (Table A2). As a consequence of these

two analyses, we focussed in detail on only one model that

combined local and PFT parameters in which the Cdirect and

acrit parameters are local. This model has 4238 parameters

for the whole globe, compared to 28 574 for the local model

and 182 for the PFT.

We fitted all models to the data using a custom Markov

chain Monte Carlo (MCMC) algorithm, known as the

Filzbach algorithm (http://research.microsoft.com/en-us/

um/cambridge/groups/science/tools/filzbach/filzbach.htm),

which has been described in detail in Caldararu et al. (2012).

Filzbach utilises MCMC with the Metropolis–Hastings al-

gorithm to estimate the joint distribution of the parameter set

θ . In our study we assume no prior information about θ and

therefore our implementation is reduced to estimating the θ

associated with the highest probability of the observations

Biogeosciences, 13, 925–941, 2016 www.biogeosciences.net/13/925/2016/

http://research.microsoft.com/en-us/um/cambridge/groups/science/tools/filzbach/filzbach.htm
http://research.microsoft.com/en-us/um/cambridge/groups/science/tools/filzbach/filzbach.htm


S. Caldararu et al.: The PFT paradigm in a phenology model 929

Table 2. Goodness of fit metrics for all five model parametrisations:

root mean square error (RMSE) normalised by mean LAI value, dif-

ference in observed and predicted mean LAI and difference in ob-

served and predicted annual amplitude. All metrics here are median

values across the globe and the two difference values are shown as

absolute values.

Model RMSE Mean Amplitude

difference difference

Global 1.21 0.73 1.01

PFT 0.52 0.45 0.51

Regional 0.46 0.38 0.31

Combined 0.39 0.23 0.33

Local 0.24 0.12 0.16

given by the model. To do this we need to define a likelihood

function that gives the probability of the data for any set of

predictions from the model with a given parametrisation.

For the local model this likelihood function is maximised

independently at each location x and is calculated as

l(Zx |θx)=
∑
t (x)

ln
[
n
(
LAIobs(x, t),LAIpred(x, t,θx),σx

)]
, (9)

where LAIpred(x, t,θx) is the predicted LAI at location

x at time t (this depends on the model parameters θx);

LAIobs(x, t) is the observed MODIS LAI at location x at

time t ; and n
(
LAIobs(x, t), LAIpred(x, t,θx), σx

)
denotes

the probability density for observing LAIobs(x, t) given a

normal distribution with mean LAIpred(x, t,θx) and standard

deviation σx , which expresses the magnitude of unexplained

variation in LAI. The likelihood is calculated as a sum over

all time steps at location x, expressed as t (x).

For the global, regional and PFT models, the likelihood

estimation is carried out at the global, regional or PFT level,

the likelihood being calculated as the sum at all locations x

within a group G, x(G):

l (ZG|θG)=
∑
x(G)

∑
t (x)

ln
[
n
(
LAIobs(x, t),LAIpred(x, t,θG),σG

)]
, (10)

where ZG and θG denote observed LAI and model parame-

ters for a given group of grid cellsG. Within the combination

model, the likelihood is again minimised for a whole PFT,

but in addition to the PFT level parameters θG, the predicted

LAI is also a function of local parameters θB,x . For all model

parametrisations, we use years 2001–2005 as training data

and 2006 for evaluation purposes. The model was run at a

daily time step, but the likelihood was only computed when

MODIS data were available, with a time step of 8 days.

Without separating training and test data in this way, the

more parameter-rich models would be guaranteed to give a

better fit to the data. Separating the training and test improves

our ability to assess model performance, although, given that

the training test data are separated by a relatively short time

and not separated in space, we expect a tendency for the

more parameter-rich models to provide superior performance

against the test data.

3.3 Model performance metrics

To compare the different types of models described above,

we define several model performance metrics against the test

data. The best model should be able to capture both the tim-

ing and magnitude of the seasonal cycle at each location and

the spatial variability in seasonal cycles across the globe. As

an overall measure of fit we use the root mean squared error

(RMSE) normalised by the mean LAI, which is a measure

of the fit at each particular location. The mean LAI and LAI

amplitude describe the magnitude of the seasonal cycle and

we use the percent of variation explained to capture the ex-

tent to which the model describes their spatial distribution.

Similarly, we use the start and end of the growing season to

describe the timing. We define the start of the growing season

as the first date of the year when the LAI reaches 0.2 of the

maximum LAI, while the end of the growing season is the

equivalent last date. To capture the timing in tropical areas

with a less pronounced seasonal cycle, we also use the tim-

ing of maximum LAI. All metrics are reported for the model

evaluation period (2006).

We choose not to use statistical information criteria (e.g.

Bayesian information criteria) because our model fitting

methodology does not easily allow for the computation of

a single likelihood metric. The model structure is the same

for all parametrisations, with the main model differences be-

ing the number of parameters at each grid cell. However, this

means that different quantities of data are also used to fit dif-

ferent models. For example, since the local model is fitted

separately at each location, it effectively consists of 2041

separate models, each with 14 parameters, while the PFT

model contains 13 models each with 14 parameters. Rather

than work out a global information criterion-based metric for

the models, we instead opt to use the more meaningful met-

rics of the relationships between the model predictions and

the data described

4 Results

An overall comparison of the five model parametrisations

(Table 2) shows that the global model has the highest er-

ror, while the local model has the lowest error. The fact

that the global setup has a very high error is not unex-

pected since there are known physiological differences be-

tween plant functional types, which is why the use of PFTs

is common in global modelling studies. However, the PFT

model also has a much higher error than the local one. The re-

gional model does not show a significant improvement from

the PFT, with the exception of the tropical broadleaf ever-

green forest PFT. Below we will discuss in detail only the

PFT, combination and local models, where this particular for-

www.biogeosciences.net/13/925/2016/ Biogeosciences, 13, 925–941, 2016
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Figure 1. Root mean squared error (RMSE) of predicted LAI over the model study period for the local, PFT, and combined models. All

values have been normalised to the mean observed LAI at all locations.

est PFT has been separated into geographical (continental)

regions.

Figure 1 shows the overall model error over the entire

study period for the three main model parametrisations. Rel-

ative root mean squared error (unitless) values are much

higher for the PFT model than for the local model, 0.52± 0.5

compared to only 0.24± 0.03. The combination model has a

lower error of 0.38 ± 0.45. These errors are much lower for

tropical forests, typically 0.15 for the local model, compared

to 0.22 for the PFT and 0.16 for the combination models

(Fig. 1). Similar errors occur in temperate deciduous areas.

The highest errors are observed in tropical grasslands and

shrublands for all models and specifically for the PFT model

(up to 2).

Figure 2 shows the relative difference between model and

observed LAI annual mean and amplitude. Both the local and

combination models underestimate the mean LAI across all

PFTs by 11.3 and 23.4 %, respectively. The PFT model ex-

hibits a higher bias, with a mean value of 45.4 %, with the

highest difference in tropical and temperate deciduous re-

gions (over 90 %). The PFT model underestimates the sea-

sonal amplitude in tropical forests by up to 50 and by 20 %

in higher latitude regions, while overestimating it by up to

200 % in subtropical grasslands and savannas. The combi-

nation model shows a similar pattern but a lower bias, with

differences of 27 % in tropical forests and 13 % in temperate

areas, similar to those of the local model.

Figures 3 and 4 show a comparison of predicted and ob-

served LAI mean and amplitude for forest and grass PFTs,

respectively. The PFT model captures the mean behaviour

but is not able to predict the full range of values in either

mean LAI or seasonal amplitude for any PFT, explaining on

average only 28 and 12 %, respectively, of the spatial vari-

ation in LAI mean and amplitude. The combination model

shows an improvement, explaining on average 70 % of the

spatial variation in mean LAI and 56 % of the amplitude,

compared to the local model, which explains 90 and 87 %,

respectively. The model results in boreal regions are difficult

to interpret because of the uncharacteristically low values of

the MODIS LAI in these regions, which are partially caused

by high within cell heterogeneity (Caldararu et al., 2014).

All models show a similar ability to predict the timing of

the seasonal cycle, with an error of 16 days for the start of

the growing season and differences of up to 24 days for the

maximum and end of the growing season, whereas in tropical

Biogeosciences, 13, 925–941, 2016 www.biogeosciences.net/13/925/2016/
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Figure 2. Difference between predicted and observed annual mean LAI (left) and seasonal amplitude (right) for the local, PFT, and combined

models. All values have been normalised to the mean observed LAI at all locations

evergreen forests the time of maximum LAI is 16 days earlier

compared to that shown by the MODIS data.

Figure 5 shows LAI time series for four different PFTs. At

the tropical evergreen forest location the local and combina-

tion models show a similar fit, whilst the PFT model cannot

capture any seasonal cycle. At the dry tropical (savanna) lo-

cation, the local model shows a good fit, but both the com-

bined and PFT model predict a much higher LAI. For the

temperate deciduous forest, all models capture the timing of

the seasonal cycle, but the PFT model predicts a lower am-

plitude than that observed in the MODIS data. For the boreal

evergreen forest, both the PFT and combination model pre-

dict a higher LAI than that observed by MODIS.

Figure 6 shows the relationship between model error and

grid cell heterogeneity within the PFT model in terms of frac-

tion of cell occupied by the dominant PFT for model RMSE,

bias in LAI mean, and bias in LAI amplitude. All three met-

rics show no correlation with grid cell heterogeneity, with an

R2 of less than 0.01, indicating that there is no systematic

bias in errors caused by the chosen PFT map.

To further investigate the observed differences arising

from the model parametrisation, we can analyse the param-

eter values for each different model. Figures 7 and 8 show

parameter distributions for the light compensation point and

leaf age limit parameters for six selected PFTs. Figure 9

shows global distributions of the local parameters in the com-

bined model. The PFT model fitted parameters are in most

cases capturing the mean values of the local parameter distri-

butions, but the discrepancy is higher in PFTs where the dis-

tribution has a long tail or multiple modes, especially in the

grass PFTs (Fig. 8). In the evergreen tropical forest the dis-

crepancy between the one value estimated by the PFT model

and the wide range of both the local and combination param-

eters is particularly large, as, according to the model, phe-

nology in these areas is limited by leaf age (Caldararu et al.,

2014) and the different modes observed in the parameter dis-

tribution are essential for representing the leaf cycles caused

by species with long but varied lifespans. The discrepancy in

leaf age values between the different model parametrisations

for the temperate PFT does not have such a profound effect

on predicted LAI as phenology in these regions is limited by

temperature and light and the age parameters are often poorly

constrained even for the local model. Other large differences

in parameter values are observed in the grass PFTs, which,

as discussed above, have some of the highest errors.

Overall, all metrics show that the PFT model performs

poorly across the globe, while the combination model, which

has only two location-specific parameters, shows a good fit

to the data.
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forests, TEF (6◦ S, 55◦W), savanna, S (14◦ S, 20◦ E), temperate de-

ciduous forests, TDF (46◦ N, 15◦ E), and boreal evergreen forests,

BEF (54◦ N, 120◦ E). Blue line shows observed MODIS LAI at

each location.

5 Discussion

In this paper we have investigated the capacity of a global

phenology model parametrised at the PFT level to repre-

sent observed phenological behaviour. We show that the PFT

model cannot fully capture spatial variations in LAI mean

and amplitude. In contrast, a model with local parameters re-

sults in a better model fit, but has a very large number of

parameters, which make it very difficult to use. However,

a combination model, where two of the model parameters

are local while the others are fitted at the PFT scale, per-

forms well with a reduced number of parameters. Our anal-

ysis shows that two specific parameters need to have local

values, the direct compensation point Cdirect (henceforth re-

ferred to as compensation point) and the leaf age limit agecrit.

Below, we focus on the possible biological significance of the

combined model and the possibility of using this concept in

a more general setting.

5.1 Plant traits in the combined model

The most straightforward biological explanation for the ob-

served results of the combined model is that the two local pa-

rameters – the light compensation point and leaf age limit –

are location-specific plant traits that vary within a PFT suffi-

ciently to affect model performance. Previous studies, which

have included traits as a replacement for the PFT concept,

have done so starting from biological principles, either based

on trait databases (Verheijen et al., 2013) or by evolving traits

through plant competition (Sakschewski et al., 2015). In con-

trast, in the current study we include no prior knowledge of

which parameters correspond to known plant traits and the

local parameters in the combination model are inferred from

the fitted model. The question that arises is if the resulting

parameters and parameter values provide any biological in-

sights or if this is just a mathematical artefact, resulting either

from the data used or the model structure.

The light compensation point is not a trait commonly used

in models or included in trait data, but it is closely related

to leaf photosynthetic parameters, such as Vcmax and Jmax,

and could easily be derived in terms of these if our model

included a biochemical description of photosynthesis. There

is one other parameter in our model, the photosynthetic effi-

ciency, φ, that is perhaps closer to the commonly used traits

but did not emerge as the most important parameter in the

PCA (Table A1) or was able to explain the spatial variability

in LAI (Table A2). In contrast to the compensation point pa-

rameter, which drives leaf gain across the globe, φ mainly de-

termines leaf loss in temperate and boreal regions, which are

light and temperature limited (Caldararu et al., 2014). This

result shows that leaf loss within a given PFT across tem-

perate and boreal forests can be predicted well from envi-

ronmental factors alone, without any inherent trait variation

within a PFT. This could result from the real trait variation

being low or the real trait variation having such a strong cor-

relation with environmental factors that the effects of the trait

variation cannot be separated from the effects of the environ-

ment. More ground measurements are needed to help confirm

this. The model also contains a parameter for the diffuse light

compensation point, Cdiffuse, introduced as a simple way of

representing light in the canopy. This parameter is expressed

relative to the Cdirect value at each location even though the

parameter acts as a PFT level parameter, the absolute value

for diffuse compensation point will vary spatially.

While the light compensation point is not a common pa-

rameter in vegetation models, measured values can be ob-

tained from light response curves measured for individual

plant species. Reported values range from 0.5 to 16.2 Wm−2

for tree species, varying with species and light environment

(Riddoch et al., 1991; Lewis et al., 2000; Givnish et al.,

2004; Baltzer and Thomas, 2007). The compensation point

values for the combined model agree broadly with these val-

ues (Fig. 7), with the exception of values for boreal forests,

where values can be much higher (up to 60 Wm−2), an error

that we attribute to the poor quality of MODIS data in this

region.

Leaf longevity is one of the main parameters used in veg-

etation models, which employ plant traits (e.g. Sakschewski

et al., 2015) as well as in the analysis of the leaf trait spec-

trum (Wright et al., 2004). The second local parameter used

in the combination model, the leaf age limit agecrit, does not

have the same meaning as leaf lifespan, mainly because leaf

ageing is only one of the three leaf loss mechanisms in our

www.biogeosciences.net/13/925/2016/ Biogeosciences, 13, 925–941, 2016



934 S. Caldararu et al.: The PFT paradigm in a phenology model

0 0.5 1
0

1

2

3

4

5
R

el
at

iv
e 

R
M

S
E

Fraction of cell ocuppied
by dominant PFT

(a)

0 0.5 1

0

2

4

R
el

at
iv

e 
m

ea
n 

bi
as

Fraction of cell ocuppied
 by dominant PFT

(b)

0 0.5 1

0

2

4

R
el

at
iv

e 
am

pl
itu

de
 b

ia
s

Fraction of cell ocuppied
 by dominant PFT

(c)

R2=0.0077 R2=0.0066 R2=0.0023

Figure 6. Correlations between model error and fraction of each grid occupied by the dominant PFT in the PFT model as a proxy for grid

heterogeneity. (a) Model RMSE (b) bias in LAI mean, and (c) bias in LAI amplitude.

0

10

20

30
TEF

L
o

ca
l

N
um

be
r 

of
 g

rid
 c

el
ls

 

 
TDF BEF

20 40 60 80 100
0

10

20

30

C
o

m
b

in
ed

N
um

be
r 

of
 g

rid
 c

el
ls

 

 

20 40 60 80 100

C, W m−2

20 40 60 80 100

0

10

20

30

L
o

ca
l

N
um

be
r 

of
 g

rid
 c

el
ls

 

 

0.5 2 3.5
0

10

20

30

C
o

m
b

in
ed

N
um

be
r 

of
 g

rid
 c

el
ls

0.5 2 3.5
age

crit
, years

0.5 2 3.5
 

 

Local

PFT

Combined

PFT

Local

PFT

Combined

PFT

Figure 7. Parameter distributions for the light compensation point
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model, alongside temperature and light and water limitation.

Thus, in regions where leaf loss is not age limited, for exam-

ple in temperate areas, the parameter is poorly constrained

and its age value is never reached, as leaf loss occurs much

sooner. In wet tropical systems where leaf ageing is the main
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Figure 8. Parameter distributions for the light compensation point

and age limit in three representative grass PFTs: savanna (S), grass-

land (G), and tundra (T). Parameter values are the mean of the fitted

posterior distributions and the represented values reflect the vari-

ation in space within one PFT, for the local (top) and combined

(bottom) models, as well as for the fitted PFT (black line).

driver of leaf loss, this age parameter is the critical age where

leaves start ageing; therefore, the effective lifespan can be

much larger. However, according to our model, it is the main

driver of leaf loss in tropical systems and thus a proxy for

determining leaf lifespan (see Caldararu et al., 2014, for a
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Figure 9. Posterior parameter means for the compensation point

Cdirect and the leaf age limit acrit resulting from the combination

model.

detailed discussion of the physical interpretation of this pa-

rameter).

5.2 Model structure

Our results show that allowing two critical traits to vary

within a PFT among locations provides a superior model per-

formance. It is likely that such traits vary due to underlying

factors that are not explicitly included in our model. Two

likely candidates for such hidden factors are nutrient avail-

ability and canopy structure. If the effects of these factors on

traits could be understood and modelled explicitly, this could

dramatically reduce the number of parameters required by

the model, without making the assumption that the traits are

constant within any PFT.

Leaf photosynthetic capacity is a function of leaf nitrogen

content (Farquhar et al., 1980; dePury and Farquhar, 1997;

Hikosaka, 2003), a factor that has not been included in our

model. According to current photosynthetic models, a higher

leaf nitrogen content would lead to a higher light limited pho-

tosynthetic rate and hence a lower compensation point. Fig-

ure 9 shows the spatial distribution of the compensation point

parameter as fitted in the combination model. The highest

values are observed in grasslands, especially in the tropical

region. In forest PFTs, the highest compensation point oc-

curs over tropical forests, followed by temperate deciduous

regions. This is supported by field studies, as higher latitude

forests are generally more nitrogen limited while tropical and

temperate grasslands are one of the most nutrient poor sys-

tems in terms of phosphorus (Bustamante et al., 2006; Elser

et al., 2007). To explore the intra-PFT distribution of nitro-

gen availability and fully explain the locality of our compen-

sation point parameter, we would need either a global data

set of nitrogen availability such as the nutrient limitation in-

dex derived as a function of evapotranspiration and ecosys-

tem production (Fisher et al., 2012) or coupling the phenol-

ogy model with a full-scale vegetation model with an explicit

representation of the nitrogen cycle (e.g. Zaehle and Friend,

2010).

Canopy structure determines the light environment in the

canopy and controls the actual amount of light that reaches

the leaves for a given light intensity above the canopy. This

means it can be of important value in determining the com-

pensation point, both through model structure and long-term

impact on plant behaviour. Within the model used in this

study, we assume a homogeneous canopy, with a random dis-

tribution of leaf angles and no clumping, assumptions that

can be considered valid at very large scales, but can poten-

tially introduce errors for certain forest structure types. It has

been shown (Chen et al., 2012) that including leaf clump-

ing in a carbon assimilation model has a major impact on

resulting global gross primary productivity values. A leaf

clumping factor would be used to adjust the attenuation coef-

ficient α (Eq. 2) to improve the description of light transmis-

sion through the canopy. It is possible that the compensation

point parameter Cdirect artificially accounts for this variation

in canopy structure, which explains its observed spatial vari-

ability. Further information such as the leaf clumping index

map developed by Chen et al. (2005) would be needed to dis-

tinguish between the actual compensation point and canopy

structure. This relationship is further complicated by the fact

that plants adapt to their light environment; therefore, leaves

in closed canopies will be better adapted to shaded conditions

and will have lower compensation points and thus tropical

forests, which are highly stratified, will have a much lower

compensation point than other systems. The question is fur-

ther complicated as canopy structure itself can be an adap-

tation to the available resources, such as light, water, or ni-

trogen, making it difficult to distinguish between all possible

factors in the absence of further data.

5.3 Model parametrisation

One of the main possible sources of error in our conclusion is

the way we have parametrised the PFT model. In most mod-

els, which use the PFT concept, grid cells are represented
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as a mix of PFTs, with PFT-specific parameters assigned to

each fraction (e.g. Stockli et al., 2008), while we have cho-

sen, in order to reduce the computational effort necessary for

a global data-constrained model, to only use the dominant

PFT in each grid cell. This approach, together with the low

resolution that the model is run at could mean that the poor

fit shown by the PFT model is due to a poor representation

of PFTs rather than the unsuitability of the concept in veg-

etation models. If this was the case, we would expect high

model errors in grid cells with a larger mix of vegetation

types. However, the high errors in the PFT model are con-

sistent throughout and do not show a significant correlation

with the grid cell PFT heterogeneity (Fig. 6), indicating that

the mix of vegetation types within grid cells cannot be the

only explanatory factor. For a more robust conclusion, we

would need to re-run the analysis with either a higher spa-

tial resolution or with a PFT mix in each grid cell. Given

the high computational demand of the fitting procedure, this

would ideally be done for a smaller number of PFTs rather

than at global scales.

We use space borne vegetation data from the MODIS Terra

sensor, as satellite measurements are one of the only sources

of data for constraining global level vegetation models, al-

though they suffer from instrument error and atmospheric

contamination. We have attempted to filter the data robustly

using data quality flags, as discussed in Sect. 2.1 and previous

studies (Caldararu et al., 2012, 2014) and the fitting proce-

dure contains a parameter σx , which accounts for the error in

the observations (Sect. 3.2). The largest possible source of er-

ror is the seasonality shown by the MODIS data in the Ama-

zon basin and other tropical regions, which is most likely

to determine the spatial distribution of the agecrit parameter.

Initial studies have shown that there is an increase in satellite

observed LAI during the dry season over the Amazon (My-

neni et al., 2007; Huete et al., 2006), but more recent studies

have argued that the observed change in LAI is due to sun-

sensor geometry (Morton et al., 2014). This finding has been

contradicted by subsequent papers (Bi et al., 2015) and we

do not attempt to present an answer to this debate. For the

purpose of this study, we assume that this observed change

in LAI is a reflection of actual changes in leaf cover, an as-

sumption backed by observed changes in gross primary pro-

ductivity and litterfall (da Rocha et al., 2004; Goulden et al.,

2004; Hutyra et al., 2007).

5.4 Method generality

As more studies begin to acknowledge that the PFT concept

is not necessarily the best approach to vegetation modelling,

we need to quantify the extent to which the inclusion of spa-

tially distributed parameters or plant traits improve our pre-

dictive capability and to identify the optimal number of pa-

rameters that both give a good model fit and minimise com-

putational cost. In this study we have attempted not only to

build a model with locally distributed parameters but also

to quantify the extent to which a model with local parame-

ters and one with PFT level parameters can capture the spa-

tial variability in global LAI observations. Furthermore, we

quantitatively identified which parameters need to be local to

improve model performance with a view to reduce data and

computational needs. We believe that the method used here

for investigating the use of PFT level parameters has a high

degree of generality and can be applied to a large variety of

models and input data sets.

One of the advantages of the PFT concept is its capacity

to represent future changes in vegetation distribution within

DGVMs. Given a predicted change in climate, models us-

ing PFTs can then predict a change in PFT distribution, us-

ing either predefined climate envelopes (Sitch et al., 2003) or

predefined plant competition rules (Arora and Boer, 2006).

Models that instead use plant traits do not offer such a

straightforward solution, but have a number of advantages.

The PFT approach only allows abrupt changes in vegetation

and cannot capture any plant adaptation to climate, whereas

a trait approach can represent gradual changes; however, rep-

resenting changing traits in response to climate is more dif-

ficult, both conceptually and computationally. Recent stud-

ies have proposed the use of plant competition and emergent

traits to predict vegetation distribution (van Bodegom et al.,

2014; Wullschleger et al., 2014; Fisher et al., 2015). There-

fore, a logical next step to our analysis would be to identify

the environmental responses of the two combined parameters

and their relationships with plant physiology responses, so

parameter values can be estimated independent of data con-

straints for the purpose of model predictions under future cli-

mate change.

6 Conclusions

In this paper we explored the extent to which plants within

the same PFT exhibit the same phenological characteristics

using a process-based global phenology model. We showed

that a model with PFT-wide parameters cannot explain the

observed spatial variation in seasonal cycles, but that an

intermediate model with two location-specific parameters

gives a good overall model fit and can reliably be used for

phenological studies. The spatial patterns of these local pa-

rameters, the light compensation point, and leaf age limit

might be explained by species adaptation to the local climate

or nutrient and water availability, and further data are needed

to fully understand the observed distribution. The modelling

approach used to determine the validity of PFT level mod-

els can provide further insight for global vegetation mod-

els, which use plant functional types as a basis for upscaling

measured or fitted parameter values and can hence improve

global simulations of ecosystem processes.
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Appendix A: Preliminary analysis

Table A1 shows results from the principal component anal-

ysis (PCA) performed to identify parameters in the combi-

nation model and Table A2 shows fits for the preliminary

analysis for the combination model.

Figure A1 shows relative RMSE and error in LAI mean

and amplitude for the regional model analysis.

Table A1. Results of principal component analysis performed for parameters obtained from the local model. The table shows correlation

coefficients between the two principal axes of variation and each parameter. The first two axes of variation explain 95 % of the spatial

variation in parameters.

First Second

axis R2 axis R2

Cdirect 0.869 0.131

Cdiffuse 0.046 0.010

p 0.005 0.011

gainmax 0.016 0.102

φ 0.004 0.006

q 0.004 0.001

Amin 0.000 0.008

s1 0.002 0.010

s2 0.000 0.017

ε 0.011 0.000

u 0.004 0.003

acrit 0.216 0.784

µ 0.016 0.012

Table A2. Model goodness of fit for preliminary model runs. The parameter name shows which parameter was made local for that particular

run.

RMSE Mean Amplitude Mean Amplitude

difference difference R2 R2

Cdirect 0.85 0.17 0.32 0.57 0.49

Cdiffuse 0.80 0.30 0.36 0.04 -0.01

p 0.75 0.28 0.28 0.09 0.17

gainmax 0.98 0.18 0.32 0.50 0.33

φ 0.73 0.27 0.57 0.57 -0.01

q 0.71 0.24 0.33 0.39 0.01

s1 1.00 0.17 0.25 0.58 0.33

s2 0.75 0.27 0.33 0.01 0.06

ε 0.76 0.26 0.39 0.26 0.03

u 0.78 0.23 0.37 0.38 0.07

acrit 0.72 0.20 0.21 0.56 0.58

µ 0.73 1.00 1.00 0.31 0.04

Amin 0.86 0.10 0.36 0.60 0.35
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Figure A1. Root mean squared error (RMSE) and difference in mean and amplitude of predicted LAI over the model study period for a

selecion of regions in the regional model. All values have been normalised to the mean observed LAI at all locations.
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