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Abstract. Woodlands represent highly significant carbon

sinks globally, though could lose this function under future

climatic change. Effective large-scale monitoring of these

woodlands has a critical role to play in mitigating for, and

adapting to, climate change. Mediterranean woodlands have

low carbon densities, but represent important global carbon

stocks due to their extensiveness and are particularly vulner-

able because the region is predicted to become much hot-

ter and drier over the coming century. Airborne lidar is al-

ready recognized as an excellent approach for high-fidelity

carbon mapping, but few studies have used multi-temporal

lidar surveys to measure carbon fluxes in forests and none

have worked with Mediterranean woodlands. We use a multi-

temporal (5-year interval) airborne lidar data set for a region

of central Spain to estimate above-ground biomass (AGB)

and carbon dynamics in typical mixed broadleaved and/or

coniferous Mediterranean woodlands. Field calibration of the

lidar data enabled the generation of grid-based maps of AGB

for 2006 and 2011, and the resulting AGB change was es-

timated. There was a close agreement between the lidar-

based AGB growth estimate (1.22 Mg ha−1 yr−1) and those

derived from two independent sources: the Spanish National

Forest Inventory, and a tree-ring based analysis (1.19 and

1.13 Mg ha−1 yr−1, respectively). We parameterised a sim-

ple simulator of forest dynamics using the lidar carbon flux

measurements, and used it to explore four scenarios of fire

occurrence. Under undisturbed conditions (no fire) an accel-

erating accumulation of biomass and carbon is evident over

the next 100 years with an average carbon sequestration rate

of 1.95 Mg C ha−1 yr−1. This rate reduces by almost a third

when fire probability is increased to 0.01 (fire return rate

of 100 years), as has been predicted under climate change.

Our work shows the power of multi-temporal lidar surveying

to map woodland carbon fluxes and provide parameters for

carbon dynamics models. Space deployment of lidar instru-

ments in the near future could open the way for rolling out

wide-scale forest carbon stock monitoring to inform man-

agement and governance responses to future environmental

change.

1 Introduction

The world’s forests are currently acting as an important car-

bon sink, in 2000–2007 taking up 2.3± 0.5 PgC each year

compared with anthropogenic emissions of 8.7± 0.8 PgC

(Pan et al., 2011). For this reason, the international commu-

nity recognises that forest protection could play a significant

role in climate change abatement and that the feedback be-

tween climate and the terrestrial carbon cycle will be a key

determinant of the dynamics of the Earth System (Purves

et al., 2007). However, there is major uncertainty over for-
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est responses to anthropogenic global change, and concerns

that the world’s forests may switch from being a sink to a

source within the next few decades (Nabuurs et al., 2013;

Ruiz-Benito et al., 2014b), through gradual effects on regen-

eration, growth and mortality, as well as climate-change re-

lated disturbance (Frank et al., 2015). For instance, severe

droughts in many parts of the world are causing rapid change,

killing trees directly through heat-stress and indirectly by fire

(Allen et al., 2010). Disturbance events can cause major per-

turbations to regional carbon fluxes (Chambers et al., 2013;

Vanderwel et al., 2013). A major goal in biogeosciences,

therefore, is to improve understanding of the terrestrial veg-

etation carbon cycle to enable better constrained projections

(Smith et al., 2013).

In this context, remote-sensing methods for modelling

above-ground storage of carbon in biomass have received

much recent attention, with airborne light detection and rang-

ing (lidar) showing the most potential for accurate and large-

scale applications. Lidar metrics of canopy structure are

highly correlated with field-based estimates of above-ground

biomass (AGB) and carbon (AGC) (Drake et al., 2003; Lef-

sky et al., 2002). With such relationships being repeatedly

demonstrated, it has been possible to develop a conceptual

and technical approach linking plot-based carbon density es-

timates with lidar top canopy heights using regional inputs

on basal area and wood density (Asner and Mascaro, 2014).

With the increasing availability of multi-temporal (repeat

survey) lidar data sets, including some of national coverage,

a few researchers have started to use lidar in large-scale stud-

ies of vegetation productivity and carbon dynamics (Englhart

et al., 2013; Hudak et al., 2012) as well as forest disturbance

and gap dynamics (Blackburn et al., 2014; Kellner and Asner,

2014; Vepakomma et al., 2008, 2010, 2011). As such, and

despite its high costs, lidar is transitioning from research to

practical application, notably in supporting baseline surveys

and monitoring of carbon stocks required for the implemen-

tation of the REDD+mechanism (Reducing Emissions from

Deforestation and Forest Degradation) (Asner et al., 2013).

However, monitoring carbon fluxes using multi-temporal li-

dar is technically challenging because instrument and flight

specifications vary over time (Réjou-Méchain et al., 2015).

The applications of airborne lidar for modelling AGB and

AGC have largely been tested in cool temperate and tropical

forest systems (see Zolkos et al., 2013). Less attention has

been given to the effectiveness of the technology for the mod-

elling of biomass and carbon in sub-tropical and Mediter-

ranean climate zones dominated by dry woodlands. These

woodlands have lower carbon densities, but represent impor-

tant global carbon stocks due to their extensiveness and also

vulnerability in the face of climate change (Ruiz-Benito et

al., 2014b). As elsewhere in Europe, carbon stocks in such

woodlands have been increasing in recent decades (Nabuurs

et al., 2003, 2010; Vayreda et al., 2012), as woodland man-

agement for charcoal and timber has declined in profitability.

However, with Earth System models predicting some of the

most severe warming and drying trends of anywhere in the

world (Giorgi and Lionello, 2008; Valladares et al., 2014),

abrupt shifts in increasing fire frequency and intensity may

reverse such trends across the Mediterranean region (Pausas

et al., 2008). Lidar has been used to measure carbon stocks

in some Mediterranean woodlands (García et al., 2010) but,

to our knowledge, not for measuring carbon dynamics.

In this study we demonstrate the potential to build a patch-

work dynamics simulator for the biomass and carbon dynam-

ics in Mediterranean woodlands based on multi-temporal li-

dar data (Fig. 1). Our aim is to model the direction and rate

of landscape-scale AGC change for mixed oak-pine wood-

land in central Spain. We first calibrate a lidar top-of-canopy

height model using selective ground-based estimations of

tree- and plot-level biomass. The lidar-based AGB growth

models are then validated using two independent data sets:

the Spanish National Forest Inventory (SFI) and tree-ring

measurements, before parameterising a simulation model to

explore the dynamics of carbon change over a 100-year pe-

riod. In doing so, we explore sensitivity of the long-term car-

bon sequestration potential of the regional landscape to in-

creasing forest fire frequency, as is to be expected under fu-

ture climate change.

2 Methods

2.1 Study area

Alto Tajo (40◦47′ N, 2◦14′W) is a Natural Park (32 375 ha)

situated in the Guadalajara province of Central Spain. The

dominant woody vegetation is Mediterranean mixed wood-

land, comprising Pinus sylvestris, P. nigra, Quercus faginea,

Q. ilex, Juniperus oxycedrus and J. thurifera. The region has

a complex topography ranging from 960 to 1400 m a.s.l. The

mean annual temperature here is 10.2 ◦C, with mean annual

rainfall of 499 mm.

Contained within the Park is one of the six Exploratory

platform sites contributing to FunDivEurope: Functional Sig-

nificance of Biodiversity in European Forests (Baeten et al.,

2013). Field data used in the current study were taken from

plots surveyed as part of this programme. The landscape-

level analysis focused on a belt overlapping this area and

running 20 km north–south and 3 km east–west (Fig. 2).

2.2 Plot-based tree measurements and allometric

biomass modelling

Field measurement of plots was undertaken in March 2012.

Each plot was of dimension 30× 30 m and was carefully

geo-located, recording GPS corner coordinates and orienta-

tion using a Trimble GeoXT – Geoexplorer 2008. Measure-

ments were made of trees and shrubs of diameter at breast

height (DBH) > 7.5 cm, given that smaller sizes contribute

less to plot-level biomass (Stephenson et al., 2014). The fol-

lowing were measured and recorded: position within plot,
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Figure 1. Methodological approach.

Figure 2. Study area. Shown in lighter green, mixed forest, and

darker green, coniferous forest. Other land covers (including agri-

cultural) in shades of grey, with darkest grey indicating an area

burned by forest fire in 2005 and excluded from these analyses. The

three north-south parallel strips show the lidar survey coverage.

species, height, height of lowest branch, DBH (at 1.3 m),

and crown diameter (two orthogonal measurements). A ver-

tex hypsometer was used for the crown dimensions.

The above-ground biomass of individual trees was es-

timated according to published allometries, and summed

to arrive at plot and hectare totals. The allometric equa-

tions of Ruiz-Peinado et al. (2011) and Ruiz-Peinado et

al. (2012) were used for softwood species (Juniperus and

Pinus) and hardwood species (Quercus), respectively (Ap-

pendix A). The equations were developed from tree samples

across Spain including sites close to the Alto Tajo study area.

The equations for Juniperus thurifera were applied to the

other two junipers (J. oxycedrus and J. phoenicia) as well as

box (Buxus sempervirens). In all cases, the equations com-

partmented the biomass into trunks and large, medium and

fine branches and/or leaves, using DBH and tree height data.

2.3 Lidar surveys, calibration and above-ground

biomass and carbon change analysis

The lidar surveys were undertaken by the NERC Airborne

Research and Survey Facility (ARSF) and took place on

16 May 2006 (project WM06_04; García et al., 2011, 2010)

and 21 May 2011 (project CAM11_03). A Dornier 228

aircraft was employed for both, but lidar instruments dif-

fered between years: Optech ALTM-3033 in 2006 and Le-

ica ALS050 in 2011. Instrument and flight parameters are

given in Table 1. Simultaneous GPS measurement was car-

ried out on the ground allowing for differential correction

during post-processing.

We assumed accurate georeferencing of the 2006 and

2011 data sets during post-processing, and did no further co-

registration. We performed initial modelling of terrain and

canopy heights from the 2006 and 2011 lidar data sets us-

ing “Tiffs” 8.0: Toolbox for Lidar Data Filtering and For-

est Studies, which employs a computationally efficient, grid-

based morphological filtering method described by Chen

et al. (2007). Outputs included filtered ground and object

points, as well as digital terrain models (DTM) and canopy

height models (CHM). The subsequent GIS and statistical

analyses described below were undertaken in ArcInfo 10.0

(undertake in ArcInfo 10.0 by ESRI) and R 2.13.1 (R Devel-

opment Core Team, 2011), respectively.

Spatially overlaying the lidar data set with land cover

information derived from the 2006 CORINE map (EEA,

1995), indicated the local presence of two main forest

types: coniferous and mixed (oak-juniper-pine) woodland.

For the purposes of calibrating the lidar height models
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Table 1. Specifications for the lidar surveys undertaken at Alto Tajo (Spain) in 2006 and 2011.

2006 2011

Lidar sensor Optech-ALTM3033 Leica ALS050

Wavelength (nm) 1064 1064

Beam divergence (mrad) 0.20 0.22

Vertical discrimination (m) 4.6 2.8

Detection system Two return Four return

Date of deployment 16 May 2006 21 May 2011

Pulse rate frequency (MHz) 33.33 67.2–74.4

FoV (degrees) 12 40

Scan frequency (Hz) 42.4 35.8–40.0

Point density (m−2) 0.5 2

Number of flight lines 3(N–W) 4 (E–W) + 3(N–W)

Altitude (m a.s.l.) 2063–2073 2097–2140

based on field-estimated biomass, only the latter forest type

was adequately sampled (13 plots), so subsequent analy-

sis and modelling focused on these mixed woodland sys-

tems. We predicted biomass as a function of top-of-canopy

heights, which has been found to be a good predictor (As-

ner et al., 2013). Digitised plot boundaries for the 13 Fun-

Div plots of square 30× 30 m were used to extract mean

top-of-canopy height values from the lidar CHM (TCHL).

Reassuringly, these values were remarkably similar to the

mean canopy height estimated from plot data (TCHP), cal-

culated from height and crown area of each tree obtained

by allometric formulae (see Kent et al. 2015); there was

almost a 1 : 1 relationship between the two estimates of

height: TCHG = 1.79+ 0.999×TCHL (R2
= 0.88). Field-

estimated AGB was modelled on the basis of lidar mean

height by linear regression of log transformed variables.

Our selected model (log(AGB)= 3.02+ 0.89× log(TCHL),

R2
= 0.53, RMSE= 0.28) was back-transformed and mul-

tiplied by a correction factor (CF) to account for the back-

transformation of the regression error (Baskerville, 1972);

the correction factor is given by CF= eMSE/2, where MSE

is the mean square error of the regression model.

We used the regression model and lidar data set to map

biomass and biomass change. We aggregated canopy heights

at 1 m resolution to mean values per 30× 30 m grid cell,

to reduce mismatches with the field inventory plots (Réjou-

Méchain et al., 2015). The aggregation was also effective in

dealing with gappiness noted in the 2006 data set due to un-

even distribution of scan lines and lower point density (Ta-

ble 1). Negative values caused by occasional inaccuracies ev-

ident in the DTM models, especially for 2006, were removed

from the data set to avoid anomalies. For each grid cell along

the three north–south transects, we were able to use the mean

height–AGB regression relationship to generate estimates of

AGB in 2006 and 2011, and AGB change 2006–2011.

2.4 Validation

Due to the relatively low number of ground truth plots, it was

especially important to validate the lidar-modelled AGB esti-

mates, and this was done using two different data sets. Firstly,

equivalent estimates of AGB and AGB change were devel-

oped using detailed tree measurements from the Spanish Na-

tional Forest Inventory (SFI). The SFI covers the forested ar-

eas of the country on a 1 km2 grid (Villanueva, 2004). A sub-

set of 234 SFI plots surrounding the study area and of com-

parable topography and climate were selected, and the data

extracted for the second and third surveys (2SFI, 1992–94

and 3SFI, 2003–2006; i.e. an 11-year interval for this region).

For each plot, plot-level AGB was calculated by applying the

allometric equations of Ruiz-Peinado et al. (2011, 2012; Ap-

pendix A) to individual tree height and stem diameter mea-

surements and summing these up to the plot level. Informa-

tion on topoclimate (altitude, rainfall, temperature; Gonzalo,

2008) and management and/or fire disturbance were also

available per plot, although areas significantly burned after

the first inventory were removed from the data set.

Secondly, plot-level above-ground wood productivity val-

ues were calculated from tree-ring measurements from the

same FunDiv plots used to calibrate the lidar data, accord-

ing to a four-step procedure described in Jucker et al. (2014):

measuring growth increments from wood cores, converting

diameter increments into biomass growth, modelling individ-

ual tree biomass growth, and scaling up to plot level. For the

coring, bark-to-pith increment cores were collected for a sub-

set of trees in each plot (using a 5.15 mm diameter increment

borer, Haglöf AB, Sweden). Following a size-stratified ran-

dom sampling approach, one core was extracted from each

selected tree at a height of 1.3 m off the ground; 12 trees per

plot were cored in monocultures and 6 trees per species were

cored in mixtures (Jucker et al., 2014). In this approach, plot

level estimates were based on the growth of trees present in

2011 and did not account for the growth of trees that died

between 1992 and 2011.
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2.5 Biomass growth estimation and simulation

modelling

Plotting the 30× 30 m pixel-level AGB estimates from 2006

versus 2011 revealed a small number of outliers of AGB

change that may have resulted from anomalies in the DTM

and top-of-canopy modelling (see discussion). We used ro-

bust regression to remove these outliers in order to obtain

reliable estimates of mean growth and its uncertainty. This

was performed with the rlm command in the MASS pack-

age of R, which uses iterative re-weighted least squares (M-

estimation) (Venables and Ripley, 2002). Robust regression

assigns lower weights to outliers than to points close to

the regression line (in our case, using a bisquare weight-

ing function), and then uses these weights to downplay the

importance of these outliers in the linear regression. On

inspection of the weights, we observed that all the obvi-

ous outliers had been assigned a weight of zero, so were

easily filtered out. Some 3.3 % of the data were trimmed

in this way. The residuals of the remaining data set were

close to normally distributed. Change in AGB was calcu-

lated for each plot in the trimmed data set as (AGB2011–

AGB2006)/5, and the mean and standard deviation estimated.

There was significant spatial auto-correlation of AGB2006

values (Moran’s I= 0.138, p< 0.001) and also AGB change

(Moran’s I= 0.038, p< 0.001). However, following the con-

clusion of Hawkins et al. (2007) that regression estimates are

not significantly affected by spatial autocorrelation, we con-

sidered it unnecessary to subsample the gridded data set to

avoid it.

The trimmed data set was used to model AGB growth as a

function of biomass, using Bayesian inference, and to create

a woodland dynamics simulator. The growth model was

AGB2011 = a+ b×AGB2006+ ε where ε

∼ N(0,c+ d ×AGB2006)
(1)

where a, b, c and d are parameters calculated using STAN

(STAN Development Team, 2014), a Bayesian inference

package. We used uninformative prior and a burn-in of 5000

iterations (well in excess of that needed for convergence),

then took 100 samples from the posterior distribution. We

also fitted a model containing a quadratic biomass term, but

the 95 % confidence intervals of the quadratic term over-

lapped with zero, indicating no support for its inclusion.

Parameter values drawn from the posterior distribution

were fed into a simple simulation model. We created a 5000

cell “landscape” with starting biomass sampled randomly

from AGB2006. For each cell the annual biomass increments

were estimated by drawing parameters randomly from the

posterior distribution

1AGB= (a+ (b− 1)×AGB+ ε)/5, (2)

where ε was drawn at random from N (0, c+d×AGB). The

biomass of each cell was then altered by 1AGB and the iter-

ative process continued for 100 years. Mean AGB values for

the landscape each year were recorded and plotted with 95 %

confidence intervals.

We also included the effect of various fire scenarios on

mean biomass change and carbon dynamics in a simplistic

way. We assumed that the probability of a cell being de-

stroyed by fire, p, did not depend on that cell’s AGB and

did not vary among years. For each time step and pixel, we

decided whether a fire event had occurred in a cell by draw-

ing random numbers from the binomial distribution, with the

AGB being reset to zero as a result of a fire event. An annual

probability of fire occurrence for the region of Guadalajara,

based on areas burned each year from 1991 to 2010 (Ministe-

rio de Agricultura, 2002, 2012) is p = 0.002, whilst that from

a model parameterized from topoclimatic data from southern

Spain is p = 0.004 (Purves et al., 2007). A five-fold increase

in area burned as a result of a high emission climate scenario

is predicted for similar forest types in Portugal (see Carvalho

et al., 2009). Thus, as well as the no-fire scenario, we tested

the three fire probabilities of p = 0.002, 0.004 and 0.01 to

look at the sensitivity of carbon accumulation in the mixed

woodlands to a realistic range of fire frequencies. Carbon se-

questration potential (mean carbon storage in biomass over

the simulation period, Mg ha−1) was calculated using the

IPCC default 0.47 carbon fraction (McGroddy et al., 2004),

and scaled up to a total value of carbon (and CO2 equivalent,

3.67×C, Mt) for all mixed woodland in the autonomous

community of Castilla La Mancha (181 000 ha) under the no-

fire and three fire scenarios. We acknowledge that the simu-

lation model is basic, and since it is not spatially explicit it

makes no consideration of landscape connectivity. However,

the results provide insight into the likely effect of varying fire

rates on carbon dynamics.

3 Results

Lidar estimated mean AGB of mixed woodlands was

41.8 in 2006 and 47.9 Mg ha−1 in 2011. Mean biomass

change in this 5-year period was 1.22 Mg ha−1 yr−1, with

a considerable degree of variation around this estimate

(SD= 1.92 Mg ha−1) and a large number of pixels losing

biomass (Fig. 3), presumably as a result of disturbance. There

was very good agreement between above-ground biomass es-

timated from the lidar modelling and Spanish National In-

ventory plots for mixed oak-juniper-pine woodland (Table 2).

The lidar-based estimate is also in reasonable agreement with

that calculated from the 2006 data set in an earlier anal-

ysis: 44.7 Mg ha−1 for holm oak woodland (García et al.,

2010). AGB change as modelled by the lidar approach was

also close to estimates derived from the SFI and the Fundiv

tree ring data (Table 2). The standard deviation of the lidar-

based AGB change estimate is relatively high, probably as

a result of lidar sampling and/or processing errors that are

greater than measurement errors associated with plots and

tree rings. From the lidar data set, there was a statistically

www.biogeosciences.net/13/961/2016/ Biogeosciences, 13, 961–973, 2016
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Figure 3. Scatterplot of above-ground biomass (AGB) estimates

for 2006 and 2011: lidar (black dots), Spanish Forest Inventory

(red bordered circles), with one-to-one line (black) and fitted model

(green).

significant but minor effect on AGB change of altitude (range

908–1322 m; 1AGB= 21.17–0.01× altitude, R2
= 0.0180,

p<0.001) and aspect (calculated as folded aspect |aspect–

180|; 1AGB= 3.31–0.03× aspect, R2
= 0.0057, p<0.001).

Biomass change was modelled according to the relation-

ship:

AGB2011 = 3.98+ 1.05×AGB2006+ ε where ε

∼ N(0,4.32+ 1.10×AGB2006.
(3)

With b = 1.05 (i.e. > 1), the woodlands are accumulating

biomass over time, though the variance term is large and

so some cells are losing biomass (Fig. 3). The disturbance-

free simulation model showed a strong increase in accumu-

lated AGB over the whole 100-year period (Fig. 4a). The

mean AGB rose from 42.6 (±5.6) to 236.9 (±18.5) Mg ha−1,

which equates to a mean carbon flux of 1.95 MgC ha−1 yr−1.

By modelling the occurrence of fire at probabilities of

p= 0.002, 0.004 and 0.01, we showed its potential impact

on biomass and therefore carbon accumulation (Fig. 4, Ta-

ble 3). Mean (and standard deviation) values for AGB af-

ter 100 years were 200.6 (±21.1), 174.2 (±22.7), and 114.1

(±21.5) Mg ha−1 for a fire probability of 0.002, 0.004 and

0.01 (or return rate of 500, 250 and 100 years), respectively.

The effects of increasing fire occurrence also have dramatic

effects on the carbon sequestration potential of the mixed

woodlands considered at a regional level (i.e. Castilla la

Mancha, Table 3), with the most severe fire regime reducing

that potential by almost a half.

4 Discussion

Here we provide a demonstration of the potential of lidar

remote sensing to deliver large-scale high-fidelity maps of

above-ground biomass and carbon dynamics. Our lidar-based

biomass growth model, estimating a mean annual growth of

1.22 MgC ha−1 yr−1, is in excellent agreement with the esti-

mate independently derived from the Spanish National For-

est Inventory (1.19 MgC ha−1 yr−1). Even though there is a

large standard deviation around our estimate, the enormous

sample size (9136 pixels) means that standard errors become

miniscule, so our landscape level projections are delivered

with high precision and reliability (Coomes et al., 2002).

The number of field sampling plots used to calibrate the li-

dar top-of-canopy model is statistically enough given the pa-

rameters calculated and, therefore, for the purposes of our

study. The coefficient of determination of the resulting model

(R2
= 0.53) can be compared with a value of 0.67 obtained

by García et al. (2010) for the same region. The difference

could be due to that fact that García et al. (2010) included

more plots across a greater range of woodland types, heights

and carbon densities.

In the Anthropocene era of rapid climate and environmen-

tal change, there is an urgent need for reliable large-scale

monitoring of above-ground biomass and carbon stocks in

forests and woodlands (Henry et al., 2015), and developing

our understanding of how carbon stocks will change in the

future. Forests serve the critical function of sequestering at-

mospheric carbon and reducing the potential rate of climate

change. However, they also provide other highly important

services, including provision of timber, food and other non-

timber products, regulation of water cycle and habitat for

biodiversity (Gamfeldt et al., 2013; Ojea et al., 2012; WRI,

2005). The amount of biomass in forest is a metric rele-

vant to all of these functions, with an especially close rela-

tionship with sequestered and stored carbon (Boisvenue and

Running, 2006). In the context of climate change mitigation

and emissions target agreements made at national level, ro-

bust methodologies are needed for the regular assessment of

carbon stocks in forests (Gibbs et al., 2007).

Our work demonstrates one such robust approach that has

delivered a credible model of landscape-level carbon stocks

and fluxes based on a 5-year interval repeat-survey lidar data

set. The methodology involved identifying and discarding a

small number of outliers in the AGB estimates, and it is worth

reflecting on their origin. One of the challenges of multi-

temporal lidar analyses are when different instruments and

specifications are used in the surveys. In our case, the 2006

lidar survey had a much lower point density than for 2011,

and inspection of the resulting point cloud indicated a con-

siderably uneven distribution of the scan lines. The accuracy

of the resulting terrain and canopy models will therefore be

lower, potentially giving rise to some of the anomalies in

our results. We sought to quantify the source of this error

by performing a comparison of top-of-canopy height (TCH)

models from crossing flight-lines (data not given) for both

years at the 30 m grid scale, for which the standard devia-

tion for 2006 was more than double that for 2011. TCH is

known to be quite robust across different instruments (As-

ner and Mascaro, 2014), being less susceptible to differences

in laser canopy penetration than mean canopy height (MCH)
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Figure 4. Simulation model results for AGB over a 100-year period without fire (a) and at annual fire probability of occurrence of p =

0.002 (b), 0.004 (c) and 0.01 (d). Figures show mean (black line) and 95 % confidence intervals (grey shading).

Table 2. Comparison of the lidar modelling of above-ground biomass (AGB) and biomass change (AGB change) with forest inventory and

tree-ring data: values given are mean (and standard deviation in parentheses).

Lidar data Forest inventory Tree-ring data

data

AGB (Mg ha−1) 41.80 (±25.68) 42.8 (±52.7) –

AGB change (Mg ha−1 yr−1) 1.22 (±1.92) 1.19 (±1.17) 1.13(±0. 54)

Sample size 9136 grid cells 66 plots 13 plots

(Næsset, 2009). We considered that the size of our plots was

sufficient for calibrating the system, though in comparison

with larger plots: (1) errors caused by spatial misalignment

of plots and lidar data are greater (Asner et al., 2009); (2) in-

tegrating measurements provides a less representative aver-

age (Zolkos et al., 2013); and (3) disagreement in protocol

between lidar and field observations is greater (influenced by

the effects of bisecting tree crowns in lidar data versus call-

ing a tree “in” or “out” of the plot in field data; Mascaro et

al., 2011). With regard to the latter issue, the potential error

is affected by the average crown size relative to plot dimen-

sions, such that it will be less in our situation (as it also is

for boreal forest, Næsset et al., 2011), than it would be for

tropical forests.

At the extensive spatial scales required, remote-sensing

methodologies offer the only practicable approach to the

challenge of forest monitoring, with lidar being the remote-

sensing instrument of choice given its potential to charac-

terise the three dimensional structure of canopies and under-

stories to a high degree of accuracy and resolution. Whilst

spatial and temporal lidar coverage of the terrestrial and

wooded surface of the planet is still limited, and the costs still

high, this situation is improving continuously. A number of

national surveys have been undertaken or commissioned, and

building on the experience of the GLAS (Geoscience Laser

Altimetry System) instrument on ICESAT (2003–2010), the

GEDI Lidar space-borne facility is planned for deployment

in 2019 (Dubayah et al., 2014). With these advancements, it

is an important time to develop proof of principle of lidar

monitoring of forest biomass and carbon stocks and fluxes.

In this respect, a number of important multi-temporal li-

dar studies have emerged. Typical of these are an analysis

of AGB dynamics, tree growth and peat subsidence in peat

swamp forests of Central Kalimantan, Indonesia 2007–2011

(Boehm et al., 2013; Englhart et al., 2013), biomass changes

in conifer forests of northern Idaho 2003–2009 at the pixel,

plot and landscape level and looking at the impacts of log-

ging (Hudak et al., 2012), studies of canopy gap dynam-

ics (Blackburn et al., 2014; Vepakomma et al., 2008, 2010,

2011), and treefall rates and spatial patterns in a savanna

landscape 2008–2010 (Levick and Asner, 2013). A study em-

ploying four lidar surveys between 2000–2005 established an

optimum interval (3 years) for measuring tree growth in red

pine forests at an acceptable level of uncertainty (Hopkinson

et al., 2008).
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Table 3. Average above-ground biomass (AGB) and carbon sequestration potential over a 100-year period for the four forest fire scenarios

(no fire and at annual fire probability of occurrence of p = 0.002, 0.004 and 0.01), scaled up to the regional level (181 000 ha of mixed forest

in Castilla la Mancha) for carbon and carbon-dioxide equivalence.

Fire AGB Carbon Regional Regional CO2

scenario (Mg ha−1) sequestration carbon equivalent

potential (Kt) (Kt)

(Mg ha−1)

No fire 124.9 58.7 10.6 39.0

P = 0.002 111.6 52.4 9.5 34.8

P = 0.004 101.9 47.9 8.7 31.8

P = 0.01 77.7 36.5 6.6 24.3

Our study makes an important additional contribution to

this literature. It demonstrates how sampling a woodland sys-

tem with a small number of field plots can effectively cali-

brate a lidar data set to scale up credible estimates of AGB

and AGC at the landscape level. It is also novel in studying

these dynamics within a Mediterranean environment. Much

focus of lidar-based biomass modelling has been on tropi-

cal forest systems, given their importance to the global car-

bon cycle. Mediterranean woodlands hold a much lower car-

bon density, yet are valuable carbon stores given their ex-

tensive nature not just in the Mediterranean Basin but also

other similar climate regions in the world. Furthermore, the

potential effects of climate change in Mediterranean wood-

lands are suggested to be particularly strong (Benito-Garzón

et al., 2013; Ruiz-Benito et al., 2014b). In the absence of

fire in one such region, our simulation suggests a significant

AGB increase from 42.6 to 236.9 Mg ha−1 over a 100-year

period (equivalent to 1.94 MgC ha−1 yr−1). Pan et al. (2011)

estimates an annual increase of 1.68 MgC ha−1 yr−1 in Euro-

pean temperate forests in 2000–2007, whilst the annual car-

bon sink in Mediterranean pine plantations range between

1.06–2.99 MgC ha−1 yr−1 depending on species and silvi-

cultural treatment (Bravo et al., 2008). Estimates provided

by Ruiz-Benito et al. (2014) range from 0.55 (sclerophyl-

lous vegetation) to 0.73 (natural pine forest) and 1.45 (pine

plantation). Our own estimate of carbon sequestration poten-

tial equates to a regional carbon sequestration potential of

over 10 M kg (19 kt CO2 equivalent) for mixed woodlands in

Castilla la Mancha. Such a figure can be set in the context of

national level commitments to the reduction of greenhouse

gas emissions of 10 % against the Kyoto base year value of

289.8 Mt CO2 equivalent (EEA, 2014). Under Spain’s ‘So-

cioeconomic Plan of Forest Activation’, land use, land use

change and forestry (LULUCF) is projected to absorb 20–

30 Mt CO2 equivalent per year.

The contribution of Mediterranean forests to the green-

house gas balance sheet is vulnerable to the effects of cli-

mate change, for which the Mediterranean is a hotspot re-

gion (Giorgi and Lionello, 2008; Lindner et al., 2010). One

of the mediating drivers is forest fire risk. We found that an

increase in fire probability from 0.002 to 0.01 (return rate in-

crease from 500 to 100 years) dramatically altered the carbon

sequestration potential of the landscape, with carbon stocks

much reduced after 100 years with the highest fire probabil-

ity scenario. It is worth noting in this respect that our mod-

elled range of fire probabilities are conservative compared to

estimates used in other simulations for similar regions (e.g.

0.01–0.2 for Catalonia, Lloret et al., 2003). However, it is

also necessary to note that our simplistic modelling of fire,

using a set probability of a burn irrespective of factors such

as landscape position and temporal variability, means that

our results can only be treated as indicative of the scale of

effect of different scenarios on the landscape carbon dynam-

ics. For example, our modelling does not account for the way

in which small changes in temperature and rainfall regimes

could lead to tipping points of much higher risk and fre-

quency, if not severity, of burns (Moritz et al., 2012), and

dramatically different carbon dynamics outcomes.

Our modelling is neither able to account for ecophysio-

logical factors. Tree physiology is responsive to changing

temperature and soil water availability, influencing rates of

regeneration, growth and mortality (Choat and Way, 2013;

Choat et al., 2012; Frank et al., 2015; Williams et al., 2012).

One study of low productivity forests (including Alto Tajo

as a continental Mediterranean study area) showed how

leaf respiration rates, and their ability to acclimate to sea-

sonal changes in the environment, have a profound effect on

whether trees can maintain productivity – and continue to act

as carbon sinks – in dryland areas (Zaragoza-Castells et al.,

2008).

Nevertheless, our modelling approach shows considerable

promise for understanding the effects of different drivers

on vegetation dynamics and making informative future pre-

dictions (Chambers et al., 2013; Coomes and Allen, 2007;

Espírito-Santo et al., 2014). We compared no-fire with three

different fire scenarios, but it would be equally possible to

develop our approach further to consider other environmen-

tal and ecological drivers of the AGB and AGC dynamics, in-

cluding tree diversity (Jucker et al., 2014; Ruiz-Benito et al.,

2014a) and competition effects (Ruiz-Benito et al., 2014a,
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b; Vayreda et al., 2012). With regard to understanding the

landscape-level carbon dynamics of Spanish forests, in fur-

ther work we propose coverage of a full range of different

forest types and the development of more sophisticated cli-

mate change scenarios using models based on meteorologi-

cal data, environmental parameters and different IPCC pro-

jections. More widely, the further development and testing

of these methods is critical for exploring the prospects for,

and contribution of, forests in the global carbon cycle under

future environmental change.
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Appendix A

Allometric equations used in the estimation of tree biomass

from height and stem diameter measurements (Ruiz-Peinado

et al., 2011, 2012).

Pinus nigra Arn.

Stem Ws = 0.0403 · d1.838 ·h0.945

Thick branches Wb2–7 = If d ≤ 32.5cm then Z = 0;

If d > 32.5cm then Z = 1;

[0.228 · (d − 32.5)2
] ·Z

Medium branches Wb2–7 = 0.0521 · d2

Thin branches+ needles Wb2+n = 0.0720 · d2

Roots Wr = 0.0189 · d2.445

Pinus sylvestris L.

Stem Ws = 0.0154 · d2
·h

Thick branches Wb2–7 = If d ≤ 37.5cm then Z = 0;

If d > 37.5cm then Z = 1;

[0.540 · (d − 37.5)2
− 0.0119

· (d − 37.5)2
·h] ·Z

Medium branches Wb2–7 = 0.0295 · d2.742
·h−0.899

Thin branches+ needles Wb2+n = 0.530 · d2.199
·h−1.153

Roots Wr = 0.130 · d2

Juniperus thurifera L. (applied for all Juniperus)

Stem Ws = 0.0132 · d2
·h+ 0.217 · d ·h

Thick branches Wb2–7 = If d ≤ 22.5cm then Z = 0;

If d > 22.5cm then Z = 1;

[0.107 · (d − 22.5)2
] ·Z

Medium branches Wb2–7 = 0.00792 · d2
·h

Thin branches+ needles Wb2+n = 0.273 · d ·h

Roots Wr = 0.0767 · d2

Quercus faginea

Stem Ws = 0.154 · d2

Thick branches Wb2–7 = 0.0861 · d2

Medium branches Wb2–7 = 0.127 · d2
− 0.00598 · d2

·h

Thin branches+ leaves Wb2+ l = 0.0726 · d2
− 0.00275 · d2

·h

Roots Wr = 0.169 · d2

Quercus ilex

Stem Ws = 0.143 · d2

Thick branches Wb2–7 = If d ≤ 12.5cm then Z = 0;

If d > 12.5cm then Z = 1;

[0.0684 · (d − 12.5)2 ·h] ·Z

Medium branches Wb2–7 = 0.0898 · d2

Thin branches+ leaves Wb2+l = 0.0824 · d2

Roots Wr = 0.254 · d2

Notes:

Ws: Biomass weight of the stem fraction (kg);

Wb7: Biomass weight of the thick branches fraction (diame-

ter larger than 7 cm) (kg);

Wb2–7: Biomass weight of medium branches fraction (diam-

eter between 2 and 7 cm) (kg);

Wb2+l: Biomass weight of thin branches fraction (diameter

smaller than 2 cm) with leaves (kg);

Wr: Biomass weight of the belowground fraction (kg);

d: diameter at breast height (cm);

h: tree height (m).
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Bastias, C. C., Bauhus, J., Beinhoff, C., Benavides, R., Benneter,

A., Berger, S., Berthold, F., Boberg, J., Bonal, D., Brüggemann,

W., Carnol, M., Castagneyrol, B., Charbonnier, Y., Chećko, E.,
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