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Abstract. Coastal seas represent one of the most valuable

and vulnerable habitats on Earth. Understanding biologi-

cal productivity in these dynamic regions is vital to under-

standing how they may influence and be affected by climate

change. A key metric to this end is net community produc-

tion (NCP), the net effect of autotrophy and heterotrophy;

however accurate estimation of NCP has proved to be a dif-

ficult task. Presented here is a thorough exploration and sen-

sitivity analysis of an oxygen mass-balance-based NCP es-

timation technique applied to the Warp Anchorage monitor-

ing station, which is a permanently well-mixed shallow area

within the River Thames plume. We have developed an open-

source software package for calculating NCP estimates and

air–sea gas flux. Our study site is identified as a region of net

heterotrophy with strong seasonal variability. The annual cu-

mulative net community oxygen production is calculated as

(−5± 2.5) molm−2 a−1. Short-term daily variability in oxy-

gen is demonstrated to make accurate individual daily esti-

mates challenging. The effects of bubble-induced supersatu-

ration is shown to have a large influence on cumulative an-

nual estimates and is the source of much uncertainty.

1 Introduction

Marine areas play a fundamental role in the cycling of carbon

(Keeling and Shertz, 1992). Photo-autotrophic marine organ-

isms fix CO2 into organic matter. This organic matter is ex-

ported from surface waters by the biological and solubility

carbon pumps (Stanley et al., 2010).

Understanding the mechanisms driving these processes is

vital for predicting how marine waters will respond to and

influence climate change (Guo et al., 2012; Palevsky et al.,

2013). Coastal regions in particular have high value to soci-

ety but are also vulnerable to anthropogenic activities (Jick-

ells, 1998). These regions, which are typically more dynamic

than the open ocean and have extensive natural variability, re-

main a challenge for numerical models (Polton et al., 2013).

The accurate detection and prediction of long-term trends,

and any response in coastal ecosystems to changing environ-

mental conditions, require the accurate capture of this vari-

ability (Blauw et al., 2012). Effective ecosystem-based man-

agement of these vital regions requires adequate monitoring,

which drives the high demand for good-quality, cost-effective

observations of environmental status indicators (Platt and

Sathyendranath, 2008).

The balance between dissolved inorganic carbon (DIC)

fixation (i.e. autotrophy) and production of DIC through het-

erotrophy over a specified period is known as net community

production (NCP; Williams, 1993). Net autotrophic systems

occur when gross primary production is greater than respira-

tion, and net heterotrophic systems occur when respiration is

greater than primary production (Ostle et al., 2014).

NCP is a key metric for quantifying the cycling of bi-

ological carbon (Stanley et al., 2010). While interpretation

of results is challenging and controversial (Williams et al.,

2013; Duarte et al., 2013), the direct measurement of CO2

in the ocean is difficult (Riser and Johnson, 2008). However,

as O2 and C are linked by a stoichiometric ratio (Anderson

and Sarmiento, 1994), using in situ measurements of O2 can

offer several advantages over measuring CO2 directly: dis-

solved O2 is chemically neutral, while CO2 reacts with water

to form carbonic acid, which further reacts with other com-

pounds such as carbonates. This buffering makes directly ob-
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serving changes in CO2 difficult. By comparison O2 can be

measured accurately and at high resolution over long periods

with relative ease (Wikner et al., 2013).

Estimating net community production rates in the ocean

is notoriously difficult (Williams et al., 2013; Duarte et al.,

2013). This is in part because the net state is finely bal-

anced between large opposing fluxes and measurements have

large uncertainties (Ducklow and Doney, 2013). Approaches

have broadly fallen into three categories: in vitro incu-

bation experiments, ocean colour remote-sensing products,

and in situ geochemical mass-balance methods. Mouriño-

Carballido and Anderson (2009) noted that with in vitro in-

cubation experiments the captured biota may not exhibit the

same behaviour as they would in situ. Furthermore bottle

samples may be spatially disparate from the source of pro-

duction. For instance, where deep chlorophyll maxima form,

the organisms of interest may not be captured unless specifi-

cally targeted (Weston, 2005).

Karl et al. (2003) suggested that short, intensive bursts

of photosynthesis driven by short-duration changes in light

climate are regularly missed with traditional sampling tech-

niques. Kaiser et al. (2005) also concluded that bottle incuba-

tions are not suitable to correctly represent the net metabolic

balance over larger temporal and spatial scales.

The remote sensing of NCP via ocean colour is in its in-

fancy and requires calibration against reliable in situ mea-

surements (Tilstone et al., 2015; Reuer et al., 2007). These

methods are further hampered by insufficient spatial and tem-

poral resolution or obscuring cloud cover (Thomas et al.,

2002). Satellites only observe surface waters; they are thus

unable to observe the deep chlorophyll maximum, which can

contribute up to 60 % of the primary production (Fernand

et al., 2013).

Given that production is episodic rather than continuous

(Emerson et al., 2008) and the sites of increased production

are patchy in nature (Alkire et al., 2012), high temporal res-

olution in situ sampling is needed (Blauw et al., 2012)

Oxygen mass-balance techniques utilise measured

changes in oxygen saturation and attempt to quantify the

biological contribution to those changes in saturation. The

approach to teasing apart the physical and biological drivers

to these saturation changes can be subdivided into two

groups: those which use a biologically inert analogue to oxy-

gen, typically argon (Kaiser et al., 2005), and those which

utilise gas solubility/transfer parametrisations to estimate

air–sea exchange. The dual measurement of oxygen and

an inert analogue tracer allows determination of solubility

changes with fewer uncertainties than using gas solubility

parametrisations; however the equipment required for this is

not yet in widespread use.

The gas transfer parameterisation approach can be applied

to historic data sets; given that the concentration of dissolved

oxygen is the most widely measured property of seawater

after temperature and salinity (McNeil and D’Asaro, 2014),

oxygen-based methods offer many opportunities to reveal

new insights into data collected for other purposes.

To date, the majority of oxygen-based NCP estimates have

focused on oceanic waters (Alkire et al., 2012). Emerson

(2014) noted that coastal NCP values can be 3 times greater

than open-ocean values; however, there are too few measure-

ments to be confident in geographical variability. Palevsky

et al. (2013) also found during their Gulf of Alaska O2/Ar

survey that the transitional coastal zone contributed 58 %

of the total NCP whilst representing only 20 % of the total

area surveyed. The nature of the metabolic balance is partic-

ularly important in river-dominated margins, where high car-

bon and nutrient inputs stimulate primary production and mi-

crobial respiration with large seasonal variations (Guo et al.,

2012).

The Cefas (Centre for Environment, Fisheries and Aqua-

culture Science) SmartBuoy network consists of autonomous

data collection moorings placed at key locations in the UK

shelf seas (Mills et al., 2005; Greenwood et al., 2010). The

long-term, high-temporal-resolution multi-parameter data

sets produced by the programme provide unique opportu-

nities for observing biogeochemical processes in temperate

coastal and shelf seas (Neukermans et al., 2012; Blauw et al.,

2012; Foden et al., 2010).

In this paper we present new estimates of NCP from a

long-term SmartBuoy mooring situated in the southern North

Sea. We explore the uncertainty in these estimates and their

sensitivity to uncertain input parameters. Lastly we make our

algorithms available as open-source tools for readers to per-

form their own NCP calculations.

2 Methods

2.1 Study site

The SmartBuoy sensor package consists of a Cefas ESM2

data logger coupled with Falmouth Scientific OEM conduc-

tivity and temperature sensors (Falmouth Scientific, USA),

an Aanderaa 3835 series optode (Aanderaa Data Instru-

ments, Norway), a chlorophyll fluorometer (Seapoint Inc.,

USA), and a quantum photosynthetically active radiation me-

ter (PAR; LiCor Inc., USA). The ESM2 includes a three-

axis roll and pitch sensor with a internal pressure sensor

(PDR1828 – Druck Inc). The data logger was configured to

sample for a 10 min burst every half hour. Salinity, temper-

ature, chlorophyll, and PAR are sampled at 1 Hz during the

measurement period; oxygen is sampled at 0.2 Hz.

The Warp Anchorage SmartBuoy site, shown in Fig. 1, is

located on a shallow bank in the mouth of the River Thames.

The site is highly turbid with significant riverine inputs and

experiences a 15-day spring–neap cycle with 12 h 25 min

semidiurnal tides. Conductivity–temperature–depth (CTD)

profiles taken over the last 15 years (Cefas data) have always

shown the Warp site to be vertically well mixed. This mix-
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Figure 1. Map of Warp Anchorage study site.

Table 1. Study site characteristics for wWinter (November–

February) and sSummer (June–September), based on multi-year

seasonal means.

Warp Anchorage

Position (WGS84) 51.31◦ N, 1.02◦ E

Monitoring Period 2001–present

Mean water depth (m) 15

Tidal range (m) 4.3

Tidal period semidiurnal

Salinity (PSS-78) 33.8w–34.3s

Turbidity (FTU)* 29w–10s

Temperature (◦C) 7.6w–17.5s

∗ FTU: formazin turbidity units, ISO 7027.

ing, together with the shallow water depth, has important im-

plications to the application of oxygen-based NCP methods,

which will be discussed later. The main characteristics of the

study site are summarised in Table 1.

2.2 Data processing

SmartBuoy data undergo rigorous automated and manual

quality assurance processes. Automated processes apply a

quality flag to data which fall outside realistic value bounds.

Manual processes assess the instrument performance and ap-

ply flags where the data quality is compromised, e.g. due to

biofouling or sensor damage. The CT sensor salinity data

are corrected using in situ bottle samples analysed using a

Guildline Portsal 8410A (Guildline, Canada) standardised

with IAPSO standard seawater.
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Figure 2. Validation of ECMWF MACC reanalysis 10 m wind

speed vs. height-corrected shipborne anemometer wind speed.

Water depth was calculated using a global tidal model

forced with European shelf area constituents (TPX08-atlas).

Tidal waves have been shown to arrive almost simultane-

ously at both the Sheerness and the Warp SmartBuoy site

(Blauw et al., 2012); thus model output was validated against

the nearby Sheerness tide gauge (UK National Tide Gauge

Network) and demonstrated good agreement visually. Wind-

speed and sea level air pressure were taken from ECMWF

MACC (Monitoring Atmospheric Composition and Climate)

reanalysis with a 0.125◦ grid. ECMWF data were found to

compare well with in situ shipborne anemometers used dur-

ing mooring servicing (see Fig. 2). Details of the ECMWF

and tidal model validations and their bearing on the sensitiv-

ity analysis are discussed later.

Continuity of the 10-year Warp oxygen data set is ham-

pered primarily by biofouling of the instrumentation. To

avoid extrapolation or interpolation of the data, only periods

of complete data were used in the analysis. Two contrasting

periods were selected, a spring–summer period of 150 days

from January to June 2008 and an autumn–winter period of

95 days from September to December of the same year. The

10 min half-hourly burst data from the buoy and the tidal

model output were combined with the 6-hourly ECMWF

data. These burst means were further smoothed to 25 h av-

erages to remove any structural biases in the data caused by

the tidal cycle (Blauw et al., 2012).
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Table 2. Parameters and their uncertainty distributions used for LHS/PRCC and eFAST at the Warp site.

Parameter Description PDF Range Unit

C0 Oxygen concentration at t = 0 normal 0.54+SE mmolm−3

1C Change in oxygen concentration normal SE mmolm−3

S Salinity normal 0.1+SE dimensionless

T Temperature normal 0.1+SE ◦C

h Mixed-layer depth normal 0.4 %+SE m

u Wind speed normal 1.2∗+SE ms−1

Pslp Sea level air pressure normal 0.1 %+SE Pa

C∗ Oxygen solubility uniform 0.3 % mmolm−3

kw Gas transfer velocity uniform 15 % ms−1

B Equilibrium bubble saturation coefficient uniform 50 % dimensionless

SE: the standard error of the mean.

2.3 Optodes

Aanderaa Instruments model 3830 and 3835 optodes (Aan-

deraa, Norway) have been fitted to the Cefas SmartBuoys

since 2005. Optodes drift due to foil photobleaching in a

predictable way (Tengberg et al., 2006), which is well de-

scribed by a decaying exponential with a decay constant of

approximately 2 years (McNeil and D’Asaro, 2014). All op-

todes used were fitted with the opaque black silicon pro-

tective coating. Thus drift is significantly reduced after a

burning-in period, and the temperature correction is unaf-

fected (D’Asaro and McNeil, 2013). Sensor drift was cor-

rected with an offset calculated from frequent discrete sam-

ples measured with volumetric Winkler titrations (Hansen,

1999). Titrations were performed using an automatic pho-

tometric end-point detection system (Metrohm Dosimat 665

Autotitrator); the thiosulfate is intermittently standardised

with a standard potassium iodate solution (Wiliams and Jenk-

inson, 1982). The classical Winkler method if executed with

care by a skilled operator offers very low uncertainty (Helm

et al., 2009), typically better than 0.2 % (Emerson and Stump,

2010; Ostle et al., 2014). It is however a demanding task that

is affected by numerous uncertainty sources, such as contam-

ination of the sample and reagents by atmospheric oxygen

and iodine volatilisation. Photometric end-point detection is

further affected in highly turbid waters, which can limit the

number of successful samples.

2.4 Model implementation

NCP is calculated here using a modified version of the zero-

dimensional oxygen mass-balance (box) model of Emerson

(1987) and Emerson et al. (2008). This describes the oxy-

gen mass balance in the mixed layer, assuming no vertical

or horizontal advection and no turbulent diffusion across any

mixed-layer boundary.

Given that the Warp site is permanently mixed, there is

in effect direct connection between the atmosphere and the

benthos. It is thus an important distinction from prior studies

that our community productivity estimate considers both the

pelagic and benthic processes as one system. This method

assumes that other oxygen-consuming processes in the water

column such as nitrification, methanotrophy, and photoox-

idation are negligible relative to respiration (Reuer et al.,

2007). In our discussion we explore the implications for a

site, such as the Warp site, where all of these assumptions

may not hold.

The model (Eq. 1) is used to predict the concentration of

oxygen at a subsequent point in time given measured phys-

ical parameters. Any deviation from the predicted value is

assumed to be from biological activity, with a positive value

corresponding to net production. This method of NCP es-

timation makes no distinction between matter which is im-

ported then locally respired and that which is fixed locally.

All of these terms introduced below and their estimated un-

certainties are summarised in Table 2.

h
dC

dt
= E+G+ J, (1)

where h is the mixed-layer depth, C is the oxygen concentra-

tion in the mixed layer, E is entrainment of oxygen through

changes in the mixed-layer depth (Eq. 2), G is the gas ex-

change through diffusive and bubble processes (Eq. 3), and

J is the net community production.

E =
dh

dt
(Cb−C), (2)

where Cb is the oxygen concentration below the mixed layer.

G= kw

(
(1+B)

Pslp

Patm

C∗−C

)
, (3)

where kw is the parametrisation of Wanninkhof (2014)

(Eq. 4). C∗ is the concentration of oxygen in equilibrium

with the one atmosphere as per García and Gordon (1992)
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using the Benson and Krause (1984) data, B is supersatura-

tion caused by bubble processes (Eq. 5), and Pslp is sea level

pressure, Patm is standard atmospheric pressure (101 325 Pa).

kw = 0.251 U2

(
ScO2

660

)−0.5

, (4)

where U is the wind speed at 10 m and ScO2
is the dimen-

sionless Schmidt number for oxygen. The typically quoted

Schmidt number for CO2 at 20 ◦C in salt water (S = 35) is

660. Note the result of Eq. (4) is converted from cmh−1

to ms−1 for use in Eq. (3).

The square root of the squared mean was used for wind

speed to fit with the quadratic kw parametrisation used. Wan-

ninkhof et al. (2009) argue that comprehensive surface forc-

ing models provide little to no improvement over simple

wind speed algorithms, and although simple parametrisations

cannot capture all the processes that control gas transfer, they

appear to capture most.

The injection of bubbles into the mixed layer through wave

action can supersaturate the surface waters even if net gas

exchange is zero (Liang et al., 2013). Here we utilise a mod-

ern kw parametrisation with an explicit bubble equilibrium

fractional supersaturation parametrisation B, which enables

the influence of the two elements on the NCP estimate to be

quantified independently. For B the bubble supersaturation

parametrisation of Woolf and Thorpe (1991) is used:

B = 0.01 ·

(
U

Ui

)2

, (5)

where Ui is the wind speed at which the equilibrium super-

saturation is 1 %. For oxygen Woolf and Thorpe (1991) re-

port this value to be 9 ms−1.

Liang et al. (2013) argue that bubble supersaturation

effects at a given temperature differ significantly among

parametrisations, and their comparison between Stanley et al.

(2009), Woolf and Thorpe (1991), and their own parametrisa-

tion demonstrates differences in the order of 50 % for argon.

The Woolf and Thorpe (1991) parametrisation does not ac-

count for any temperature or solubility dependence and is de-

rived from calculated bubbled fields; implementation is how-

ever straightforward and the large relative uncertainties in the

bubble term will be accounted for in the sensitivity analysis

outlined below.

We solve Eq. (1) for NCP (J ) using the analytical solu-

tion shown in Eq. (6), providing mean values for each vari-

able except oxygen concentration and assuming a constant

rate of NCP over the time step, which for this study cor-

responds to 25 h. The numerical scheme used in this paper

was implemented using R, the open-source language and en-

vironment for statistical computing (R Foundation for Sta-

tistical Computing, www.r-project.org). The analytical solu-

tion along with kw and B parametrisations are included in

the “airsea” package (Hull and Johnson, 2015). The scheme

was validated in silico using numerical estimation; air–sea

fluxes were simulated every half second forced with a known

value of NCP; the resultant change in oxygen concentration

was provided to our model; and the calculated value of NCP

compared to the known forced value. This was repeated over

a range of input scenarios.

J = rh

(
C1−C0

1− e−rt
+C0

)
−Fh, (6)

where C0 is the oxygen concentration at the initial time step

(t = 0), and C1 is the concentration at t .

r =
kw

h
+

1

h

dh

dt
(7)

F =
kw

h
C∗(1+B)

Pslp

Patm

+
1

h

dh

dt
Cb (8)

It should be noted that for this study the entrainment ( dh
dt

)

term is neglected as the Warp site is a perpetually fully mixed

site; as such the entrainment term of Eqs. (7) and (8) are set

to 0.

2.5 Sensitivity analysis methods

Accurately assessing the sensitivity of a model output to un-

certain input variables has many uses. Primarily it is to de-

termine the precision of the model output and the sources of

output uncertainty, knowledge of which informs future re-

search in targeting the main sources of uncertainty if robust-

ness is to be increased (Saltelli et al., 2000).

Local sensitivity analysis methods, such as the so-called

one-at-a-time techniques, are limited to providing informa-

tion only in a very specific location of the parameter space.

These methods rely on the selection of an applicable baseline

and varying a single input parameter, which ignores the ef-

fects of covariant parameter uncertainty (Saltelli et al., 2000).

Global methods such as Latin hypercube sampling with

partial rank correlation coefficients (LHS/PRCCs) and the

extended Fourier amplitude sensitivity test (eFAST) are ca-

pable of assessing multiple locations across the entire param-

eter space; thus covariant parameter uncertainty is captured.

LHS/PRCC and eFAST have proven to be two of the

most efficient and reliable methods in each of their classes,

sampling-based and variance decomposition-based respec-

tively (Marino et al., 2008). These two popular methods have

differing strengths and weaknesses and measure different

properties of the model which together can provide a com-

plete uncertainty analysis. LHS/PRCC is a robust technique

for non-linear but monotonic relationships, assuming little to

no correlation exists between inputs (Sanchez and Blower,

1997). LHS is an improved method of Monte Carlo which

generates more efficient estimates of the desired parameters

with far fewer simulation runs. PRCCs are a ranked mea-

sure of monotonicity after removing the linear effects of all

www.biogeosciences.net/13/943/2016/ Biogeosciences, 13, 943–959, 2016
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but one of the variables. A simple one-at-a-time analysis re-

veals that the variables do indeed demonstrate the monotonic

relationships required for effective PRCCs. eFAST provides

first- and total-order Sobol indices which indicate the vari-

ance of the conditional expectation of the output for a given

variable (Saltelli et al., 2000).

LHS is performed by assigning a error probability density

function (PDF) to each of the parameters. Each PDF is split

into n equiprobable divisions, and each area randomly sam-

pled once without replacement. This table of input variables

is then used to calculate NCP, with a new hypercube being

generated for each time step. A column-wise, pair-wise al-

gorithm is then used to generate an optimally designed hy-

percube, where the mean distance between each point and all

other points in the hypercube is maximised (Stocki, 2005).

We utilise the “improved” LHS implementation within the

“lhs” R package (Carnell, 2012) together with the PRCC rou-

tine from “epiR” (Nunes et al., 2014). The eFAST scheme is

provided by the “sensitivity” package (Pujol et al., 2014).

While there is no a priori exact rule for determining sen-

sible sample size for these methods, minimum values are

known to be n= k+1 for LHS/PRCC and n= 65 for eFAST

(Saltelli et al., 2000), where k is the number of parameters.

Here we took the usual approach of systematically increas-

ing sample size and checking if the sensitivity index is con-

sistent at least for the main effects, thus demonstrating there

is no advantage to increasing sample size as the conclusions

remain the same.

LHS/PRCC and eFAST analyses were run 500 times for

each 25 h step of the time series, and the results were aggre-

gated. For cumulative calculations kw,B, andC∗ and the bias

element of each measurement parameter were applied glob-

ally for the entire time series; that is to say a single hyper-

cube (n= 500) is used to set the bias and scaling factors for

multiple runs over the entire time series, while the stochastic

uncertainties are applied at each time step independently.

2.6 Uncertainty distributions

Critical to the value of any sensitivity or uncertainty analysis

is the selection of adequate probability distribution functions

for each input parameter (Marino et al., 2008). Table 2 sum-

marises the probability distribution functions used for each

of the NCP model input parameters.

The two oxygen terms (C0,1C) were determined through

replicate anchor station Winkler samples taken close to the

mooring during maintenance surveys, combined with an es-

timate of Winkler method error and water bath tests of optode

precision.C0 represents the precision and accuracy of the ini-

tial (t = 0) oxygen concentration. We estimate this residual

standard error in oxygen determination from the corrected

optode, combined with the accuracy of the Winkler samples,

to be within±0.52 mmolm−3. The error bounds for1C, un-

like the other measured parameters, are derived solely from

the standard error of the difference between the oxygen con-

centration at each time time step. This standard error rep-

resents both the variability within each 25 h mean and the

precision of the optode.

The calculation of kw is conservatively assumed to be ac-

curate to ±15 % (Wanninkhof, 2014). The root-mean-square

error (RMSE) from regressions between ECMWF and ship

anemometer, shown in Fig. 2, is used to give an estimated

wind speed error. For salinity we use the RMSE between

the corrected CT, as detailed above, and the bottle samples

(0.1). Water bath calibrations have confirmed the SmartBuoy

temperature sensors to be accurate to within ±0.1 ◦C. Gar-

cía and Gordon (1992) provide an uncertainty estimate for

the measurement of their oxygen solubility parameterisation

of 0.3 %. We have selected a 50 % uniform uncertainty dis-

tribution for B, the equilibrium bubble supersaturation term,

based on the assessment of parametrisations by Liang et al.

(2013).

At the Warp site, given the assertion that it is always fully

mixed, the uncertainty in h is reduced to an estimate for the

inaccuracies in the tidal model.

Regressions between the predicted height from the model

and the Sheerness tide gauge results in a RMSE of approxi-

mately 0.4 %. These estimates of parameter measurement un-

certainty were combined, using the square root of the sum of

squares, with the standard error of each mean observed value.

The uniform bias was found to be relatively small compared

to the observed standard errors, and thus the overall parame-

ter error is considered to be normally distributed.

Uncertainty distributions for kw, B, and C∗ were applied

by multiplying the parameterised output by a scaling factor

sampled from a uncertainty probability distribution. This ren-

ders the uncertainty in the parametrisation independent of the

input parameters; i.e. kw uncertainty is independent of u un-

certainty.

3 Results

3.1 NCP

The 25 h mean chlorophyll time series for the Warp site is

shown in Fig. 3a, showing the low levels of chlorophyll in

winter, before a marked phytoplankton bloom in late spring.

This bloom is known from prior studies to be triggered by im-

proved light climate through increased solar radiation and re-

duced turbidity (Blauw et al., 2012; Weston et al., 2008). The

oxygen saturation anomaly (Fig. 3b), the oxygen concentra-

tion minus the solubility (C∗), demonstrates mostly under-

saturated near-equilibrium conditions before the bloom, with

a large degree of supersaturation during the bloom. Figure 3b

illustrates the effects of the B term on increasing the equi-

librium saturation concentration and, thus, on reducing the

apparent saturation anomaly. Figure 3c shows the ECMWF

wind speed data for our study period demonstrating a high

degree of variability between days and within our 25 h mean.
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Figure 3. Spring 2008 Warp Anchorage time series. (a) Chlorophyll fluorometry. (b) Oxygen saturation anomaly (oxygen concentration mi-

nus the solubility). Orange and blue lines represent oxygen saturation anomaly with and without bubble supersaturation effects respectively.

(c) ECMWF MACC reanalysis 10 m wind speed. For (b) and (c) thin lines represent 2σ confidence bounds.

Figure 4a shows the calculated NCP for the spring 2008

study period at the Warp site.

All NCP values are given as oxygen equivalents unless

otherwise stated. NCP is characterised by small, mostly neg-

ative fluxes for the first 3 months. This is followed by a

marked phytoplankton bloom (Fig. 3a) and resulting positive

net community production lasting approximately 3 weeks.

Large negative NCP is seen following the bloom, indicating

enhanced community respiration. The observed NCP signal

is in good agreement with chlorophyll fluorescence (Fig. 3a).

The maximum rate of net community oxygen produc-

tion was calculated as (485± 129) mmolm−2d−1 with 2σ

confidence and precedes maximum observed chlorophyll by

3 days. The mean rate during the non-productive period

(January–April) is estimated as (−30± 9.5) mmolm−2d−1.

The maximum rate of O2 influx from the atmosphere was

(161± 47) mmolm−2d−1, measured on 1 February 2008,

which was concomitant with 14 ms−1 winds (Fig. 3c) and a

−2.5 mmolm−3 oxygen anomaly. The maximal rate of oxy-

gen out-gassing was observed on 1 May 2008 of (380± 102)

mmolm−2d−1 after the initial peak of the phytoplankton

bloom.

Mean gas residence time for oxygen was calculated to be

5 days. Calculating the seasonal net balance (Fig. 4c) at the

end of the spring study period (January–June), the cumula-

tive NCP is estimated as (0.5± 1.0) molm−2 at 2(σ ) confi-

dence. The net balance for the winter period (Fig. 5) between

26 September and 30 December is calculated as (−3.4± 1.1)

molm−2.
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Figure 4. Spring 2008 Warp Anchorage time series. (a) Net community production (J ); negative values correspond to net respiration.

(b) Oxygen air–sea gas exchange (G); negative values correspond to movement into the sea. For (a) and (b) thin lines represent 2σ confidence

bounds. (c) Cumulative net community production, mean value shown in blue, each run shown in grey, 2σ confidence bounds in red.
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Figure 6. Warp June–October NCP estimates from other years

demonstrating no significant periods of net production.

We estimate the cumulative NCP for the missing 4-month

period of 2010 (July–October) using the mean rate for this

period across other years of the 10-year Warp data set, a sub-

set of which is shown in Fig. 6. We calculate the mean value

(−18.2± 2.3) mmolm−2d−1, giving a cumulative estimate

for this period of (−2.2± 0.4) molm−2. There are no sig-

nificant net autotrophic periods observed between June and

September in any other year.

We thus determine that the Warp site is net heterotrophic

with an annual oxygen NCP of (−5± 2.5) molm−2a−1.

However the validity of this assertion is discussed further

later.

3.2 Sensitivity

Figure 7a shows total-order Sobol indices for the same pe-

riod computed with eFAST. Here “total” is given to mean the

factors’ main effects on the NCP estimate, combined with all

the interacting terms involving that factor as per Saltelli et al.

(2000). The Sobol indices are normalised to the total vari-

ance, giving an indication of the fractional contribution to

the variance for each factor. Note that, unlike first- order in-

dices, the sum of the total indices can exceed one; in Figs. 7a

and 8 we have normalised the total-order indices to one to

aid visualisation.

The squared PRCC values from spring 2008 are shown

in Fig. 7b. These values are ranked measures, normalised to

one, of the degree of monotonicity of each variable on NCP

(Sanchez and Blower, 1997). In plainer terms, these are a

measure of the independent effect of each input parameter

on NCP regardless of whether any input parameter variables

correlate. Using squared values makes for easier compari-

son with the eFAST indices as the ranked coefficients can be

both negative and positive. The relationship between each of

the variables and NCP is monotonic for the parameter ranges

generated for each time step and thus each PRCC calculation.

However, in aggregate over the data set some of the variables

can demonstrate a positive and negative (non-monotonic) re-

lationship with NCP.

Both techniques indicate the determination of the change

in oxygen concentration (1C) has the largest influence on

overall uncertainty, with both the highest PRCC ranking and

Sobol total-order indices. The eFAST analysis indicates that

1C typically accounts for 53 % of the overall uncertainty.

Wind speed u is the second-largest contributor, typically

comprising 26 % of the uncertainty budget. The bubble su-

persaturation parametrisation B accounts for 9 %. The gas

transfer velocity parametrisation (kw) and the initial oxygen

concentration accuracy (C0) are shown to have similar con-

tributions of 6 %. The García and Gordon (1992) oxygen sat-

uration parametrisation contributes 4 %. Similar results from

both sensitivity analyses indicate the model is well charac-

terised by these methods.

The large confidence limits shown for u, kw, and B in

Fig. 7 illustrate the large variability in PRCC ranking and

Sobol indices over the period studied. This indicates how the

relative importance of these factors varies greatly over the

data set. The timings for this variability is illustrated in Fig. 8.

Here we observe periods (early January and most of March)

where 1C uncertainty is of minimal importance and wind

speed uncertainty dominates. The uncertainty in NCP dur-

ing the onset of the bloom (mid-April to mid-May) is almost

completely dictated by uncertainty in 1C.

LHS/PRCC is not suitable for assessing the effects of mea-

surement and parameterisation bias on the cumulative NCP

estimate. Uncertainty in some of the parameters, principally

u and kw, do not demonstrate monotonic relationships with

the output measure. That is to say uncertainty in u can lead

to both increased or decreased cumulative NCP. Thus we

present only eFAST indices for cumulative uncertainty in

Fig. 9. B is shown to have the largest contribution, account-

ing for 40 % of the uncertainty in NCP alone, with a further

7 % from interactions primarily with u.

4 Discussion

4.1 NCP

As the water column at the Warp site is fully mixed, pro-

cesses occurring at or in the seabed are incorporated into

the mixed-layer mass balance and thus the NCP estimate.

This includes non-respiration oxygen-consuming processes

such as nitrification and the oxidation of reduced com-

pounds other than ammonia and nitrite. A previous study at

the Warp site using incubated sediment cores provides esti-

mated rates of sedimentary oxygen uptake of 55 in July and
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parameters.

26 mmolm−2d−1 in April (Trimmer et al., 2000). Braeck-

man et al. (2014) observed maximal mean rates of nitrifica-

tion reaching 6 mmolm−2d−1 and similar for mineralisation

in muddy coastal North Sea sediment. This combined with

sediment respiration equated to a sediment community oxy-

gen consumption of 15 for February and 20 mmolm−2d−1

for April. This indicates that a large fraction (perhaps 50 %)

of the observed negative NCP at the Warp site could be due

to sedimentary processes.

It is important to consider that chemoautotrophic pro-

cesses, such as nitrification, contribute positively to the

metabolic balance but negatively to the oxygen inventory.

This is true not just for benthically coupled sites like Warp

but for any system where these processes occur. These pro-

cesses, while assumed small relative to respiration and pho-

toautotrophy by (Reuer et al., 2007) in the Southern Ocean,

are likely more important for shelf-sea systems.

There are two events – one at the start of February, another

in the second week of March – where high winds appear to

coincide with increased negative NCP (Fig. 4a). This could

be considered non-intuitive as one may expect increased ven-

tilation to drive the system closer to equilibrium, but this

is not the case as shown in Fig. 3b. There are several pos-

sible explanations. The optode may be underestimating, or

the estimation of saturation concentration incorrect, while in

truth the system is supersaturated and is being driven closer

to equilibrium during the windy events. We think this un-

likely given our error bounds, calibration procedures, and

the results from our sensitivity analysis, which indicate the

bulk of the contribution to uncertainty is from the u term

(Fig. 8). The windy periods could be driving resuspension

events which could induce the apparent negative NCP. Lastly,

this could be an artefact of the bubble supersaturation term

overestimating at high wind speed. The orange line of Fig. 3b

shows the effects of the bubble term, and uncertainty, relative

to the uncorrected blue line.

While its use in improving our knowledge of carbon cy-

cling is well known, NCP also represents a potential next-

generation indicator of ecosystem health. The short duration

of the bloom and the large impact that a 2-week period has on
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the annual budget could indicate that annual estimates, while

vital for carbon cycling studies, are a less useful indicator for

ecosystem health. A carefully resolved bloom period NCP

may be more useful.

4.2 NCP as carbon equivalents

The commonly used “Redfield” stoichiometric ratio for O : C

of 1.45 (Anderson and Sarmiento, 1994; Hedges et al., 2002)

was applied to our positive oxygen NCP estimates for easier

comparisons with other studies.

Literature values for NCP estimates from regions similar

to the Warp site are scarce. Tijssen and Eijgenraam (1982)

calculated net community oxygen production in the South-

ern Bight of the North Sea using shipboard 4-hourly Winkler

samples. They performed two surveys of 2–3 days in March

and April 1980 with 24 h net community oxygen production

estimates of 26 and 304 mmolm−2 d−1 respectively.

The rates of net production seen at the Warp site when

expressed in units of carbon are of comparable magnitude

to other estimates, with a maximal carbon NCP rate of

(346± 92) mmolm−2 d−1. Guo et al. (2012) report similar

magnitudes of peak NCP from other studies in large river

plume regions.

Bozec et al. (2006) reported an annual carbon NCP esti-

mate for the entire Thames plume region of 3 molm−2 a−1.

Their study integrated their four seasonal survey tracks into

ICES (International Council for the Exploration of the Sea)

regions, of which the Thames plume is one. Our annual car-

bon NCP estimate of (−3.6± 1.8) molm−2 a−1 represents a

much smaller area, measured at considerably higher tempo-

ral resolution, for a much longer duration.

4.3 Measurement and model uncertainty

Prior oxygen NCP studies have neglected to include the pro-

duction of oxygen within the time step; that is to say they as-

sume an instantaneous production of NCP at the end of their

time step when the measured oxygen concentration and abi-

otically predicted concentration are compared. This results

in the underestimation of the magnitude of NCP. For exam-

ple, oxygen produced at the start of the time step will out-gas

quicker due to the increased air–sea concentration gradient,

and when the degree of supersaturation is later measured at

the end of the time step the true magnitude of the supersatu-

ration will be masked.

The effect of neglecting the within-time-step NCP is negli-

gible when conditions are near equilibrium saturation. How-

ever, during the bloom, neglecting the within-time-step NCP

would result in a 45 mmolm−2 d−1 (9 %) underestimation of

peak oxygen NCP.

The results from both LHS/PRCC and eFAST techniques

support the conclusion that the bulk of the uncertainty in the

NCP calculation is dependent on the determination of chang-

ing oxygen in the mixed layer. This is in keeping with the

observations of the Emerson et al. (2008) uncertainty analy-
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sis of their O2/N2 method where 54 % of the uncertainty was

due to oxygen determination.

The mean and median value for 1C standard error were

1.1 and 0.6 mmol m−3 respectively. Greater variability is

seen during the bloom, with values up to 7.0 mmolm−3.

During calibration in a thermostatic bath the optodes

used typically demonstrated a precision of ±0.3mmolm−3.

This is within the specification from the manufacturer of

±0.4 mmolm−3 and in agreement with the findings of

Wikner et al. (2013). Thus it would appear that the largest

source of uncertainty constrained here is the large degree of

variability captured within the 25 h mean rather than the in-

strument. The range of values observed within any 25 h pe-

riod differed by up to 91.2 mmolm−3 during the bloom. Dur-

ing the non-productive period the observations within each

25 h period varied by on average 9.2 mmolm−3. This vari-

ability is shown with the small subsection of the raw oxygen

time series presented in Fig. 10. The variability seen here

represents both tidal movement of water past the buoy and

diel cycling of production.

Thus we believe improvements in identifying homoge-

neous water masses over the tidal cycle, rather than integrat-

ing it entirely, is the best approach to reducing uncertainty

with this scheme.

Shipboard transect studies (typically utilising O2 /Ar

methods in open-ocean environments) observe any disequi-

librium oxygen in relation to the gas residence time; that is,

they assume constant NCP in the period leading up to the

measurement (Kaiser and Gist, 2006). It would thus appear

that single shipboard transects will struggle to fully capture

the tidally induced variability found in areas such as the Warp

site.

For the investigation of cumulative uncertainty we con-

sider only the bias in each parameter. The bubble supersatu-

ration term (B), while small in regards to PRCC and eFAST

values for an individual estimate (Fig. 7), has a large effect on

the cumulative mass balance (Fig. 9). We calculate a pseudo-

cumulative spring period NCP of (2.3± 0.9) molO2 m−2 re-

sulting from neglecting B: 4 times our true estimate. This

relatively large effect is due to the biased nature of the su-

persaturation term, which serves to only increase the oxygen

concentration in the mixed layer.

Optodes tend to drift towards underestimating oxygen con-

centrations (Wikner et al., 2013), which will typically re-

sult in underestimates of NCP. We re-ran our analysis, sim-

ulating a 1 mmolm−3 per month negative linear drift, which

provides a pseudo-cumulative oxygen NCP estimate for the

spring period of (−0.5± 0.8) mmolm−2, which contrasts

with our corrected value of (0.5± 1.0) mmolm−2. This re-

inforces the requirement for well-calibrated, drift-corrected

measurements.

Future studies are likely to benefit from newer optode de-

signs than those used here. Together with the improved multi-

point calibration equation (Stern–Volmer) of McNeil and

D’Asaro (2014), these can offer greater accuracy and pre-

cision. The in-air calibration procedures outlined by Bushin-

sky and Emerson (2013) can reportedly offer frequent in situ

calibrations of ±0.1 %. The in-air measurements could also

be used to calculate the concentration gradient between the

mixed-layer waters and the air, which eliminates the require-

ment for a C∗ parametrisation

Emerson et al. (2008) noted that at the Hawaii Ocean

Time-Series site small daily fluctuations in the measured

oxygen concentration caused large fluxes, but these were

both positive and negative and had little impact on the cu-

mulative NCP. Fluctuations around zero are seen at the Warp

site. These do not tend to cancel out and combine to form a

significant negative NCP flux. Emerson (2014) observed the

standard deviation of the individual mean annual values is

up to±50 %, which reflects both real inter-annual variability

and measurement/model error. This study has produced NCP

estimates for the spring period of up to almost 100 % due

primarily to the large uncertainty centred around the bloom.

Our winter period estimate demonstrates a degree of uncer-

tainty similar to that of Emerson (2014) albeit with a net het-

erotrophic system.

4.4 Advection and sampling uncertainty

Previous studies in open-ocean environments have ignored

horizontal advection (Emerson et al., 2008; Nicholson et al.,

2008). Air–sea gas exchange is typically considered to be

sufficiently rapid that horizontal gradients are too small to

drive a significant flux (Alkire et al., 2014). Semi-diurnal

tidal systems such as at the Warp site demonstrate horizon-

tal displacement of water masses with a periodicity of 12 h

25 min, with maxima in current speeds every 6 h 12 min,

which drive significant horizontal variability (Blauw et al.,

2012).

The box model presented here relies on the assumption

that the instruments are measuring the same body of water

twice; i.e. the comparison of two consecutive 25 h averages

represents the same mass of water evolved over time.

If we assume that conditions along the path length are

homogeneous on 25 h time scales, in effect the NCP esti-

mates presented here can be thought of as integrating over

a length scale proportional to the residual flow. Historic in

situ acoustic Doppler current profiler data gathered over 3

months at the Warp site (see Appendix A) show a residual

mean current flow estimated at 1.9–2.2 cms−1, bearing 120◦.

This combined with the average tidal excursion of 1.7 kmd−1

equates to a observational window of approximately 3.5. km

for t = 25 h.

While our 25 h averages and dC error bounds most likely

capture the tidal and diel variability, further uncertainty is

introduced by submesocale variability such as phytoplank-

ton patches and eddies. Given that Tijssen and Eijgen-

raam (1982) observed horizontal oxygen gradients of up to

3 mmolm−3 over a few hundred metres, determining to what

extent our assumption of homogeneity holds over 25 h and to
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what extent patchiness within this timescale can influences

our estimates is a further step to ensuring a robust NCP esti-

mate.

Residual currents will also affect the NCP estimates by

the addition and loss of water from outside of our observa-

tional window. Alkire et al. (2014) calculated the advective

flux during their glider study and observed daily mean flow

of up to 2 cms−2. This when combined with their measured

horizontal gradient produced the mean removal of (18± 10)

mmolm−2d−1 oxygen through horizontal advection.

We have attempted to estimate the oxygen concentration

gradient from the tidally driven oxygen variability, that is, the

difference between the oxygen concentration at low and high

tide. We calculate this for our January period to be approxi-

mately 2 mmolm−3, with low-tide concentration greater than

that of high tide. From that we can estimate an advective

flux of 51 mmolm−2d−1 using Eq. (9) (Emerson and Stump,

2010).

AF = v

(
dC

dx

)
h, (9)

where v is the Ekman advection velocity.

This is not an insignificant flux relative to our calculated

winter heterotrophy and would indicate that our site could

actually be autotrophic with the heterotrophic processes oc-

curring upstream. It is clear that consideration of advection

is required to accurately estimate the annual metabolic state

at this site.

4.5 Other sources of uncertainty

There are several other known contributors to NCP uncer-

tainty which are outside the scope of this study. Kitidis et al.

(2014) argue that all O2-based methods underestimate NCP

due to photochemical processes, and they report that their

modelled photochemical oxygen demand was shown to occa-

sionally exceed respiration, with demand ranging between 3

and 16 mmolm−3d−1. Oxygen photolysis was found to cor-

relate with chromophoric dissolved organic matter (CDOM)

absorbance at 300 nm. While significant concentrations of

CDOM can be found at the Warp site (Foden et al., 2008),

the effects are likely mitigated by the typically high turbid-

ity, the associated rapid light attenuation, and shallow (fre-

quently < 6 m) photic depth.

Tijssen and Eijgenraam (1982) observed, in the northern

end of the Southern Bight of the North Sea in April, ver-

tical oxygen gradients of up to 0.15 mmolm−3. These can

form throughout the day during the phytoplankton bloom.

The gradient was reversed during the night, indicating the re-

distribution of oxygen by vertical mixing over a 24 h period.

Takagaki and Komori (2007) found the maximum en-

hancement to CO2 gas transfer by rainfall is similar in mag-

nitude to that of high wind speeds. This enhancement is

thought mainly to be through increased turbulence and sur-

face area at the air–water interface, and as such it is likely to

be most significant where heavy rain is coincident with light

winds (Beale et al., 2013).

Frew (1997) found that surfactants may be responsible for

coastal waters having significantly lower transfer velocities

than oligotrophic areas. However Nightingale et al. (2000)

found no measurable change in kw during a 30-fold increase

in chlorophyll during an algal bloom. We, like Wanninkhof

et al. (2009), consider that practically surfactants are always

in effect and are thus incorporated into empirically derived

kw parametrisations.

Similarly while sea spray may also enhance gas trans-

fer, we believe this to also already be accounted for in

the parametrisation. Further uncertainties relating to the

parametrisation of kw are likely of little concern without first

reducing other, more significant sources.

5 Conclusions

Our work identifies the Warp SmartBuoy site as an annu-

ally net heterotrophic location with strong seasonal variabil-

ity and autotrophy during the growth phase of the bloom.

However, this assertion is brought into question due to signif-

icant unconstrained uncertainties from horizontal advection,

the determination of which is outside the scope of this study.

We have demonstrated that the largest constrained source

of uncertainty in our NCP estimates comes not from the se-

lection of gas exchange parametrisation, or the quality of

remote-sensed and modelled parameters, but from the mea-

surement of the changing oxygen concentration. For cumu-

lative annual estimates, the strongly biasing uncertainty of

bubble-induced supersaturation is the dominant source of un-

certainty.

Constraining the degree of horizontal advection is vital to

improving long-term NCP estimates and to determining the

overall metabolic balance. Further work should also focus on

understanding the nature of the short-term variability asso-

ciated with changing oxygen concentration to enable better

NCP estimates in dynamic areas such as the Warp site.
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Figure A1. Acoustic Doppler current profiler data from the Warp SmartBuoy site showing the tidally dominated current regime. Top panel

vectors for east, bottom panel for north.

A1 Wind speed validation

Shipborne anemometers data were adjusted to 10 m height

using the scheme of Liu et al. (2010). We make the assump-

tion that the surface current is assumed to be small compared

to wind speed and that the atmosphere is nearly neutral. Thus

the Us and ψ terms are not used giving the form shown in

Eq. (A1), where CD is the drag coefficient formulation of

Large and Pond (1981), with the high wind speed saturation

modification of Sullivan et al. (2012) shown in Eq. (A2).

Uz

U10

= 1+ 2.5

√
CD ln(

z

10m
) (A1)

CD =


0.0012 ⇐⇒ U10 ≤ 11ms−1

(0.49+ 0.0065U10)× 10−3
⇐⇒ 11ms−1 <U10 < 20ms−1

0.0018 ⇐⇒ U10 ≥ 20ms−1

(A2)

A2 Current meter data

Acoustic Doppler current profilers were deployed at the

Warp SmartBuoy site between November 2001 and April

2002. Three deployments were made using 1 MHz Nortek

AWACs fitted to a Cefas-designed seabed lander. A small

subset of the processed data is presented in Fig. A1.
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