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Abstract. The sea-surface microlayer (SML) is at the upper-

most surface of the ocean, linking the hydrosphere with the

atmosphere. The presence and enrichment of organic com-

pounds in the SML have been suggested to influence air–

sea gas exchange processes as well as the emission of pri-

mary organic aerosols. Here, we report on organic matter

components collected from an approximately 50 µm thick

SML and from the underlying water (ULW), ∼ 20 cm be-

low the SML, in December 2012 during the SOPRAN ME-

TEOR 91 cruise to the highly productive, coastal upwelling

regime off the coast of Peru. Samples were collected at 37

stations including coastal upwelling sites and off-shore sta-

tions with less organic matter and were analyzed for total and

dissolved high molecular weight (> 1 kDa) combined carbo-

hydrates (TCCHO, DCCHO), free amino acids (FAA), total

and dissolved hydrolyzable amino acids (THAA, DHAA),

transparent exopolymer particles (TEP), Coomassie stainable

particles (CSPs), total and dissolved organic carbon (TOC,

DOC), total and dissolved nitrogen (TN, TDN), as well as

bacterial and phytoplankton abundance. Our results showed a

close coupling between organic matter concentrations in the

water column and in the SML for almost all components ex-

cept for FAA and DHAA that showed highest enrichment in

the SML on average. Accumulation of gel particles (i.e., TEP

and CSP) in the SML differed spatially. While CSP abun-

dance in the SML was not related to wind speed, TEP abun-

dance decreased with wind speed, leading to a depletion of

TEP in the SML at about 5 m s−1. Our study provides in-

sight to the physical and biological control of organic matter

enrichment in the SML, and discusses the potential role of

organic matter in the SML for air–sea exchange processes.

1 Introduction

The sea-surface microlayer (SML) is the uppermost layer of

the water column and the interface between the ocean and

the atmosphere. The accumulation of organic matter, distinct

physical and chemical properties and a specific organismal

community (neuston) distinguish the SML as a unique bio-

geochemical and ecological system. It has been suggested

that the SML has a gel-like nature (Cunliffe and Murrell,

2009; Sieburth, 1983) of varying thickness (20–150 µm, Cun-

liffe et al., 2013) with dissolved polymeric carbohydrates and

amino acids present as well as gel particles, such as trans-

parent exopolymer particles (TEP) of polysaccharidic com-

position, and Coomassie stainable particles (CSPs) of pro-

teinaceous composition. These gelatinous compounds origi-

nate from high molecular weight polymers that are released

form phytoplankton and bacterial cells by exudation and cell

break up (Chin et al., 1998; Engel et al., 2004; Verdugo et

al., 2004). Polysaccharide-rich gels, like TEP, were attributed

mainly to phytoplankton exudation (Passow, 2002), while

the production of protein-containing gels, such as CSPs, has

been related to cell lysis and decomposition, as well as to

the absorption of proteins onto non-proteinaceous particles

(Long and Azam, 1996). Gels are transported to the SML

by rising bubbles (Azetsu-Scott and Passow, 2004; Zhou et

al., 1998) or are produced from dissolved precursors directly

at the air–sea interface during surface wave action (Wurl et

al., 2011). Gel particles can promote microbial biofilm for-

mation (Bar-Zeev et al., 2012) and mediate vertical organic

matter transport, either to the atmosphere (Leck and Bigg,

2005; Orellana et al., 2011) or to the deep ocean (Passow,

2002).
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Accumulation of organic matter in the SML may be tightly

coupled to phytoplankton abundance in the water column

(Bigg et al., 2004; Galgani et al., 2014; Gao et al., 2012;

Matrai et al., 2008). Thus, organic matter accumulation and

composition in the SML may also reflect the sensitivity of

marine microorganisms in the surface ocean to environmen-

tal changes, which was shown during previous mesocosms

studies (Engel et al., 2013; Riebesell et al., 2009; Schulz

et al., 2013). Distinct from the SML and on top of it lies

the nanolayer, a monomolecular film, which, like the SML,

shows seasonality features with carbohydrate-rich polymeric

material being most abundant during the summer months

and possibly related to a combination of primary produc-

tion (phytoplankton abundance) and photochemical and/or

microbial reworking of organic matter (Laß et al., 2013).

In our study we focused on the upper micrometers of

the water–air interface that we operationally define as SML,

whose compositional changes and accumulation of organic

matter may influence two air–sea interface processes nec-

essary to understand oceanic feedbacks on the atmosphere:

sea-spray aerosol (SSA) emission and air–sea gas exchange

(Cunliffe et al., 2013). During biologically productive peri-

ods, a high amount of SSA with a predominant organic com-

position is emitted from the ocean’s surface (O’Dowd et al.,

2004). These compounds primarily reveal a polysaccharidic,

gel-like composition, suggesting that the abundance and size

of dissolved polysaccharides and marine gels in the sea sur-

face may influence the organic fraction of SSA (Orellana et

al., 2011; Russell et al., 2010). It has also been shown that

the presence of biogenic surface active substances (surfac-

tants) in the SML leads to capillary wave damping, alters

the molecular diffusion of gases (Frew et al., 1990; Liss and

Duce, 2005) and thereby affects gas exchange rates particu-

larly at lower wind speed (Jähne and Haußecker, 1998). In

this respect, the understanding of sources, composition and

fate of biological components in the SML becomes of partic-

ular relevance for environments, where biological productiv-

ity is high like in coastal upwelling regimes.

Off the coast of Peru, the coastal upwelling region extends

between approximately 4 and 40◦ S. In this area, upwelling

processes are sustained by winds throughout the year but fea-

ture high inter-annual variability induced by the El Niño–

Southern Oscillation (ENSO) cycle (Tarazona and Arntz,

2001). Eastern boundary upwelling systems (EBUSs) like

the system off the coast of Peru are characterized by high

biological productivity supported by deep upwelling of nutri-

ents and often associated with subsurface oxygen minimum

zones (OMZs). The supply of oxygen to the OMZ is largely

controlled by physical (i.e., diffusive and advective) mecha-

nisms, whereas biological processes (i.e., respiration of or-

ganic matter) provide sinks (Lachkar and Gruber, 2011).

OMZs are significant source regions for major climate-

relevant gases such as carbon dioxide, methane, hydrogen

sulfide and nitrous oxide (Paulmier et al., 2008, 2011). Pro-

cesses affecting gas exchange in these regions need to be un-

derstood in order to accurately estimate trace gas fluxes from

the ocean to the atmosphere and consequences on climate.

In 2008, the VAMOS Ocean-Cloud-Atmosphere-Land Study

Regional Experiment (VOCALS-REx) and the Chilean Up-

welling Experiment (VOCALS-CUpEx) conducted between

Southern Peru and Northern Chile focused on the link be-

tween aerosols, clouds and precipitation as well as on physi-

cal and chemical couplings between the upper ocean and the

lower atmosphere (Garreaud et al., 2011; Wood et al., 2011).

During the SOPRAN cruise METEOR91 (M91), we stud-

ied organic matter components at the very sea surface since

properties of the SML may represent a major uncertainty for

gas, heat and aerosol fluxes in this specific region and in other

oceanic environments. During our cruise, organic matter con-

centration and composition of the SML and the underlying

seawater were studied on 37 different stations, providing the

first SML data set for the upwelling system off the coast of

Peru, including the first data set on gel particles in EBUSs so

far.

2 Material and methods

2.1 Field information and sampling

The R/V METEOR cruise M91 studied the upwelling region

off the coast of Peru (Bange, 2013). Samples were collected

between 4.59◦ S and 82.0◦W, and 15.4◦ S and 77.5◦W from

3 to 23 December in 2012. The overall goal of M91 was to

conduct an integrated biogeochemical study on the upwelling

region off the coast of Peru in order to assess the importance

of OMZs for the sea-air exchange of various climate-relevant

trace gases and for tropospheric chemistry. Salinity and tem-

perature were measured with a CTD at each station. Global

and UV radiation and wind speed data were retrieved from

the DShip database for the time of sampling based on the

sensors installed on board.

On 37 different stations between 5 and 16◦ S off the Pe-

ruvian coast (Fig. 1), a total of 39 SML samples was col-

lected from a rubber boat using a glass plate sampler ac-

cording to the original approach described by Harvey and

Burzell (1972). Different methods have been developed to

sample and investigate the SML. These methods do not only

differ in terms of application but also with respect to the

thickness of the SML sampled as well as to selective removal

of certain components. Several studies evaluated these meth-

ods against each other. A recent summary can be found in

the “Guide to best practices to study the ocean’s surface”

(Cunliffe and Wurl, 2014). During this study, we applied the

glass plate technique because it allows for sampling of a rela-

tively large volume needed to analyze different organic com-

ponents while keeping the simultaneous sampling of ULW

minimal. Two stations were sampled twice in a time frame

of 24 h (stations 12_1 and 12_3, 16_2 and 16_3). Our glass

plate with the dimensions of 500 mm (length)× 250 mm
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Map 1 

Map 2 Map 3 

Figure 1. Maps of stations where sampling for the sea-surface microlayer (SML) and underlying seawater (ULW) was conducted during the

SOPRAN Meteor 91 cruise along the coastal upwelling area off the coast of Peru in 2012.

(width)× 5 mm (thickness) was made of borosilicate glass

and had an effective sampling surface area of 2000 cm2 (con-

sidering both sides). For each sample, the glass plate was in-

serted into the water perpendicular to the surface and with-

drawn slowly at a rate of approximately 20 cm s−1. The sam-

ple, retained on the glass because of surface tension, was re-

moved with the help of a Teflon wiper. Samples were col-

lected as far upwind of the ship as possible and away from

the path taken by the ship to avoid contamination. For each

sample the glass plate was dipped and wiped about 20 times.

The exact number of dips and the total volume collected

were recorded. Samples were collected into acid-cleaned

(HCl, 10 %) and Milli-Q-washed glass bottles, and the first

milliliters were used to rinse the bottles and then discarded.

Prior to each sampling, both the glass plate and wiper were

washed with HCl (10 %) and intensively rinsed with Milli-Q

water. At the sampling site, both instruments were copiously

rinsed with seawater in order to minimize any possible con-

tamination with alien material while handling or transporting

the devices.

www.biogeosciences.net/13/989/2016/ Biogeosciences, 13, 989–1007, 2016
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The apparent thickness (d) of the layer sampled with the

glass plate was determined as follows:

d = V/(A × n), (1)

where V is the SML volume collected (i.e., 60–140 mL) A is

the sampling area of the glass plate (A= 2000 cm2) and n is

the number of dips (Cunliffe and Wurl, 2014). We will use d

(µm) as an operational estimate for the thickness of the SML.

At the same stations, after sampling the SML, about

500 mL samples were collected from the underlying seawa-

ter (ULW) at∼ 20 cm depth by holding an acid-cleaned (HCl

10 %) and Milli-Q-rinsed borosilicate glass bottle. The bot-

tle was open and closed underwater to avoid simultaneous

sampling of SML water. For safety reasons, sampling for the

SML from a rubber boat could be made only during daylight

hours.

2.2 Chemical and biological analyses

2.2.1 Total organic carbon (TOC) and dissolved

organic carbon (DOC)

Samples for TOC and DOC (20 mL) were collected in com-

busted glass ampoules, DOC after filtration through com-

busted GF/F filters (8 h, 500 ◦C). Samples were acidified with

80 µL of 85 % phosphoric acid, heat sealed immediately, and

stored at 4 ◦C in the dark until analysis. DOC and TOC sam-

ples were analyzed by applying the high-temperature cat-

alytic oxidation method (TOC-VCSH, Shimadzu) modified

from Sugimura and Suzuki (1988). The instrument was cal-

ibrated every 8–10 days by measuring standard solutions of

0, 500, 1000, 1500, 2500 and 5000 µg C L−1, prepared from

a potassium hydrogen phthalate standard (Merck 109017).

Every measurement day, ultrapure (MilliQ) water was used

to determine the instrument blank, which was accepted for

values < 1 µmol C L−1. TOC analysis was validated on every

measurement day with deep seawater reference (DSR) mate-

rial provided by the Consensus Reference Materials Project

of RSMAS (University of Miami) yielding values within the

certified range of 42–45 µmol C L−1. Additionally, two inter-

nal standards with DOC within the range of those in samples

were prepared each measurement day using a potassium hy-

drogen phthalate (Merck 109017). DOC and TOC concen-

tration was determined in each sample from 5 to 8 injections.

The precision was < 4 % estimated as the standard deviation

of replicate measurements divided by the mean. Particulate

organic carbon (POC) was determined as the difference be-

tween TOC and DOC.

2.2.2 Total nitrogen (TN) and total dissolved nitrogen

(TDN)

TN and TDN were determined simultaneously with TOC and

DOC, respectively, using the TNM-1 detector on the Shi-

madzu analyzer. Nitrogen in the samples is combusted and

converted to NOx, which chemiluminesces when mixed with

ozone and can be detected using a photomultiplier (Dick-

son et al., 2007). Calibration of the instrument was done ev-

ery 8–10 days by measuring standard solutions of 0, 100,

250, 500 and 800 µg N L−1, prepared with potassium nitrate

Suprapur® (Merck 105065). Particulate nitrogen (PN) was

determined as the difference between TN and TDN. Deep

seawater reference (DSR) material provided by the Consen-

sus Reference Materials Project of RSMAS (University of

Miami) was used on every measurement day and yielded val-

ues within the certified range of 31–33 µmol N L−1. The pre-

cision was < 2 % estimated as the standard deviation of 5–8

measurements divided by the mean.

2.2.3 Total, dissolved and free amino acids

For total hydrolysable amino acids (THAA), 5 mL of sam-

ple were filled into pre-combusted glass vials (8 h, 500 ◦C)

and stored at −20 ◦C until analysis. Samples for dissolved

hydrolysable (DHAA) and free amino acids (FAA) were

additionally filtered through 0.45 µm Millipore Acrodisc®

syringe filters and then stored in the same way as sam-

ples for THAA. Analysis was performed according to Lin-

droth and Mopper (1979) and Dittmar et al. (2009) with

some modifications. Duplicate samples were hydrolyzed for

20 h at 100 ◦C with hydrochloric acid (suprapur, Merck)

and neutralized by acid evaporation under vacuum in a mi-

crowave at 60 ◦C. Samples were washed with water to re-

move remaining acid. Analysis was performed on a 1260

HPLC system (Agilent). Thirteen different amino acids

were separated with a C18 column (Phenomenex Kinetex,

2.6 µm, 150× 4.6 mm) after in-line derivatization with o-

phthaldialdehyde and mercaptoethanol. The following stan-

dard amino acids were used: aspartic acid (AsX), glutamic

acid (GlX), serine (Ser), arginine (Arg), glycine (Gly), threo-

nine (Thr), alanine (Ala), tyrosine (Tyr), valine (Val), pheny-

lalanine (Phe), isoleucine (Ileu), leucine (Leu), γ - amino bu-

tyric acid (GABA). α- amino butyric acid was used as an in-

ternal standard to account for losses during handling. Solvent

A was 5 % acetonitrile (LiChrosolv, Merck, HPLC gradient

grade) in sodium-di-hydrogen-phosphate (Merck, suprapur)

buffer (PH 7.0). Solvent B was acetonitrile. A gradient was

run from 100 % solvent A to 78 % solvent A in 50 min. FAA

were determined from DHAA samples without prior hy-

drolysis in separate analyses. Particulate hydrolysable amino

acids (PHAA) were determined by subtracting DHAA from

THAA. The detection limit for individual amino acids was

2 nmol monomer L−1. The precision was < 5 %, estimated as

the standard deviation of replicate measurements divided by

the mean.

2.2.4 Total and dissolved combined carbohydrates

For total and dissolved combined carbohydrates > 1 kDa

(TCCHO and DCCHO), 20 mL were filled into pre-

Biogeosciences, 13, 989–1007, 2016 www.biogeosciences.net/13/989/2016/
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combusted glass vials (8 h, 500 ◦C) and kept frozen at

−20 ◦C until analysis. Samples for DCCHO were addition-

ally filtered through 0.45 µm Pall Acrodisc® syringe filters.

The analysis was conducted according to Engel and Hän-

del (2011) applying high performance anion exchange chro-

matography coupled with pulsed amperometric detection

(HPAEC-PAD) on a Dionex ICS 3000. Samples were desali-

nated by membrane dialysis (1 kDa MWCO, Spectra Por) for

5 h at 1 ◦C, hydrolyzed for 20 h at 100 ◦C with 0.4 M HCl fi-

nal concentration, and neutralized through acid evaporation

under vacuum and nitrogen atmosphere (1 h, 60 ◦C). Two

replicate samples were analyzed. The retention of carbohy-

drates on exchange columns, and thus the reproducibility of

results are highly sensitive to changes in temperature (Pana-

giotopoulos et al., 2001; Yu and Mou, 2006). For our system,

best resolution of sugars was obtained at 25 ◦C and there-

fore applied constantly during all analyses. In order to min-

imize degradation of samples before analysis, the tempera-

ture in the auto-sampler was kept at 4 ◦C. The system was

calibrated with a mixed sugar standard solution including (a)

the neutral sugars: fucose (4.6 µM, Fuc), rhamnose (3.1 µM,

Rha), arabinose (2.0 µM, Ara), galactose (2.4 µM, Gal), xy-

lose/ mannose (3.1 µM, Xyl/ Man), glucose (2.4 µM, Glc),

(b) the amino sugars: galactosamine (2.0 µM, GalN), glu-

cosamine (2.8 µM, GlcN), and (c) the acidic sugars: galac-

turonic acid (2.8 µM, Gal-URA), gluconic acid (5.1 µM, Glu-

Ac), glucuronic acid (3.0 µM, Glc-URA) and muramic acid

(1.9 µM, Mur-Ac). Regular calibration was performed by in-

jecting 12.5, 15.0, 17.5 and 20 µL of mixed standard solution.

Linearity of the calibration curves of individual sugar stan-

dards was verified in the concentration range 10 nM–10 µM.

Therefore, the standard mixture was diluted 10, 20, 50, and

100 fold with Milli-Q water. Injection volume for samples

and for the blank was 17.5 µL. To check the performance of

carbohydrate analysis and stability of the HPLC-PAD sys-

tem, a 17.5 µL standard solution was analyzed after every

second sample. The detection limit was 10 nM for each sugar

with a standard deviation between replicate runs of < 2 %.

Milli-Q water was used as blank to account for potential

contamination during sample handling. Blanks were treated

and analyzed in the same way as the samples. Blank concen-

tration was subtracted from sample concentration if above

the detection limit. Particulate combined carbohydrates (PC-

CHO) were determined as the difference between TCCHO

and DCCHO.

2.2.5 Gel particles

Total area, particle numbers and equivalent spherical diam-

eter (dp) of gel particles were determined by microscopy

after Engel (2009). Therefore, 20 to 30 mL were fil-

tered onto 0.4 µm Nuclepore membranes (Whatmann) and

stained with 1 mL Alcian Blue solution for polysaccha-

ridic gels (i.e., transparent exopolymer particles (TEP)) and

1 mL Coomassie Brilliant Blue G (CBBG) working solu-

tion for proteinaceous gels (i.e., Coomassie stainable par-

ticles (CSP)). Filters were mounted onto Cytoclear©slides

and stored at −20 ◦C until microscopy analysis. The size–

frequency distribution of gel particles was described by the

following:

dN

d
(
dp

) = kdδp , (2)

where dN is the number of particles per unit water volume

in the size range dp to (dp+d(dp); Mari and Kiørboe, 1996).

The factor k is a constant that depends on the total number

of particles per volume, and δ (δ < 0) describes the spectral

slope of the size distribution. The value δ is related to the

slope of the cumulative size distribution N = ad
β
p by δ =

β+1, where N is the total number of particles per unit water

volume. The less negative is δ, the greater is the fraction of

larger gels. Both δ and k were derived from regressions of

log(dN /d(dp)) vs. log(dp) over the size range 1.05–14.14 µm

ESD.

Formation of exopolymeric gel particles (e.g., TEP) can be

described in terms of coagulation kinetics (Engel et al., 2004;

Mari and Burd, 1998). Aggregates can be described using a

fractal scaling relationship (e.g., M ∼LD), where M is the

mass of the aggregate, L the size and D is the fractal dimen-

sion, which is controlled by the size of particles that form the

aggregate as well as by the processes of particle collision, e.g

Brownian motion, shear, or differential settlement (Meakin,

1991). Assuming that TEP are formed by shear-induced co-

agulation D can be estimated from δ (Mari and Burd, 1998):

D =
(64− ∂)

26.2
. (3)

2.2.6 Heterotrophic bacteria

For bacterial cell numbers, 4 mL samples were fixed with

200 µL glutaraldehyde (25 % final concentration) and stored

at −20 ◦C until enumeration. Samples were stained with

SYBR Green I (molecular probes). Heterotrophic bacteria

were enumerated using a flow cytometer (Becton & Dickin-

son FACSCalibur) equipped with a laser emitting at 488 nm

and detected by their signature in a plot of side scatter

(SSC) vs. green fluorescence (FL1). Heterotrophic bacteria

were distinguished from photosynthetic prokaryotes (e.g.,

Prochlorococcus) by their signature in a plot of red fluores-

cence (FL2) vs. green fluorescence (FL 1). Yellow-green la-

tex beads (Polysciences, 0.5 µm) were used as internal stan-

dard. Sampling bacterioneuston with a glass plate does not

bias cell abundance measurements (Stolle et al., 2009).

2.2.7 Phytoplankton

For photoautotrophic cell numbers < 20 µm, 4 mL samples

were fixed with 20 µL glutaraldehyde (25 % final concen-

tration), and stored at −80 ◦C until enumeration. Phyto-

plankton counts were performed with a FACSCalibur flow-

cytometer (Becton Dickinson) equipped with an air-cooled

www.biogeosciences.net/13/989/2016/ Biogeosciences, 13, 989–1007, 2016
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Temperature (°C) 

Wind speed (m/ s) 

Figure 2. (a) Surface water (1 m depth) temperature (◦C) and wind

speed (m s−1) (b) during M91.

laser providing 15 mW at 488 nm and with a standard fil-

ter set-up. The cells were analyzed at high flow rate (∼ 39–

41 µL min−1) with the addition of 1 µm-fluorescent beads

(Trucount, BD). Autotrophic groups were discriminated

on the basis of their forward or right angle light scatter

(FALS, RALS) as well as from chlorophyll and phycoery-

thrin (characteristic for cyanobacterial, mainly Synechococ-

cus populations) fluorescence. Cell counts were analyzed

using BD CellQuest Pro-Software. Two groups were dis-

tinguished: non-cyanobacterial-type phytoplankton (NCPL)

and cyanobacterial-type phytoplankton (CPL).

2.3 Data analysis

The relative concentration of a substance A in the SML was

compared to the underlying water (ULW) by the enrichment

factor (EF), defined by the following:

EF= (A)SML/(A)ULW, (4)

where (A) is the concentration of a given parameter in the

SML or ULW, respectively (GESAMP, 1995). Because the

concentration of a component is normalized to its values in

the underlying water, EFs for different components can be

readily compared. Enrichment of a component is indicated

by EF > 1, depletion by EF < 1.

Differences in data as revealed by statistical tests (t test)

were accepted as significant for p < 0.05. Average values for

total concentrations are given by their arithmetic mean, av-

erages for ratios by their geometric mean. Average values

are reported with ±1 standard deviation (SD). Calculations,

statistical tests and illustration of the data were performed

with the software packages Microsoft Office Excel 2010,

Sigma Plot 12.0 (Systat) and Ocean Data View (Schlitzer,

2013). Weighted-average gridding was used in ODV to dis-

play data in the SML according to data coverage with auto-

matic scale lengths (53 permille x scale length, 40 permille

y scale length).

3 Results

3.1 The physical environment

Coastal upwelling off the coast of Peru can occur through-

out the year (Carr and Kearns, 2003). During the M91 cruise

upwelling and upwelling velocities were determined from
3He/4He disequilibrium (Steinfeldt et al., 2015). High up-

welling velocities of > 3× 10−5 m s−1 were observed south

of Lima (stations 10, 14, 15; Fig. 1). The coastal upwelling

of deep water resulted in strong gradients of surface seawa-

ter temperature and salinity along the Peruvian shelf as well

as with increasing distance to the shelf during M91. Salin-

ity measured at about 1 m depth corresponding to the ship’s

keel varied between 32 and 35 with the lowest values oc-

curring close to the coast at stations 10_1 to 10_4, 14_1

and 14_2 and 15_1 to 15_3. Here, temperatures were below

the average of all surface stations (19.25± 1.7 ◦C), indicat-

ing the colder, upwelling deep water (Table 1, Fig. 2). Wind

speed encountered during the cruise ranged between 0.6 and

9.0 m s−1 with the lower wind speeds also observed closer

to the coast, i.e., between 12 and 14◦ S and at the northern

stations (Fig. 2). Thus, higher wind speed was observed at

the more off-shore stations having higher surface water tem-

peratures, leading to significant co-variation between surface

water temperature and wind speed (Fig. 3). Global radiation

and UV radiation varied between 10 and 1103 W m−2, and

between 0.8 and 71 W m−2, respectively, with no significant

impact of SML organic matter accumulation.

Biogeosciences, 13, 989–1007, 2016 www.biogeosciences.net/13/989/2016/
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Table 1. Hydrographic conditions encountered during SML sampling off the coast of Peru in 2012 (M91). Data on air temperature, wind

speed, global and UV radiation were obtained from the ship’s DShip database for the time of sampling.

Temperature Salinity Air temperature Wind speed Global radiation UV radiation

(◦C) (◦C) (m s−1) (W m−2) (W m−2)

Average 19.25 34.87 19.67 5.66 570 37 935

SD 1.70 0.50 0.89 2.14 366 23 384

Min 15.91 32.02 17.30 0.60 10 0.812

Max 21.90 35.32 21.50 9.00 1103 71.10

Figure 3. Direct relationship between surface water temperature

and wind speed during M91 SML sampling, p < 0.001, r = 0.58,

n= 37. Data between 16 and 18◦ were selected for analysis of wind

speed effects at similar temperatures, see Fig. 7.

3.2 SML properties and organic matter accumulation

Estimates for SML thickness are depending on the method

applied to sample the SML (Carlson, 1982; Zhang et al.,

1998). For the glass plate technique, Zhang et al. (1998)

showed that SML thickness decreases with increasing with-

drawal rates; i.e., from 50–60 µm for a withdrawal rate of

20 cm s−1, to 10–20 µm at rate of 5–6 cm s−1. Their re-

sults confirmed earlier studies that generally revealed thin-

ner SML layers at slower withdrawal rates (Carlson, 1982;

Harvey and Burzell, 1972; Hatcher and Parker, 1974). Dur-

ing this study, the SML was sampled with the glass plate at

∼ 20 cm s−1, yielding a thickness between 45 and 60 µm,

with an overall mean value of 49± 8.89 µm (n= 39). This

value is in good accordance with the proposed apparent sam-

pling thickness of 50± 10 µm (Zhang et al., 1998) and fits

well to previous observations for the SML sampled with a

glass plate at the same withdrawal rate (Cunliffe et al., 2011;

Table 2. Concentration of various organic components in the SML

during M91, given as average (avg.) and standard deviation (SD),

as well as minimum (min) and maximum (max); n= number of

observations. For abbreviations see text.

Unit Avg. SD min max n

DOC µmol L−1 94 13 71 122 39

TOC µmol L−1 127 33 82 199 39

POC µmol L−1 33 25 2.3 96 39

TEP number × 106 L−1 19 15 1.8 63 39

TEP area mm2 L−1 100 106 6.9 408 39

DCCHO nmol L−1 1111 550 507 2668 39

PCCHO nmol L−1 1084 1300 41 5156 34

TN µmol L−1 16 4.9 8.7 28 39

TDN µmol L−1 12.5 4.0 7.7 25 39

PN µmol L−1 3.3 3.7 bd 16 39

CSP number ×106 L−1 118 72 19 311 39

CSP area mm2 L−1 1024 728 137 3051 39

FAA nmol L−1 151 104 49 531 37

DHAA nmol L−1 770 359 423 2017 30

PHAA nmol L−1 1176 774 208 3956 29

NCPL × 103 mL−1 45 53 5.4 300 35

CPL × 103 mL−1 27 35 3.7 193 35

Het. bacteria × 104 mL−1 195 206 3 854 36

Galgani and Engel, 2013; Galgani et al., 2014; Zhang et al.,

1998; Zhang, 2003). Using direct pH microelectrode mea-

surements, Zhang (2003) later confirmed an in situ thickness

of ∼ 60 µm for the SML, which they defined as the layer of

sudden change of physico-chemical properties.

We therefore assume that samples obtained from the SML

during this study well represented the SML, as defined by

Zhang (2003). Thickness of the SML as determined dur-

ing this study increased significantly with amount of organic

substances in the SML, determined as TOC concentration

(p < 0.005; n= 39). This corroborates earlier findings from

experimental studies showing that organic matter produced

by phytoplankton increases the thickness of SML sampled

with a glass plate (Galgani and Engel, 2013). No correla-

tion instead was observed between SML thickness and wind

speed (r =−0.11, n= 39) or between SML thickness and

temperature (r =−0.06; n= 39).

Unless stated otherwise, all observations described in this

paragraph relate to the SML. In general, concentration of or-
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Table 3. Correlation coefficients (r) between concentrations of var-

ious organic components in the SML and their concentration in the

underlying seawater (ULW), temperature (T , ◦C), and wind speed

(U , m s−1) at the time of sampling. Correlations yielding a signifi-

cance level of p < 0.01 are marked bold. For abbreviations see text.

SML rULW rT rU n

DOC 0.75 −0.04 0.06 39

TOC 0.79 −0.53 −0.35 39

POC 0.68 −0.67 −0.48 39

TEP number 0.51 −0.58 −0.69 39

TEP area 0.58 −0.65 −0.69 39

DCCHO 0.94 −0.44 −0.29 39

PCCHO 0.77 -0.59 −0.38 34

TDN 0.24 −0.18 −0.05 39

PN 0.59 −0.55 −0.43 39

CSP number 0.53 −0.04 0.15 39

CSP area 0.68 −0.36 −0.31 39

FAA 0.34 −0.34 0.19 37

DHAA 0.30 −0.47 −0.37 30

PHAA 0.56 −0.64 −0.53 29

NCPL 0.70∗ −0.24 −0.21 35

CPL 0.90∗ −0.21 −0.31 35

Het. bacteria 0.92 −0.33 −0.37 36

∗ Only 30 samples were analyzed for NCPL and CPL from the

ULW.

ganic components in the SML showed spatial distribution

patterns resembling those of temperature and wind speed

(Figs. 3, 4, 5). Highest concentration values for nearly all

organic components were observed at the upwelling stations

10_1 to 10_4, 14_1 and 14_2 and 15_1 to 15_3 (Fig. 1) in ac-

cordance with high estimated primary production rates (Ste-

infeldt et al., 2015) and high Chl a concentrations (Hu et al.,

2015) determined in surface waters at these sites during M91.

Phytoneuston abundances (< 20 µm) varied between

3.7× 103 and 1.9,× 105 mL−1 for cyanobacterial-type phy-

toplankton (CPL; mainly Synechococcus spp.) and between

5.4× 103 and 3.0× 105 mL−1 for other non-cyanobacterial-

type phytoplankton (NCPL). Generally, highest abundance

was determined on and close to the upwelling stations

(Fig. 4). On all other stations, cell abundance of CPL and

NCPL differed spatially, with higher abundance of NCPL at

the southern stations and higher numbers of CPL at the north-

ern stations (Fig. 4). NCPL and CPL were closely related to

cell abundance in the ULW (Table 3).

Heterotrophic bacteria were determined in abundances

between 3.0× 104 and 8.5× 106 mL−1 with the highest

numbers observed at the upwelling stations and southeast

of the upwelling (Fig. 4). Heterotrophic bacteria in the

SML were highly positively correlated to abundances in the

ULW (r = 0.94; n= 36; p < 0.001) and negatively influenced

by wind speed, although less clearly (r =−0.37; n= 36;

p = 0.01). No significant influence on heterotrophic bacte-

ria abundance was detected with respect to global radiation

or UV radiation.

TOC concentration ranged between 82 and 199 µmol L−1,

and was clearly higher than DOC concentration on all sta-

tions. Particulate Organic Carbon (POC) concentration was

calculated as the difference between TOC and DOC and

ranged from 2.3 to 96 µmol L−1. Highest POC concentra-

tion was observed at the upwelling stations (Fig. 5). In

general, POC concentration was highly correlated to tem-

perature (r =−0.67, n= 39 p < 0.001) and to wind speed

(r =−0.48, n= 39 p < 0.001; Table 3). DOC concentration

ranged between 71 and 122 µmol L−1 (Table 2) and, in con-

trast to POC, was not significantly related to temperature

or wind speed (Table 3). Relatively high DOC concentra-

tions of about 100 µmol L−1 were observed at stations 9 and

9_2 (Fig. 5), but excluding these stations from analysis did

not reveal a correlation to temperature or wind speed ei-

ther. DOC is a bulk measure and is quantitatively dominated

by refractory compounds that are independent from recent

biological productivity. More closely linked to productivity

and likely stimulated by the upwelling of nutrients along the

Peruvian coast are labile and semi-labile compounds such

as dissolved combined carbohydrates and amino acids. In-

deed, both DCCHO and DHAA reached highest concen-

trations at the upwelling stations (Fig. 5). Thereby, max-

imum concentration of DCCHO of 2670 nmol L−1 (mean:

1110± 550 nmol L−1) was observed at station 15_2, slightly

south of the station 14_1 exhibiting highest DHAA concen-

trations of 2020 nmol L−1 (mean: 770 ± 360 nmol L−1; Ta-

ble 2). In general high DCCHO concentration was more fo-

cused to the upwelling, and exhibited strong horizontal gra-

dients to the northern and southern stations.

DHAA concentration was on average lower than DC-

CHO concentration (Table 2) and horizontal differences were

less pronounced than for DCCHO. Both components of

semi-labile DOC were inversely correlated to temperature

(DCCHO r =−0.44, n= 39, p < 0.001; DHAA: r =−0.47,

n= 30, p < 0.001), linking their accumulation in the SML to

productivity in the cold upwelling waters.

Concentrations of carbohydrates and amino acid in parti-

cles, and in gels (i.e., TEP, CSP) in particular, were highest at

the coastal upwelling stations also. Particulate carbohydrates

and amino acids (PCCHO, PHAA) were highly correlated to

POC concentrations (PCCHO: r = 0.70, n= 39, p < 0.001;

PHAA: r = 0.81, n= 30, p < 0.001).

In general, numerical abundance as well as total area were

about 10-fold higher for CSP than for TEP (Table 2). Spatial

variability of gel particles abundance was high, and yielded

lowest values of total TEP area of 6.9 mm2 L−1 at station

13_1 and highest values of 408 mm2 L−1 at station 15_1,

about 100 nautical miles apart. The highest abundance of

both TEP and CSP was observed close to the coastal up-

welling, but apart from these stations, the distribution of TEP

in the SML clearly differed from that of CSP (Fig. 5). While

higher TEP abundance was observed at the northern stations,
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Figure 4. Phyto- and bacterioneuston (< 20 µm) abundance (number mL−1) in the SML off the coast of Peru during M93: NCPL: “Non-

cyanobacterial-type” phytoplankton; CPL: “cyanobacterial-type” phytoplankton; HPL: heterotrophic bacterioplankton.

CSP abundance was more pronounced at the southern sta-

tions. Moreover, stations of highest and lowest concentration

of CSP were different from those of TEP. Lowest value of

CSP total area of 137 mm2 L−1 was observed at station 11_1

and highest values of 3051 mm2 L−1 at station 14_1.

3.3 Accumulation patterns in the SML

For almost all components investigated during this study,

concentration in the SML was significantly related to the re-

spective concentration in the ULW (Table 3). Thereby, cor-

relations between SML and ULW were strongest for com-

bined carbohydrates, particularly for DCCHO. Close cor-

relations were also observed for bulk organic carbon mea-

surements, i.e., TOC and DOC, and POC is a combination

thereof. For dissolved nitrogenous compounds (i.e., TDN,

FAA and DHAA), no relationship between SML and ULW

concentrations was observed, suggesting that loss or gain of

these compounds in the SML were faster than exchange pro-

cesses with the ULW. Temperature had an effect on most or-

ganic compounds in the SML, with generally higher concen-

trations at lower temperature (Table 3). This can largely be

attributed to the higher production of organic matter at the

colder upwelling sites. Concentrations of particulate compo-

nents POC, TEP, PHCCHO, PHAA and particulate nitrogen

(PN) were also inversely related to wind speed, whereas DC-

CHO and DHAA were inversely related to temperature but

not to wind speed. Clear differences were observed for the

two different gel particle types determined in this study. In

contrast to TEP, neither abundance nor total area of CSP were

related to wind speed, nor to seawater temperature. Instead

abundance of CSP in the SML was mostly related to their

abundance in ULW. However, with the exception of CSP, par-

ticulate components in the SML were affected by changes in

wind speed more than concentration of dissolved compounds

(Table 3).

Enrichment factors indicated a general accumulation of or-

ganic matter in the SML with respect to the ULW (Fig. 6),

which happened at most stations. Thereby, clear differences

were observed between EF values of different components.

The highest enrichment was observed for FAA that were en-

riched more than 10-fold at some stations. Moreover, FAA

were consistently enriched in the SML, except for one sta-

tion where the lowest FAA concentration was determined

(49 nmol L−1). The largest variability of EF was observed for

abundance and total area of gel particles. For TEP total area,

values of EF ranged between 0.2–12, with highest EF ob-

served at the coastal upwelling station 14_1, where the wind

speed recorded was 0.6 m s−1. In proximity of this station,

the lowest EF of TEP was determined (station 15_3) indi-

cating a clear depletion at wind speed of 7 m s−1. The EFs

of CSP total area ranged between 0.4 and 4.8. Thus highest

EF of CSP was clearly lower than for TEP, and in contrast

to TEP it was observed at the more offshore station 18_2 at

a higher wind speed rate of 9.2 m s−1. Total and dissolved

hydrolysable amino acids (THAA, DHAA) were enriched in

the SML at almost all stations (Fig. 6), with EFs in the range

0.8–4.6 (DHAA) and 0.4–3.4 (THAA). Median EFs were 1.7

and 1.4 for DHAA and THAA, respectively.

Concentration of TCCHO and DCCHO in the SML were

often similar to the ULW, with EF values ranging between

0.6 and 1.4 (DCCHO) and between 0.3 and 1.7 (TCCHO),

respectively.

In general, variability of EFs was smaller for dissolved

than for particulate organic compounds, suggesting differ-

ences in the accumulation dynamics.

In contrast to all organic chemical compounds, bacteria

were found to be depleted in the SML at almost all stations

(Fig. 6), having a median EF of 0.8
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Figure 5. Surface distribution patterns of organic matter concentrations in the SML during M91 showing particulate organic carbon (POC,

µmol L−1), dissolved organic carbon (DOC, µmol L−1) dissolved combined carbohydrates (DCCHO, nmol L−1), dissolved hydrolysable

amino acids (DHAA, nmol L−1) and abundance of TEP (L−1) and CSP (L−1).
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Figure 6. Box and whisker plot of enrichment factors (EFs) calcu-

lated for various particulate and dissolved components during M91.

Each box encloses 50 % of the data with the median value of the

variable displayed as a line. The bottom of the box marks the 25 %,

and the top the 75 % limit, of data. The lines extending from the top

and bottom of each box marks the 10 and 90 % percentiles within

the data set and the filled circles indicate the data outside of this

range. For abbreviations, see text.

3.4 Size distribution of gel particles within the SML

Abundance of gel particles in the SML and ULW decreased

with increasing particle size according to the power law func-

tion given in Eq. 2 (Fig. 8). The parameter δ describes the

slope of the particles size spectrum. Lower values of δ in-

dicate relatively higher abundance of smaller particles. Data

fits to the function were very well described for each sam-

ple with r2 > 0.90, yielding a standard error for δ of < 20 %.

For TEP, δ varied between −2.63 and −1.38 (mean value:

−1.86, SD: 0.27) for particles in the SML and between

−2.25 and −1.25 (mean value: −1.70, SD: 0.30) for parti-

cles in the ULW. To compare the size distribution of TEP

in the SML and the ULW, we calculated the slope ratio

(δ∗ = δSML /δULW; Fig. 9). Size distributions of TEP in the

SML and ULW were generally quite similar yielding δ∗TEP in

the range of 0.78–1.42, with a median value of 1.1. Never-

theless, spatial differences were observed, with δ∗TEP < 0.95

at the more coastal northern stations and δ∗TEP > 1.1 more

offshore at the southern stations (Fig. 9). At the upwelling

stations with high TEP abundance slopes of SML and ULW

were very similar, yielding δ∗TEP in the range 0.95–1.1. This

showed a relatively higher abundance of smaller TEP in

the SML at the offshore stations, whereas relatively more,

larger-sized TEP were present close to the coast in the north-

ern part of the study region. This comparison also showed

that sampling of TEP from the SML with a glass plate

does not bias TEP size distribution, e.g., by inducing parti-

Figure 7. Influence of wind speed (m s−1) on the total area con-

centration of TEP (mm2 L−1) in the SML at all stations (a) and

relationship between TEP enrichment factors (EFs) and wind speed

(m s−1) for only those stations that showed similar sea surface tem-

perature as indicated in Fig. 3. Filled dots indicated data from sta-

tions of similar sea surface temperature. Data in plot (b) were fitted

by a power law function.

cle aggregation during sampling. Such a bias would be ex-

pected, especially at stations where TEP were highly abun-

dant, like at the upwelling stations. However, particularly at

those stations, no differences in size distributions of TEP in

the SML and ULW were observed. Fractal scaling exponents

of TEP were estimated from Eq. 3 and yielded D = 2.51

for both SML and ULW samples (DSML = 2.51± 0.015;

DULW = 2.51± 0.011). The very similar fractal dimension

for TEP in the SML and ULW suggests that TEP in the SML

and in the bulk water are formed by similar aggregation pro-

cesses. The value ofD = 2.51 estimated in this study is close

to 2.55 proposed by Mari and Burd (1998) for seawater TEP.

In the SML, the number of TEP in the smallest size

class (1.25–1.77 µm) ranged from 96 to 1.38× 104 mL−1,
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Figure 8. Size–frequency distribution of TEP (a) and CSP (b) ob-

served during the M91 cruise for samples collected from the SML

(open symbols) and in the ULW (filled symbols) at the stations

with lowest wind speed of 0.6 m s−1 (circles) and highest wind

speed of 9.0 m s−1 (triangles). Linear regression of log(dN /d(dp))

vs. log(dp) was fitted to the particles in the size range of 1.05–

14.14 µm ESD.

and included on average 61± 5.2 % of all TEP. For CSP,

variability of abundance in the 1.25–1.77 µm size class

was much smaller and ranged between 1.46× 104 and

2.33× 105 mL−1. Although CSP thus represented the largest

fraction of small gel particles, the relative abundance of CSP

in the smallest size fraction was lower, yielding an average

contribution of 52± 6.0 % of all CSP. Similar to TEP, size

distribution of CSP followed the power law relationship of

Eq. (2), yielding δ values between −1.12 and −2.01 (mean

value:−1.44, SD: 0.20) for particles in the SML and between

−1.11 and−1.88 (mean value:−1.39, SD: 0.17) for particles

in the ULW. WithD = 2.50± 0.008, the fractal dimension of

CSP was almost identical to that of TEP, suggesting that sim-

ilar processes, i.e., shear-induced aggregation, are responsi-

ble for CSP formation. The slope ratio, δ∗, for CSP varied

between 0.77 and 1.32, with a median value of 1.0. No spa-

tial pattern was observed for the distribution of δ∗CSP. Slopes

of the size distribution of CSP in the SML and ULW were not

significantly different (p = 0.176, n= 39, paired t test), in-

dicating that CSP size distribution, similarly to TEP, is not

biased by the sampling approach of the glass plate.

No overall relationship was established between the slope

of the size distribution of TEP and wind velocity (δTEP vs.

wind speed: r =−0.19, n= 37, p = 0.20). However, TEP

size distribution was much steeper at the station with high-

est wind speed compared to the one with lowest wind ve-

locity (δTEP at 0.6 m s−1
=−1.51, r2

=0.95, n= 7; δTEP at

9.0 m s−1
=−2.31, r2

= 0.95, n= 7; Fig. 8a). In particular,

at the high wind speed a loss of larger TEP, i.e., > 7 µm was

observed in the SML compared to the ULW and relative to

the low wind speed station.

For CSP a significant inverse relationship was observed

between the slope δ and wind speed (δCSP vs. wind speed:

r =−0.61, n= 37, p < 0.001). A loss of larger CSP was also

observed by direct comparison between low and high wind

speed stations (δCSP at 0.6 m s−1
=−1.12, r2

=0.92, n= 7;

δTEP at 9.0 m s−1
=−1.45, r2

=0.97, n= 7; Fig. 8b).

4 Discussion

It has been suggested that the presence of organic matter

in the SML influences a series of processes relevant to air–

sea exchange of gases, dissolved and particulate components.

EBUSs are characterized by high biological productivity and

strong across shelf gradients of organic matter concentration

(Capone and Hutchins, 2013). Therefore EBUSs are ideal

model systems to study the linkages of biological produc-

tivity and SML properties, with respect to characteristics of

organic matter composition and factors controlling organic

matter enrichment in the SML.

4.1 Organic matter characteristics of the SML in the

upwelling region off the coast of Peru

Strong horizontal gradients in organic matter concentration

of the SML were observed for the coastal and shelf-break re-

gion off the coast of Peru with generally higher organic mat-

ter concentrations in the SML towards the area of upwelling

of colder, nutrient-rich deep water. Hence, increasing ecosys-

tem productivity is one likely factor responsible for higher

concentrations of organic components in the SML. Signifi-

cant correlations between organic matter concentration in the

SML and in the ULW were determined and showed that the

SML basically reflects the underlying seawater system. The

close connectivity between SML organic properties and bi-

ological development was also shown during a recent meso-
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Figure 9. Spatial distribution of the slope ratio, δ∗, for TEP in the

upwelling region off the coast of Peru during M91.

cosm study, indicating that ecosystem changes impact SML

organic matter composition and concentration (Galgani et al.,

2014). Despite this finding that relates to a more general char-

acteristic of the SML, clear differences in the accumulation

behavior of different organic matter components were deter-

mined during this study and are in good accordance with

previous observations. A generally higher SML accumula-

tion was observed for amino acids compared to carbohy-

drates. Significant enrichment of amino acids in the SML has

been determined previously for coastal as well as open ocean

sites, and higher accumulation of FAA compared to DHAA

and THAA, as also observed during this study, appears to

be a consistent SML feature (Carlucci et al., 1992; Hen-

richs and Williams, 1985; Kuznetsova and Lee, 2002, 2001;

Kuznetsova et al., 2004; Reinthaler et al., 2008). As for this

study, wind velocity and temperature have not been identified

as physical factors responsible for amino acid enrichment in

the past (Kuznetsova et al., 2004). FAA and DHAA are la-

bile to semi-labile substrates and taken-up by heterotrophic

microorganisms (Keil and Kirchman, 1992). Turnover times

of these components in the water column are usually in the

range of minutes to days (Benner, 2002; Fuhrman and Fergu-

son, 1986). The observed accumulation of FAA and DHAA

in the SML may therefore be related to a reduced activity

of bacteria. For different coastal Baltic Sea sites, Stolle et

al. (2009) determined a lowered bacterial biomass produc-

tion in the SML, despite bacterial cell numbers being simi-

lar to those in the ULW. During M91 bacteria were mostly

depleted in the SML compared to the ULW supporting the

idea of the SML being an “extreme environment” for bacte-

ria. Earlier studies showed that some bacteria may be adapted

to UV radiation in the SML as well as in the ULW (Agogué

et al., 2005; Carlucci et al., 1985). Amino acid consump-

tion by bacterioneuston under UV-B stress may be reduced

(Santos et al., 2012), which may give an explanation for the

higher concentrations of FAA and DHAA in the SML dur-

ing M91. However, no significant correlation between bac-

terial abundance and UV radiation or between UV radiation

and amino acid concentrations in the different pools was ob-

served during this study, suggesting that at most stations his-

tory rather than instantaneous UV radiation, if at all, respon-

sible for controlling bacteria and organic matter components

in the SML.

SML thickness during this study was significantly related

to TOC concentration, but not to wind speed. A thickening of

the SML with increasing wind speed up to 8 m s−1 has been

observed by Falkowska (1999) from samples collected in the

Baltic Sea and explained by increased advective transport of

organic matter to the SML (e.g., through bubble adsorption)

at higher turbulence. During M91, accumulation of organic

matter in the SML was higher at the upwelling stations where

wind speed often was quite low. Hence, a higher source of

organic matter in the ULW may have counterbalanced the

wind speed effect.

Wind speed, however, was determined as a factor control-

ling accumulation of particulate material, in particular TEP,

in the SML in addition to the dynamics occurring in the

ULW. TEP are marine gel particles hypothesized to be neu-

trally or positively buoyant thanks to their high water content

(Azetsu-Scott and Passow, 2004; Engel and Schartau, 1999).

TEP were moreover suggested to form within the SML, ei-

ther by wind-shear-induced aggregation of precursors or due

to coalescence of pre-cursor molecules, primarily polysac-

charides, when entrained air bubbles burst at the sear surface

(Wurl et al., 2011). Adsorption of DOM onto bubble surfaces

and TEP formation by bubble bursting have been determined

during experimental flotation and bubbling studies using sur-

face seawater from different locations (Wallace and Duce,

1978; Zhou et al., 1998). Bubble scavenging of DOM in the

upper water column may thus be responsible for high con-

centrations of TEP at the SML, because more TEP precur-

sors are lifted up the water column (Gao et al., 2012; Wurl

et al., 2011). In addition, compression and dilatation of the

SML due to capillary waves may increase the rate of polymer

collision, subsequently facilitating gel aggregation (Carlson,

1993). During M91, TEP enrichment in the SML was in-

versely related to wind speed, supporting earlier observations
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of Wurl and colleagues (Wurl et al., 2009, 2011). However,

in contrast to earlier observations showing EF values > 1 for

TEP in the SML also at higher wind speed, we found the

SML to be depleted of TEP at wind speed of ∼ 5 m s−1 and

above. It has been suggested that TEP aggregation rates in the

SML are higher than in the ULW, due to enhance collision

rates by shear or bubble bursting. TEP have been shown to

control coagulation efficiencies of solid particles, such as di-

atoms and coccolithophores (Chow et al., 2015; Engel, 2000;

Logan et al., 1995). At higher wind speed, increased aggrega-

tion rates of TEP with solid particles, eventually containing

mineral ballast, may thus favor the formation of aggregates

that become negatively buoyant and sink out of the SML.

This, may explain the observed loss of larger TEP (> 7 µm)

from the SML relative to the ULW and to the SML at low

wind speed. Enhanced aggregation rates could then also ex-

plain the inverse relationship between POC and wind speed,

observed during this study.

In contrast to TEP, no impact of wind speed was deter-

mined for CSP accumulation, or for CSP enrichment in the

SML. Moreover, clear spatial differences were observed for

the distribution of TEP and CSP in the SML. Although both

TEP and CSP are gel particles that form from dissolved or-

ganic precursors released by microorganisms, their spatial

and temporal occurrence in marine systems can be quite dif-

ferent (e.g., TEP accumulate towards the end of phytoplank-

ton blooms, while CSP rather co-occur with maximum phy-

toplankton abundance (Cisternas-Novoa et al., 2015; Engel et

al., 2015). Moreover, the depth distribution of TEP and CSP

was shown to be different for open ocean sites (Cisternas-

Novoa et al., 2015). These spatial and temporal differences

in the occurrence of TEP and CSP in the water column may

explain the spatial separation of both types of marine gels in

the SML observed during this study. However, the observed

differences in relation to wind speed suggest that additional

factors control the enrichment of TEP and CSP in the SML.

It has been shown that CSP are less prone to aggregation than

TEP (Engel et al., 2015; Prieto et al., 2002). Similarly, CSP

may be less involved in aggregation formation and sinking

out of the SML at higher wind speed. Yet, similarly to TEP,

larger CSP were observed in the SML at low wind speed sug-

gesting that both kind of gels may be involved in slick for-

mation that becomes disrupted when wind speed increases.

4.2 Implications of organic matter accumulation in

EBUSs

4.2.1 Air–sea gas exchange

Although the SML and surface active substances (surfac-

tants) within are widely believed affecting the exchange

of gases and heat at the air–sea interface (Davies, 1966;

Frew, 1997; Salter et al., 2011), particularly at lower wind

speed (Liss, 1983), we still have little quantitative knowl-

edge on how natural organic components at the immediate

sea-surface alter the gas transfer velocity in water (kw). Our

data showed a depletion of the SML with respect to TEP and

POC at wind speeds > 5 m s−1, suggesting that an effect of

these “insoluble” components on gas exchange is, if any, op-

erating only at low wind speed. Due to their fractal scaling,

gel particles have a relatively large surface to volume ratio

and may act as a cover, reducing molecular diffusion rates at

the interface between air and sea.

Accumulation of dissolved organic components in the

SML during M91 was not related to wind speed. DCCHO

and DHAA concentration representing fresh DOM were

highest at the upwelling sites and therefore negatively related

to seawater temperature. DOM, such as DCCHO and chro-

mophoric dissolved organic matter (CDOM), have demon-

strated surfactant properties and reduced gas transfer veloc-

ity in water (kw) at low wind speed in laboratory and field

experiments (Frew et al., 2004, 1990). The reduction of kw

is thereby believed to be related to a dampening of small,

capillary waves. Salter et al. (2011) recently showed that ar-

tificial surfactants can suppress gas transfer velocity by up

to 55 % at sea. Suppression of k666 (i.e., kw normalized to

a Schmidt number of 666) during their field study was de-

pendent on wind speed, but was detected up to 11 m s−1, en-

compassing the full range of wind speed determined during

M91. Thus, accumulation of natural DOM particularly in up-

welling regimes with high biological production and coastal

wind shelter as observed during this study may have an in-

fluence on gas exchanges rates as well.

Across the SML, the diffusivity of climate-relevant gases

such as methane (CH4), has been proposed being mediated

by SML bacteria, as possible sink (Upstill-Goddard et al.,

2003) or source of this compound (Cunliffe et al., 2013).

About ∼ 30 % of the atmospheric concentration of nitrous

oxide (N2O), one of the strongest greenhouse gases and

responsible for ozone depletion, is supported by oceanic

sources (Solomon et al., 2007). Of total oceanic N2O pro-

duction, oxygen minimum zones (OMZs) contribute about

25–75 % (Bange et al., 2001). In EBUSs, high primary pro-

duction and induced high aerobic remineralization associated

with large-scale circulation maintain the presence of OMZs

(Gutknecht et al., 2013; Paulmier and Ruiz-Pino, 2009),

which, in the last decades, have been expanding and intensi-

fying due to enhanced stratification and reduced ventilation

(Keeling et al., 2010; Stramma et al., 2008). During M91,

N2O concentration in surface waters was highly supersatu-

rated at the upwelling sites and in particular at station 14_1

(Arevalo-Martinez et al., 2015). Although a direct influence

of organic matter in the SML on gas-exchange was not in-

vestigated during M91, it can be assumed that the high en-

richment of organic components in the SML observed the

upwelling sites was one factor contributing to N2O supersat-

uration.

Our study was intended to understand how organic matter

accumulates in the SML, which might mediate the transfer

rate of trace- and greenhouse gases such as N2O in oceanic
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regions like OMZs affected by a changing climate. A re-

cent laboratory study reported π non-covalent interactions

of N2O with phenols, suggesting a possible important role of

N2O in biological processes by specifically binding to phe-

nolic groups as those of the amino acids tyrosine and pheny-

lalanine (Cao et al., 2014). Tyrosine and phenylalanine in the

SML of our study represented a small molar percentage of to-

tal amino acids pool (data not shown), but were present. As

we found evidence of overall accumulation of amino acids

in the SML during our cruise, for those amino acids in par-

ticular the median EF both in the total (THAA) and in the

dissolved (DHAA) fraction was > 1, suggesting a possible

interaction of specific SML organics with N2O in the coastal

upwelling region off the coast of Peru. Although the exper-

iment conducted by Cao and colleagues cannot be directly

translated to our setting, it provides interesting ideas for the

interaction of N2O with biological macromolecules worth

further investigation.

Overall, our results showed that accumulation of organic

substances occurs in EBUSs and is related to the increased

biological production. Hence, the organic SML may play a

particularly important role for exchange of climate-relevant

gases that are associated to high organic matter production

and resulting anoxia in upwelling systems like the one off

the coast of Peru.

4.2.2 Organic aerosol production

The structure of sea-spray aerosols (SSA), originating by

bubble bursting at the sea surface, is a function of biologi-

cal, chemical and physical properties of the SML, which may

comprise a vast array of organic surface-active compounds,

microorganisms and exopolymer gels (Leck and Bigg, 2005;

Quinn and Bates, 2011; Wilson et al., 2015). Despite recent

evidences showing that high levels of chlorophyll a are not

directly related to the organic carbon content of SSA (Quinn

et al., 2014), still organic SSA largely derive from the oceanic

surface layer and therefore are also subject to the effects of

climate change on marine systems (Andreae and Crutzen,

1997). Polysaccharides and polysaccharidic nanogels (Orel-

lana et al., 2011; Russell et al., 2010) as well as particulate

amino acids and proteinaceous compounds (Kuznetsova et

al., 2005) are present in organic SSA particles. During M91,

we found a different accumulation behavior of TEP and CSP

in the SML. TEP showed a close inverse relationship to wind

speed, being depleted in the SML above 5 m s−1, while par-

ticulate proteinaceous compounds (CSP) accumulated inde-

pendently of wind speed. Submicron gels embedded in sea

spray may represent an important source for primary organic

aerosols in the more offshore wind exposed regions. TEP as

well as dissolved polysaccharides include sugars with car-

boxylic groups such as uronic acids and may contribute to

the relatively high fraction of carboxylic acid that was ob-

served in the organic matter component of marine aerosols

(Hawkins et al., 2010). In the upwelling region off the coast

of Peru the wind-driven export of polysaccharidic compo-

nents to the atmosphere thus might represent a loss-pathway

of these organic compounds from the SML that would then

contribute to a larger extent to the organic SSA mass. Pro-

teinaceous compounds, including CSP, are probably more

stable at the sea surface and may contribute to organic mass

in aerosols even at higher wind speed.

However, future studies that investigate gel particles

within the SML and in SSA are needed to clarify if the ob-

served loss of TEP from the SML at higher wind speeds is

indeed related to a transport of TEP to the atmosphere, or if

CSP contribute to organic aerosol mass.

The accumulation of organic matter in the SML, and the

distinct behavior of certain compounds at the water–air inter-

face is certainly an important issue for all exchange processes

between the ocean and the atmosphere that needs to be fur-

ther exploited.
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