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Abstract. The coexistence of trees and grasses in savanna
ecosystems results in marked phenological dynamics that
vary spatially and temporally with climate. Australian sa-
vannas comprise a complex variety of life forms and phe-
nologies, from evergreen trees to annual/perennial grasses,
producing a boom–bust seasonal pattern of productivity that
follows the wet–dry seasonal rainfall cycle. As the climate
changes into the 21st century, modification to rainfall and
temperature regimes in savannas is highly likely. There is
a need to link phenology cycles of different species with
productivity to understand how the tree–grass relationship
may shift in response to climate change. This study inves-
tigated the relationship between productivity and phenol-
ogy for trees and grasses in an Australian tropical savanna.
Productivity, estimated from overstory (tree) and understory
(grass) eddy covariance flux tower estimates of gross primary
productivity (GPP), was compared against 2 years of repeat
time-lapse digital photography (phenocams). We explored
the phenology–productivity relationship at the ecosystem
scale using Moderate Resolution Imaging Spectroradiome-
ter (MODIS) vegetation indices and flux tower GPP. These
data were obtained from the Howard Springs OzFlux/Fluxnet
site (AU-How) in northern Australia. Two greenness in-
dices were calculated from the phenocam images: the green
chromatic coordinate (GCC) and excess green index (ExG).

These indices captured the temporal dynamics of the under-
story (grass) and overstory (trees) phenology and were corre-
lated well with tower GPP for understory (r2

= 0.65 to 0.72)
but less so for the overstory (r2

= 0.14 to 0.23). The MODIS
enhanced vegetation index (EVI) correlated well with GPP
at the ecosystem scale (r2

= 0.70). Lastly, we used GCC and
EVI to parameterise a light use efficiency (LUE) model and
found it to improve the estimates of GPP for the overstory,
understory and ecosystem. We conclude that phenology is
an important parameter to consider in estimating GPP from
LUE models in savannas and that phenocams can provide
important insights into the phenological variability of trees
and grasses.

1 Introduction

Savanna ecosystems are defined by the coexistence of trees
and grasses and have evolved to dominate one-fifth of the
terrestrial land surface (Scholes and Archer, 1997; Grace et
al., 2006). In tropical savanna, trees utilise the C3 photo-
synthetic pathway, whereas the grasses more commonly use
the C4 pathway, being more efficient at taking up carbon in
hot environments with limited water and nutrient availability
(Sage, 2004; Osborne and Beerling, 2006). Savannas are typ-
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ically found in wet–dry climates that over time have shaped
the tree–grass structure and phenology seen today. Fire also
plays a role in shaping savanna phenology and structure, with
recurrences often every 1–5 years (Hoffmann et al., 2012;
Beringer et al., 2015). Fire consumes cured grass biomass in
the dry season and suppresses growth of juvenile overstory
species, resulting in a range of plant phenology responses
to deal with it (Bond, 2008; Murphy et al., 2010; Werner
and Franklin, 2010). Herbivory, drought and land-use change
are additional disturbances that commonly occur in savannas
(Hutley and Beringer, 2011). These complex interactions are
believed to be the primary reason for the co-dominance of
trees and grasses in savanna ecosystems, as well as for the
phenological variability displayed (Bond et al., 2003; Van
Langevelde et al., 2003; Bond, 2008; Hanan and Lehmann,
2010; Lehmann et al., 2014).

The climate and disturbance regime in savannas plays
an important role in shaping plant phenology. C4 savanna
grasses typically follow a boom–bust phenological cycle,
where they rapidly produce biomass in the wet season and
display an annual or perennial die-back phenology in the dry
season (Bond, 2008; Ratnam et al., 2011). C3 savanna trees,
in contrast, can range from having a fully deciduous phe-
nology to remaining evergreen throughout the dry season.
In Australian savannas, the understory is dominated by C4
annual grasses with a small portion represented by juve-
nile overstory species (Werner and Franklin, 2010; Werner
and Prior, 2013) and perennial grasses. Evergreen eucalypt
species make up the bulk (∼ 80 %) of the overstory in Aus-
tralian savannas (Hutley et al., 2011), but semi-, brevi- and
fully deciduous species are found to a lesser degree through-
out (Williams et al., 1997) and contribute to the seasonal fluc-
tuation of canopy leaf area (O’Grady et al., 2000; Whitley et
al., 2011). Tree : grass ratios are driven by annual rainfall, and
in Australia there is a strong rainfall gradient from the coast
inland (Rogers and Beringer, 2016), resulting in northern
high rainfall (mesic) regions supporting higher tree : grass
ratios and drier southern (xeric) regions supporting higher
grass : tree ratios (Hutley et al., 2011; Ma et al., 2013).

The monitoring of savanna phenology can inform how
savannas might respond to climate change. At the regional
scale, the timing of phenological events varies widely for
savannas due to variability in the occurrence and dura-
tion of rainfall events (Ma et al., 2013). Phenology, in
turn, influences the productivity and growth (carbon cycle)
of an ecosystem, as well as its water and nutrient cycles
(Noormets, 2009; Richardson et al., 2013). The savanna re-
gion of Australia is projected to experience warming and
increased rainfall (variability and amount) under climate
change (Reisinger et al., 2014), which is likely to impact sa-
vanna phenology and its interactions with the carbon, nutri-
ent and water cycles (Kanniah et al., 2010; Scheiter et al.,
2015). There is a need for better understanding of what gov-
erns savanna phenology in order to predict how it may be
affected by climate change (Beringer et al., 2016a).

Due to the large extent and spatial variation of savan-
nas, satellite remote sensing provides a useful tool (Broich
et al., 2015) for examining the interactions of savanna phe-
nology with productivity. Vegetation indices such as the nor-
malised difference vegetation index (NDVI) (Tucker, 1979)
and enhanced vegetation index (EVI) (Huete et al., 2002)
provide valuable measures of savanna phenological variabil-
ity from the landscape to global scale (Ma et al., 2013,
2014). Likewise, the Moderate Resolution Imaging Spectro-
radiometer (MODIS) gross primary productivity (GPP) prod-
uct (MOD17 A2; Running and Zhao, 2015) is a widely used
means of estimating large-scale savanna productivity (Grace
et al., 2006; Ryu et al., 2011), but it has been shown to under-
estimate savanna GPP, particularly during the transition be-
tween the wet and dry seasons (Kanniah et al., 2009; Whit-
ley et al., 2011; Ma et al., 2014). The remoteness of satel-
lite sensors from the ecosystems they measure, along with
the effects of cloud contamination on daily data collection
and the need to aggregate imagery spatially and temporally
for contiguous scenes, results in coarse temporal resolution
(i.e. 8 or 16 day) satellite data products that can be prob-
lematic for identifying change in seasonally cloudy tropical
environments (Eberhardt et al., 2016) where rapid (i.e. 1–
2 weeks) phenological change is common (Williams et al.,
1997; Moore et al., 2016b).

A novel approach to alleviate some of the limitations of
satellite remote sensing is to use in situ automated time-lapse
cameras (phenocams) that can collect high temporal resolu-
tion (hourly to daily) images of vegetation within and above
an ecosystem (Richardson et al., 2007; Hufkens et al., 2012;
Sonnentag et al., 2012; Moore et al., 2016b). The proximity
of these cameras to ecosystem vegetation allows them to cap-
ture important information about vegetation cover change,
particularly that of leaf emergence and senescence (Richard-
son et al., 2007, 2009a; Wingate et al., 2015) that can be
linked with measures of ecosystem GPP (Toomey et al.,
2015; Richardson et al., 2010). Phenocam data have also
been used for parameterising light use efficiency (LUE) mod-
els (in a similar way to MODIS GPP) that describe ecosys-
tem GPP using absorbed photosynthetically active radiation
(APAR) and plant LUE (Migliavacca et al., 2011).

In this study, we aim to contribute a detailed assessment
of phenological change, and its relationship with productiv-
ity, for a mesic tropical savanna in northern Australia over
2 years. Our objectives are to (i) determine the utility of phe-
nocams for identifying change in overstory and understory
vegetation greenness, (ii) quantify the relationship between
savanna overstory and understory phenology and productiv-
ity on seasonal and annual timescales, (iii) test if pheno-
cam indices can be used as a proxy for improvement of a
LUE model that is widely used to estimate GPP, and (iv) test
the applicability of MODIS EVI for improving estimates
of ecosystem-scale GPP. To do this we utilise one of the
first phenocam datasets obtained in Australian ecosystems
along with MODIS EVI and couple them with previously

Biogeosciences, 14, 111–129, 2017 www.biogeosciences.net/14/111/2017/



C. E. Moore et al.: Tree–grass phenology information improves light use efficiency modelling 113

collected ecosystem, overstory and understory eddy covari-
ance data (Moore et al., 2016a) to tease apart the tree and
grass phenology–productivity relationship in Australian sa-
vanna.

2 Methods

2.1 Site description

This study was conducted at the Howard Springs OzFlux
(www.ozflux.org.au/) and Fluxnet (AU-How) site (Beringer
et al., 2016a) near Darwin in the Northern Territory, Aus-
tralia. A record of carbon, water and energy flux, as well
as meteorological and soil measurements, was first estab-
lished at Howard Springs in 1997 (Eamus et al., 2001). As
such, many detailed site descriptions exist (Beringer et al.,
2007; Hutley et al., 2013; Beringer et al., 2015; Moore et
al., 2016a). In brief, annual rainfall at Howard Springs is
1732 mm (±44 SE) mm (Australian Bureau of Meteorology
(BoM), station ID: 014015, www.bom.gov.au), of which 90–
95 % falls within the wet season months of October to April.
As such, we defined the wet season as a 6-month period
from 15 October to 15 April and the dry season as 16 April
to 14 October, based on the work of Cook and Heerde-
gen (2001). Mean daily maximum air temperature varies an-
nually between 30.6 to 33.3 ◦C and mean daily minimum
air temperature ranges from 19.3 to 25.3 ◦C (Australian Bu-
reau of Meteorology, www.bom.gov.au/). Howard Springs is
a mesic savanna as it receives > 1200 mm rainfall annually
(Hutley et al., 2011) and is classified as “open forest sa-
vanna” based on its canopy cover fraction (50–60 %) after
Specht (1972). Soils are mostly red Kandosols (Isbell, 1996)
that are sandy-loamy, well weathered and nutrient poor.

Vegetation consists of a C3 woody overstory dominated
by evergreen Eucalyptus miniata (Darwin woollybutt) and
E. tetrodonta (Darwin stringybark). A smaller portion of
the woody overstory is made up of semi-, brevi- and fully
deciduous species such as Erythrophleum chlorostachys
(Ironwood) and Terminalia ferdinandiana (Kakadu plum)
(Williams et al., 1997; Hutley et al., 2011). Mean canopy
height is 18 m (Hutley et al., 2011). The understory is
dominated by the annual C4 grass Sorghum intrans (spear
grass) and perennial C4 grasses Heteropogon triticeous and
S. plumosum. Sharing the understory with the grasses are
saplings (juveniles) of overstory species, the shrub Buchana-
nia obovata and the cycad Cycas armstrongii. Due to the fre-
quent occurrence of fire in Australian savanna (Beringer et
al., 2015), control burning was performed at the beginning of
each dry season to protect the monitoring equipment at the
site.

2.2 Productivity measurements

To estimate productivity from the savanna ecosystem and
partition it into tree (overstory) and grass (understory)

GPP, we used the eddy covariance technique (Baldocchi
et al., 2001) as detailed for Howard Springs by Moore et
al. (2016a). Two eddy covariance towers were in operation
at Howard Springs to measure the fluxes of carbon, water
and energy from both the understory (within tree canopy
tower at 5 m) and the ecosystem (above tree canopy tower
at 23 m) from 12 December 2012 to 14 October 2014. Over-
story fluxes are simply the difference between ecosystem
and understory fluxes, which represent the above ground tree
fluxes. Instrumentation, validation of the understory tower,
data quality assurance and quality control (QA/QC) and
flux partitioning information is also provided in Moore et
al. (2016a), so a summary is provided here.

Core eddy covariance instruments on each tower consisted
of a 3-D sonic anemometer (CSAT3, Campbell Scientific,
Logan UT) and an infrared gas analyser (LI-7500, LI-COR
Biosciences, Lincoln, NE). These instruments sampled at a
rate of 10 Hz and provided 30 min flux averages. Soil heat
flux (HFT3, Campbell Scientific, Logan, UT) and net-/short-
/long-wave radiation components were also recorded on the
ecosystem tower (CNR4, Kipp and Zonen, Delft, NL). The
raw 30 min data were quality assured and controlled to level
3 standard using the OzFluxQC (v2.9.4) python scripts. En-
ergy balance closure analysis of the ecosystem tower, based
on daily data (Silva et al., 2011), gave a slope of 0.89 and an
r2 of 0.92. The understory tower primarily recorded vertical
transfer during turbulent conditions, which was validated via
co-spectral analysis (Moore et al., 2016a) that followed ide-
alised curves for vegetated canopies (Kaimal and Finnigan,
1994). Level 3 data were then gap filled and used to partition
net ecosystem exchange (NEE) into respiration and GPP us-
ing the Dynamic INtegrated Gap filling and partitioning for
OzFlux (DINGO; Beringer et al., 2016b) package. This pack-
age applied a u∗ filter, then, assuming all night-time NEE was
respiration, an artificial neural network approach was used to
fit NEE temperature response curves using soil temperature,
air temperature and MODIS-derived EVI (daily interpolated;
see Sect. 2.7) as the main model drivers. This was extrapo-
lated to the daytime and GPP was calculated as the difference
between NEE and respiration (Beringer et al., 2016b).

2.3 Phenology and LUE measurements

Alongside tower estimates of tree and grass productivity
(12 December 2012 to 14 October 2014), we recorded in-
cident, reflected and absorbed PAR and vegetation cover
change. While the understory is largely homogenous in
species distribution at the flux tower footprint scale (i.e.
> 50 m), variation does exist at the smaller scale (i.e. < 5 m)
due to its vegetation composition. To obtain a rigorous time
series, spatial replicate measurements of vegetation cover
change and PAR variability were recorded at five locations
(on five tall mini towers) within a 50 m pentagon shape of
the main ecosystem flux tower (Fig. 1).
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Figure 1. Diagram showing the core instrumentation supported by each flux tower and mini tower at the Howard Springs OzFlux site, as
well as the layout of the monitoring plot.

PAR components for the overstory and understory were
measured from PAR sensors on each of the mini towers (SQ
series, Apogee, Logan, UT). A data logger (CR800, Camp-
bell Scientific, Logan UT) and multiplexor (AM25T, Camp-
bell Scientific, Logan, UT) were used to collect and store data
and to operate the phenocams. The systems were powered us-
ing a 20 W solar panel, 12 V regulator and 12 V gel cell bat-
tery. To provide a complete accounting of savanna PAR, two
additional sensors (LI-190 Quantum Sensor, LI-COR Bio-
sciences, Lincoln, NE) were installed on the 23 m flux tower
for collection of incoming PAR and outgoing PAR reflected
from the savanna ecosystem.

Changes in savanna overstory and understory vegetation
greenness were assessed using consumer-grade point-and-
shoot cameras (Canon Powershot A810). Each mini tower
supported two cameras, one collecting upward-facing images
of the tree canopy (field of view (FOV) of ∼ 8× 5 m) and
one collecting downward-facing images of the understory
(FOV∼ 4× 2 m, 10 cameras total). The cameras’ settings in-
cluded automatic exposure in aperture priority mode, with a
low f/stop (focal point) value of 2.8 to ensure the entire im-

age was used to respond to ambient light levels (Richardson
et al., 2007; Ryu et al., 2012; Sonnentag et al., 2012). Auto-
matic white balance was also used as we did not have a grey
reference panel to correct for white balance manually. Im-
ages were stored in a compressed JPEG file format and each
camera was housed in a makeshift waterproof case (Fig. 2a,
d).

Following the concept of Ryu et al. (2012), power was
delivered to the cameras through wires soldered to the bat-
tery terminals and a brief pulse delivered to wires soldered
to the camera “on-button” allowed them to turn on when
prompted. The Canon Hack Development Kit (http://chdk.
wikia.com/wiki/CHDK) was used to automate image capture
when the camera was turned on, which was administered via
a uBASIC script saved on the memory card. Each mini tower
logger was programmed to operate the cameras twice daily,
once at 11:30 ACST (∼MODIS Terra overpass) and once at
13:00 ACST (∼ solar noon). Each camera was installed at an
angle of 57.5◦ from zenith to minimise the effects of leaf
inclination angle when calculating LAI (Weiss et al., 2004;
Baret et al., 2010).
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Figure 2. Camera setup (a, d) and examples of understory (b, c) and overstory (e, f) regions of interest (ROI, black box) used from phenocam
images collected at the Howard Springs OzFlux site.

2.4 Phenocam image processing

Phenocam images were visually checked for FOV shifts and
major obstructions (i.e. water in image) as a first step in the
image QA/QC process. Images with obstructions were re-
moved, which accounted for between 3 and 13 % of images
for each camera. However, 3 out of 10 cameras were com-
pletely omitted from analysis due to severe FOV shifts or
where an individual camera had greater than 50 % of images
lost, leaving a total of four cameras for understory analysis
(5031 images total) and three for the overstory (4255 images
total). All remaining cameras (n= 7) experienced slight FOV
shifts as a result of manual data download. However, a Stu-
dent t test of 686 analysed images, for a camera with a large
visible FOV shift, revealed no significant effect on the ex-
tracted results (t686 = 0.13, p= 0.90). The time series from
each camera were then gap filled using the best regression
relationship against another camera, most of which had an
r2 > 0.8.

Images were analysed in date/time succession using a re-
gion of interest (ROI) that encompassed as much of the veg-
etation as feasible. As a result, the ROI varied depending on
the vegetation available in the overstory FOV and was the
same for all understory cameras, except for a separate anal-
ysis of grass and woody green vegetation (Fig. 2). In addi-
tion, we analysed a separate sky-only ROI for each overstory
camera and used the sky data to filter out sky-pixel infor-
mation from the calculation of each index (Fig. 2 and Sup-
plement). Each camera collected 8 bit depth red–green–blue
(RGB) colour channel information, stored as digital num-
bers (DN), at a resolution of 4608× 3456 pixels. These DNs
provide a measure of colour intensity based on irradiance,
so they can vary when scene illumination changes (Ide and
Oguma, 2010; Sonnentag et al., 2012). To reduce the effects
of scene illumination, the DNs are typically used to calculate

the green chromatic coordinate (GCC), a normalised ratio of
the green channel to all channels, as Eq. (1) (Gillespie et al.,
1987; Woebbecke et al., 1995):

GCC= GDN/(RDN+GDN+BDN), (1)

where DN is the digital number that corresponds with the
green (G), red (R) and blue (B) channels. The red (RCC)
and blue (BCC) chromatic coordinates were calculated in the
same way as GCC. Chromatic coordinate values were calcu-
lated for each pixel within the ROI and then averaged to give
an overall GCC, RCC and BCC value for each image. We
also calculated the excess green (ExG), red (ExR) and blue
(ExB) indices to compare which colour index performed best
at capturing savanna phenological change. The excess index
is an enhancement of the respective colour channel informa-
tion against the other channels and is calculated as Eq. (2)
(Woebbecke et al., 1995):

ExG= 2GDN− (RDN+BDN). (2)

2.5 Radiation data processing

The amount of light absorbed by vegetation over time is di-
rectly correlated with productivity (Monteith, 1972). Using
mini tower PAR data, we calculated fPAR for the overstory
(OS) Eq. (3), understory (US) Eq. (4) and ecosystem (ECO)
Eq. (5) as

f PAROS = (PARAED−PARAEU−PARAGD)/PARAED, (3)
f PARUS = (PARAGD−PARAGU−PARBGD)/PARAGD, (4)
f PARECO = (PARAED−PARAEU−PARBGD)/PARAED, (5)

where AED and AEU are the above ecosystem downwelling
and upwelling PAR, AGD and AGU are the above grass
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Figure 3. Monthly mean light use efficiency (LUE)±SE (boxes) with 95 % confidence (whiskers) for the Howard Springs OzFlux site
ecosystem (a), overstory (b) and understory (c) from December 2012 to October 2014. Individual dots represent outlier values for each
respective month.

downwelling and upwelling PAR and BGD is the below grass
downwelling PAR. Using fPAR, APAR was calculated for
overstory, understory and ecosystem by multiplying the re-
spective fPAR with available incoming PAR (note: this was
PARAGD for the understory).

2.6 Leaf area index and biomass measurements

Variability of vegetation LAI and biomass over time is a di-
rect result of phenology and productivity. We collected over-
story LAI on each site visit (six total) using digital hemi-
spheric photography from a Canon digital single lens re-
flex (DSLR) camera (Rebel T1i) with a 185◦ super fisheye
FOV (f/5.6) lens. The images were taken around a one-
hectare plot (n= 36, Fig. 1) and analysed using WinScanopy
(v2014a). A clumping coefficient was calculated to account
for foliage clumping in the LAI estimate, which was veri-
fied using a Tracing Radiation and Architecture of Canopies
(TRAC) instrument. These techniques agreed within 10–
15 % of each other (0.82 to 0.94 in the wet season, 0.61
to 0.67 in the dry season). Understory biomass below 2 m
in height was collected from 20 replicate 1× 1 m quadrats
along a N–S and E–W 100 m transect (10 samples each,

every 5 m) over a full growing season (December–April, 4
total). Samples were separated into grass and other green
biomass, weighed, then oven dried at 80 ◦C for 3 days to ob-
tain dry weight. Following Chen et al. (2003), we converted
the dry weight biomass into carbon content assuming it to be
43 % of grass biomass and 49 % of other green biomass.

2.7 LUE models and incorporation of phenology

An alternative to estimating GPP from flux towers is to
use a LUE model, where GPP is approximated by relating
plant productivity to the amount of light they absorb over a
growing season (Monteith, 1972). The MODIS GPP product
(MOD17 A2.055) is calculated using a LUE model (Eq. 6;
Running and Zhao, 2015), which we use in this study, as it
has been validated for Australian savannas (Kanniah et al.,
2009):

GPP= APAR × LUEp × TMINscalar × VPD scalar, (6)

where GPP is in g C m−2 d−1, APAR is in MJ d−1

and LUEmax is the general maximum light use effi-
ciency during the wet season in g C MJ−1 PAR−1. Be-
cause C3 (trees) and C4 (grasses) plants have different

Biogeosciences, 14, 111–129, 2017 www.biogeosciences.net/14/111/2017/



C. E. Moore et al.: Tree–grass phenology information improves light use efficiency modelling 117

maximum LUE rates (Zhu et al., 2008), we calculated
overstory and understory LUEmax separately following a
similar approach to Kanniah et al. (2009) and Coops et
al. (2007), where LUE is firstly calculated as GPP / APAR
and is then binned by month to obtain monthly LUE.
We chose to use the months of December–March (in-
clusive) to provide an estimate of LUEmax for the over-
story and understory, as these months (n= 8, across 2
years) have the least environmental constraints to produc-
tivity and should be close to the maximum. This gave us
a LUEmax value of 1.58± 0.06 g C MJ−1 PAR−1 for the
ecosystem, 1.43± 0.06 g C MJ−1 PAR−1 for the overstory
and 3.45± 0.41 g C MJ−1 PAR−1 for the understory (Fig. 3).
In the LUE model the LUEmax values are then down reg-
ulated on a daily basis using the VPDscalar Eq. (7) and
TMINscalar (values between 0 and 1) Eq. (8) (Running and
Zhao, 2015):

VPD scalar= (VPDmax−VPDd)/(VPDmax−VPDmin),

(7)
TMINscalar= (TMIN− TMIN min)/(TMIN max− TMIN min), (8)

where TMIN is the minimum daily temperature for a given
day, TMIN max is the minimum daily temperature when LUE
is at maximum and TMIN min is the minimum daily temper-
ature when LUE is 0, all of which are output in ◦C. Like-
wise, VPDd is the mean daytime VPD, VPDmax is the maxi-
mum VPD when LUE is 0 and VPDmin is the minimum VPD
when LUE is at maximum, all output in Pa. These scalar val-
ues range between 0 and 1. The MOD17 GPP algorithm uses
values of −8 ◦C for TMIN min, 11.39 ◦C for TMIN max, 650 Pa
for VPDmin and 3500 Pa for VPDmax for savannas (Running
and Zhao, 2015). These values were validated for Howard
Springs by Kanniah et al. (2009), so we used them in our
study.

The use of a soil moisture term, evaporative fraction (EF),
has been argued to represent plant available moisture more
reliably than VPD (Gentine et al., 2007; Yuan et al., 2007;
Kanniah et al., 2009). This term is simply a fractional esti-
mate of latent heat (LE) divided by the sum of sensible heat
(H ) and LE (i.e. LE / (LE+H )). We also used EF in this
study to test if it improved the estimation of overstory, under-
story and ecosystem GPP. For the overstory and ecosystem,
we calculated EF using the ecosystem flux tower, whereas
for the understory we calculated EF using the understory flux
tower.

Another technique we tested for improving GPP estimates
from the LUE model was to input phenocam greenness in-
dices, as they have been found to correlate with ecosystem
productivity in northern hemispheric forests and grasslands
(Richardson et al., 2009b; Migliavacca et al., 2011; Toomey
et al., 2015). We hypothesised that inclusion of GCC in the
LUE model would improve the model’s ability to predict sa-
vanna overstory and understory GPP, particularly given the
strong phenology cycles displayed in savannas. As GCC is

Figure 4. Daily green, red and blue chromatic coordinates (GCC–
RCC–BCC) and excess indices (ExG–ExR–ExB) for the Howard
Springs OzFlux site understory from December 2012 to Octo-
ber 2014. Daily data are shown with an 8-day centred running mean
(marked every 8 days for visualisation) applied. The standard error
of the mean is given by the shading.

a fractional measure, like that of fPAR, we substituted GCC
as a proxy for fPAR using the coefficients of a regression to
normalise it, a similar approach to that used by Migliavacca
et al. (2011). As a result, Eq. (6) was transformed to include
PAR× (mGCC+ c) in place of APAR, where m and c are
the linear regression coefficients.

We repeated the above technique using MODIS EVI
(Huete et al., 2002) to test if satellite indices could be used
to improve estimates of ecosystem-scale GPP. We chose the
EVI product (MOD13Q1.005) as it has been shown to func-
tion well for identifying broad-scale phenology in Australian
savannas (Ma et al., 2013, 2014). A 3× 3 pixel cut-out of
EVI data surrounding the Howard Springs site, at 16-day
and 250 m resolution, was processed in DINGO, accepting
the quality flags 00 (highest overall quality) and 01 (good
quality) only. The 16-day data were then interpolated and
smoothed, using a Savitzky–Golay technique (Savitzky and
Golay, 1964) in DINGO, to create a daily time series of EVI
(Beringer et al., 2016b). Daily EVI were regressed against
site-based daily ecosystem fPAR and the regression was used
along with incoming PAR to replace APAR in Eq. (6).

Finally, to test the performance of each model against
tower GPP estimates, we used a Pearson correlation to pro-
vide a closeness of fit estimate (Corr) and test whether the
relationship was statistically significant (p<0.05). We also
calculated the root mean square error (RMSE) to provide a
measure of the difference between the two datasets (tower
and model) and the relative predictive error (RPE) to repre-
sent the percentage difference and degree of overestimation
(+) or underestimation (−) of the model.
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Figure 5. Daily rainfall (mm) and green chromatic coordinate
(GCC) time series for grass and other woody green species (woody
sp.) found in the savanna understory at the Howard Springs OzFlux
site from December 2012 to October 2014. The GCC daily data are
shown with an 8-day centred running mean (marked every 8 days
for visualisation) applied. The standard error of the mean is given
by the shading. The GCC time series represent the change in rela-
tive greenness of grass and woody species, not the absolute sum of
grass versus woody species biomass in the understory.

3 Results and discussion

3.1 Phenological insights from phenocams

The phenocam indexes revealed expected patterns from over-
story and understory vegetation over time, showing the cam-
eras functioned well as phenology monitors of vegetation
at the ecosystem and species level (Figs. 4, 5, 6). Not sur-
prisingly, both GCC and ExG were highest in the under-
story during the wet season and lowest by the late dry season
(i.e. September; Fig. 4). The RCC and ExR indices showed
an inverse relationship to GCC and ExG, which is symp-
tomatic of increased red pigmentation from senescing leaves
and chlorophyll loss (Hoch et al., 2001; Lee et al., 2003;
Wingate et al., 2015). This relationship is shown by the red–
green index crossover in the understory that coincides with
grass senescence and signals the end of the wet season (i.e.
March/April; see Fig. 4), along with an increase in the red
kandosol soil background showing through with the loss of
understory biomass. At the beginning of the wet season (Oc-
tober to November), the red–green crossover takes longer to
occur than at the end of the wet season (Fig. 4). Several rain-
fall events in November (Figs. 4, 5 for rainfall) are required
to reach the crossover, which is indicative of the vegetation
response to the onset of the rainy season (i.e. grasses need
time to germinate). Peak GCC and ExG are not reached until
February (Fig. 4), the period of highest productivity for total
understory biomass (Table 1).

The understory is a mix of annual (S. intrans) and peren-
nial (S. plumosum and H. triticeous) grasses, overstory (E.
tetrodonta and E. miniata) and mid-story (E. chlorosyachys,

Table 1. Understory biomass harvest information for Howard
Springs savanna collected across the wet seasons from 2012 to
2014.

Period Grass Other Grass Other
biomass biomass biomass biomass
(t ha−1) (t ha−1) ( %) ( %)

Start – Dec 0.46 0.96 33 67
Mid – Feb 1.34 1.77 43 57
Peak – Mar 1.55 1.09 59 41
End – Apr 1.31 0.38 77 23

T. ferdinandiana and B. obovata) saplings, and cycads (C.
armstrongii) that all have differing phenologies (Bowman
and Prior, 2005). The dynamic nature of these phenological
guilds is reflected in the temporal patterns of GCC and ExG
between grasses and the non-grass woody elements (herein
“woody green”; Fig. 5). While grasses are the most abun-
dant understory species in terms of biomass (Table 1) and
LAI at Howard Springs (Hutley et al., 2000), they are only
active during the wet season (Andrew and Mott, 1983; Scott
et al., 2010). During the early wet (October/November) and
dry (April/May) seasons, the woody green species take ad-
vantage of the lack of grass to gain biomass (Werner and
Franklin, 2010; Werner and Prior, 2013).

Annual grasses typically germinate after the first 15 mm or
more of rainfall, with further rainfall events required to drive
leaf growth (Andrew and Mott, 1983; Cook et al., 2002).
Pre-monsoonal rainfall is highly variable in its timing and
amount; therefore this phenological strategy may minimise
grass mortality if dry periods proceed an initial early wet sea-
son rainfall event (Moore et al., 2016a). In Fig. 5, this delay
in grass greening is evident, with rapid increases in GCC oc-
curring 1 month after the first rainfall event (Fig. 5; October–
December 2013). Phenocam data can therefore tease apart
composite greening signals to better understand phenologi-
cal dynamics and fluxes in these ecosystems (Figs. 5, 7). Un-
derstory biomass data also support the GCC results, reveal-
ing that as the wet season progressed, the grasses increased
in dominance to account for 77 % of understory biomass by
the end of the wet season (Table 1). While the grasses are
the primary driver of understory biomass and productivity,
the woody green species also make important contributions
throughout the year and are likely the reason why understory
GPP does not completely cease in the dry season (Moore et
al., 2016a).

In contrast to the understory, overstory GCC and ExG did
not fluctuate much when compared to the red and blue chan-
nel indices (Fig. 6a). This is mostly due to the high portion
of blue sky and cloud within the ROIs for the overstory im-
ages (Fig. 2e, f), which vary depending on daily weather con-
ditions. However, application of a sky threshold, calculated
from a sky-only ROI, improved the seasonal pattern seen in
overstory GCC (see Supplement) and contributed to remov-
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Figure 6. Daily green, red and blue chromatic coordinates (GCC–RCC–BCC) and excess indices (ExG–ExR–ExB) for the Howard Springs
OzFlux site overstory (a), plus GCC and leaf area index (LAI) for the overstory (b) from December 2012 to October 2014. Daily data are
shown with an 8-day centred running mean (marked every 8 days for visualisation) applied. The standard error of the mean is given by the
shading.

ing the influence of sky pixels on the GCC calculation. These
values also agreed with changes in overstory LAI (Fig. 6b).
A larger ROI was necessary for the overstory analysis due to
the daily movement of trees. While there is inherent uncer-
tainty in both the phenocam imagery (i.e. FOV, scene illumi-
nation) and LAI (i.e. leaf projection and orientation, clump-
ing, gaps; see Ryu et al., 2010) estimates in this study, the sa-
vanna overstory is known to experience seasonal fluctuations
in LAI with the highest values in the wet season and lowest
values in the late dry season (Williams et al., 1997; O’Grady
et al., 2000). The same pattern is displayed in Fig. 6, giving
us confidence that the phenocams were able to detect over-
story cover change.

3.2 Phenocam and MODIS phenology in relation to
GPP

The seasonality of GPP in these savannas has been found to
differ between that of the overstory and understory, with un-
derstory GPP tied more closely to the duration of the wet
season than that of the overstory (Moore et al., 2016a). The
GCC and ExG time series appeared to capture the overstory
and understory GPP estimates (Fig. 7), so we hypothesised
that they could be useful for independently predicting over-
story and understory GPP. Simple linear regressions of GCC
against flux tower GPP quantified the relationship between
the two variables, with understory GPP (r2

= 0.65) revealing
a closer fit with GCC than overstory GPP (r2

= 0.23, Fig. 7).
The ExG index did not perform so well compared with GCC
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Figure 7. Overstory (a, b) and understory (c, d) flux tower GPP with green chromatic coordinate (GCC) and excess green (ExG) indices, as
well as ecosystem flux tower GPP with MODIS enhanced vegetation index (EVI, e), from December 2012 to October 2014 at the Howard
Springs OzFlux site. Daily data are shown with an 8-day running mean (marked every 8 days for visualisation) applied. The standard error
of the mean is given by the shading. Included for each time series are the respective regression plots showing r2 and p values for GCC–
ExG–EVI (x) against flux tower GPP (y). For MODIS EVI (e) the time series plot includes raw 16-day values (EVI) and a Savitzky–Golay
smoothed daily EVI product (EVI_sm), with the regression plot showing the raw 16-day EVI and the corresponding GPP for that day.

for the overstory (r2
= 0.14) but improved the relationship

slightly against GCC for the understory (r2
= 0.72, Fig. 7).

ExG was originally developed for identifying green vegeta-
tion from images with a soil background (Woebbecke et al.,
1995). This is a likely reason for why the relationship be-
tween ExG and GPP was slightly closer than that of GCC for
the understory.

While the relationship between overstory greenness
(ExG–GCC) and GPP is not as strong as that of the under-
story, the phenocams were still able to detect seasonality in
greenness that followed GPP over time (Fig. 7). The trees
have a deeper rooting structure than the grasses, allowing
them to access a larger volume of soil moisture (Eamus et al.,
2002; Kelley et al., 2007) and thus maintain constant over-

story transpiration throughout the year (O’Grady et al., 1999;
Hutley et al., 2000). While the tree canopy is largely ever-
green, the LAI will drop up to 30–40 % in order to account
for the dry season water deficit (O’Grady et al., 2000; Whit-
ley et al., 2011), which is also apparent from both our over-
story LAI and GCC results (Fig. 6). Tree productivity, in con-
trast to transpiration, is known to decrease into the dry sea-
son (Eamus et al., 1999), and most carbon uptake is directed
toward maintenance respiration rather than growth (Chen et
al., 2002; Prior et al., 2004; Cernusak et al., 2006). However,
the occurrence of late wet season rainfall events may benefit
the productive capacity of the trees by boosting soil mois-
ture stores, thereby supporting higher rates of productivity
for longer in the dry season (Moore et al., 2016a). This effect
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Figure 8. Overstory flux tower estimated GPP with model predicted GPP for the Howard Springs OzFlux site. Models shown are (a) light
use efficiency (LUE-1), (b) LUE with evaporative fraction (LUE-2), (c) LUE with green chromatic coordinates (LUE-3) and (d) LUE with
EF and GCC (LUE-4).

is apparent in our overstory GCC time series, where after late
April to early May rainfall events (see Fig. 5 for daily rain-
fall) GCC spikes in June indicate a flushing of the foliage in
the dry season (Fig. 6b).

At the ecosystem scale, the interaction of the overstory and
understory with the wet and dry seasons drives variability
in productivity. The MODIS greenness index, EVI, mostly
captures this variability, albeit at coarser temporal resolu-
tion (Fig. 7e) when compared with the phenocams. While the
broad-scale variability in savanna phenology change is cap-
tured by EVI, such as seasonality (Ma et al., 2013), it is not
able to capture the finer-scale details that the site-based phe-
nocams can. MODIS indices, such as EVI, do not currently
have the ability to identify individual plant-scale phenology
patterns (Brown et al., 2016; Moore et al., 2016b), which is
another advantage of the phenocam (Fig. 5). The phenocam
data also provide a useful means of validating the MODIS
data in that both are able to track the seasonality of savanna
GPP, which is driven by a complex interaction of both mete-
orology and phenology (Kanniah et al., 2011; Whitley et al.,
2011; Ma et al., 2013, 2014).

3.3 Integrating phenocam and MODIS phenology with
a LUE model

To use greenness phenology information for predicting
GPP from the LUE model, an estimate of maximal LUE
was calculated, which was higher for the understory
(3.45± 0.41 g C MJ−1 PAR−1) compared to the overstory
(1.43± 0.06 g C MJ−1 PAR−1; Fig. 3). The higher LUEmax
for the understory is largely due to the dominance of C4
grasses in the understory (Table 1), as their C4 photosyn-
thetic pathway is more energy efficient (Sage, 2004; Os-
borne and Beerling, 2006; Zhu et al., 2008). Our values fell
within the range of LUEmax reported for African savannas,
which have varied from as low as 0.33 g C MJ−1 PAR−1 up to
3.5 g C MJ−1 PAR−1 depending on the vegetation and season
(Sjöström et al., 2013; Tagesson et al., 2015). Recent work
has shown the importance of correctly applying LUEmax val-
ues to C3 and C4 plants when using LUE models to calculate
GPP (Yan et al., 2015). Therefore, to account for the C3 : C4
differences, we applied these site and trait specific values to
the LUE model used to estimate GPP.
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Figure 9. Understory flux tower estimated GPP with model predicted GPP for the Howard Springs OzFlux site. Models shown are (a) light
use efficiency (LUE-1), (b) LUE with evaporative fraction (LUE-2), (c) LUE with green chromatic coordinates (LUE-3) and (d) LUE with
EF and GCC (LUE-4).

The next step in our parameterisation of the LUE model
was to test it in its traditional form, using the meteorolog-
ical inputs of TMIN and VPD that constrain LUEmax, along
with APAR (Eq. 6). We found the model captured most of the
seasonality of overstory GPP but underestimated the magni-
tude of GPP in the dry season and overestimated GPP in the
wet season (Table 2, Fig. 8a). For the understory, the LUE
model appeared to overestimate and lag flux tower GPP con-
sistently by 1–2 months (Table 2, Fig. 9a). This resulted in a
strong dry season overestimate of understory GPP (165 %,
Table 2). For the ecosystem, the LUE model consistently
overestimated GPP (Table 2, Fig. 10a). Kanniah et al. (2009)
also found the LUE model performed poorly for the Howard
Springs ecosystem, so they replaced the standard VPD pa-
rameterisation with an EF term and found this to improve the
relationship, which we implemented next.

The EF value improved model predictions of overstory
GPP in the dry season but overestimated GPP in the wet sea-
son, causing an overprediction of annual GPP by 18 % over-
all (Table 2, Fig. 8a vs. b). In contrast, the inclusion of EF in
the understory LUE model slightly improved the prediction

of annual GPP, with better correlation (0.69 vs. 0.56), lower
RMSE (2.00 vs. 2.66 g C m−2) and lower RPE (38.58 vs.
79.62 %). However, the understory model still lagged tower
GPP and was still particularly poor at capturing the seasonal
transitions (Fig. 9a, b). For the ecosystem, the inclusion of
EF enhanced the overestimation of GPP from 15 to 26 %,
particularly in the wet season (Table 2, Fig. 10a vs. b). EF
provides a proxy measure of soil moisture as it includes a wa-
ter flux component (LE) that is tightly linked with soil mois-
ture availability (Gentine et al., 2007; Kanniah et al., 2009).
In Australian savannas, soil moisture is highly seasonal and
a major driver of productivity (Kanniah et al., 2010). This
makes EF a useful index in the dry season, when latent heat
largely comes from transpiration and is therefore tightly cou-
pled with GPP. However, in the wet season, soil evaporation
contributes a large amount to latent heat, which is not tightly
coupled to GPP (Kanniah et al., 2009). This explains why EF
is able to constrain the LUE model in the dry season and why
it performs poorly in the wet season and transition periods.

Despite the improvements of EF, the model still performed
poorly at capturing the wet–dry–wet season transition pe-
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Figure 10. Ecosystem flux tower estimated GPP with model predicted GPP for the Howard Springs OzFlux site. Models shown are (a) light
use efficiency (LUE-1), (b) LUE with evaporative fraction (EF, LUE-2), (c) LUE with MODIS enhanced vegetation index (EVI, LUE-3) and
(d) LUE with EF and EVI (LUE-4).

Table 2. Summary of model performances against flux tower estimated GPP for overstory and understory at Howard Springs. Statistics
include the Pearson correlation coefficient (Corr), the root mean square error (RMSE, g C m−2 d−1) and the relative predictive error (RPE,
%) for the light use efficiency model (LUE), LUE with evaporative fraction (LUE_EF), LUE with green chromatic coordinates (LUE_GCC)
and LUE with EF and GCC (LUE_EF_GCC). Pearson p values are not included as all were significant with P< 0.001.

Overstory Understory Ecosystem∗

Model Corr RMSE RPE Corr RMSE RPE Corr RMSE RPE

All years LUE 0.64 1.64 7.50 0.56 2.66 79.62 0.80 2.18 14.82
LUE_EF 0.73 1.80 18.33 0.69 2.00 38.58 0.79 2.79 26.39
LUE_GCC/EVI∗ 0.60 1.56 6.39 0.81 1.86 80.21 0.81 2.12 15.49
LUE_EF_GCC/EVI∗ 0.72 1.60 16.38 0.86 1.42 39.59 0.83 2.52 26.22

Wet season LUE 0.61 2.00 24.51 0.31 3.20 52.00 0.72 2.54 16.97
(15 Oct–15 Apr) LUE_EF 0.68 2.37 34.93 0.39 2.73 41.09 0.66 3.32 26.83

LUE_GCC/EVI∗ 0.61 1.78 22.52 0.63 2.16 53.83 0.74 2.46 19.63
LUE_EF_GCC/EVI∗ 0.69 2.06 32.40 0.67 1.97 45.18 0.71 3.13 29.12

Dry season LUE 0.40 1.26 −10.75 0.56 2.09 165.76 0.57 1.83 11.71
(16 Apr–14 Oct) LUE_EF 0.64 1.12 0.51 0.52 1.05 30.77 0.72 2.26 25.75

LUE_GCC/EVI∗ 0.23 1.34 −10.91 0.45 1.55 162.43 0.39 1.77 9.51
LUE_EF_GCC/EVI∗ 0.56 1.06 −0.81 0.35 0.69 22.17 0.63 1.86 22.01

The ∗ highlights that the MODIS enhanced vegetation index (EVI) is used instead of GCC for the ecosystem analysis.
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riods. We believed this was due to APAR, which failed to
capture the same degree of seasonality as the phenocam
indexes (see Supplement). The incorporation of phenocam
GCC into the LUE model improved the estimate of under-
story GPP substantially (Table 2, Fig. 9c, d). This was most
apparent with the combined use of GCC and EF in the LUE
model, which produced the best correlation (r = 0.86), low-
est RMSE (1.42 g C m−2) and lowest RPE (39.59 %; Table 2,
Fig. 9). These results show that while EF is an important fac-
tor for GPP, greenness phenology is also key for estimating
understory productivity. In further support of this, the inclu-
sion of GCC also eliminated the lag in model estimated GPP,
bringing the estimate closer in line with seasonal variability
from the flux tower, as evidenced by the large decrease in
RMSE and RPE (Table 2, Fig. 9). As previously discussed,
the understory grasses (annual species in particular) die off
at the cessation of the wet season and do not contribute to the
small fraction of understory GPP in the dry season (Moore
et al., 2016a). This is a plant phenology response rather than
a response to meteorological conditions, as factors such as
soil moisture remain high enough in the early dry season
to support plant growth (Eamus et al., 2002; Kelley et al.,
2007; Moore et al., 2016a). Given that these grasses domi-
nate understory biomass at Howard Springs, it is not surpris-
ing that including greenness phenology information in the
LUE model improves its output relative to the flux tower.

The inclusion of greenness indices in the LUE model for
the overstory (GCC) and ecosystem (EVI) also improved the
estimate of GPP. For the overstory, the combination of EF
and GCC performed slightly better in the dry season than
GCC alone but was not able to capture the wet season well
(Table 2, Fig. 8d). This resulted in the incorporation of GCC
into the LUE model producing the best overall result despite
the slightly lower correlation value (0.60 vs. 0.72) when com-
pared with GCC and EF combined (Table 2). For the ecosys-
tem, the inclusion of EVI into the LUE model performed
the best at predicting GPP, which was supported by the low-
est values for RMSE (2.12 g C m−2) and RPE (15.49 %, Ta-
ble 2).

The greenness information clearly fills an important gap
in relation to changes in overstory, understory and ecosys-
tem greenness. The general improvement in LUE model out-
put for overstory, understory and ecosystem with the inclu-
sion of greenness phenology information highlights the im-
portance of accounting for phenological variability when es-
timating GPP in savannas. A similar result was found for a
subalpine grassland in Italy, where phenocam greenness in-
dices improved the ability of the same LUE model to pre-
dict grassland GPP (Migliavacca et al., 2011). Likewise, in
an evergreen Amazonian rainforest, Wu et al. (2016) linked
phenological changes in leaf development and demography
to seasonality in GPP, showing the importance of phenology
as a driver of ecosystem productivity. For Australian savan-
nas, the effect of phenology is most evident at the end of
the wet season (April–May), where growth in the understory

ceases due to annual grass senescence even though meteo-
rological conditions (temperature, VPD and/or EF) are still
sufficient to support growth (Fig. 9a, b vs. c, d). The origi-
nal LUE model overpredicts GPP as a result of this, which is
due to APAR remaining high despite the lack of green vege-
tation (see Supplement). This effect is substantially reduced
by the inclusion of greenness phenology indices that likely
represents a type of “green APAR” that more closely tracks
the vegetation productivity over time.

3.4 Limitations, impacts and further work

While phenocams have consistently proven to be a useful
tool for phenological and productivity research (Richardson
et al., 2009b; Migliavacca et al., 2011; Toomey et al., 2015;
Wu et al., 2016), there still remain several limitations that re-
quire further investigation to improve their utility. Issues re-
lated to camera choice and image collection have been shown
to be less problematic for simple identification of phenolog-
ical transition dates and seasonal variation than first thought
(Sonnentag et al., 2012); however, maintaining similar pro-
tocols for cross site comparisons remains preferable (Moore
et al., 2016b). Scene illumination variability is probably the
most problematic limitation of phenocams, which can be re-
duced by using chromatic coordinates or excess values, as
well as by setting the white balance to a fixed level (Richard-
son et al., 2009a; Ide and Oguma, 2010; Migliavacca et al.,
2011). Although white balance was not fixed for this study,
we found that the GCC and ExG time series matched well
with GPP estimates regardless, particularly once smoothed to
an 8-day running mean time series to coincide with MODIS
EVI data. Despite the AWB limitation, the GCC data pro-
vided added value to that gained from using just APAR alone
in the LUE model, as also supported by the similar response
in using EVI at the ecosystem level. We suspect this is due to
the highly dynamic nature of the savanna vegetation, which
allows the phenology signals to be identified despite the po-
tential for variable white balance.

The wet season influence on scene illumination adds daily
noise to the time series, but the indices are still useful for
informing seasonal productivity estimates. This same rela-
tionship will likely not stand for other, less dynamic ecosys-
tems in Australia (Restrepo-Coupe et al., 2016; Moore et al.,
2016b), so we recommend the fixing of white balance where
appropriate. The use of a grey reference panel for normal-
ising phenocam images has also been proposed (Richardson
et al., 2009a), but this technique has issues related to panel
orientation and illumination conditions that can be different
to those experienced by the phenocams (Migliavacca et al.,
2011). Despite these limitations, phenocams are still an im-
portant tool for both species and plot-scale phenology mon-
itoring and, with further developments, will continue to pro-
vide valuable insight into Australian vegetation phenology
(Moore et al., 2016b).
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In addition to the phenocam issues, the light use efficiency
model used in this study is also subject to limitations. This
model relies on the input of meteorological information to
generate an estimate of ecosystem GPP. It is often found that
these models overestimate GPP in the transition periods from
wet–dry or dry–wet in savanna ecosystems (Kanniah et al.,
2009). The primary reason for this is that savanna GPP is not
driven solely by meteorology and plant phenology also plays
an important role, as shown in our analysis. The technique
for estimating LUEmax, used in the LUE model (Eq. 5), also
involves a degree of uncertainty that is centred around the in-
put parameters of LUE and APAR, as well as the scalars used
to constrain it (De Bie et al., 1998; Sjöström et al., 2013).

The MODIS MOD17 A2 GPP product uses a LUEmax
value of 1.21 g C MJ−1 for savannas and 1.24 g C MJ−1 for
woody savannas (Zhao and Running, 2010). While these val-
ues are close to the number we calculated for the overstory
(1.43± 0.06 g C MJ−1 PAR−1), we found the understory
LUEmax to be much larger (3.45± 0.41 g C MJ−1 PAR−1).
Similarly, for African savannas, LUEmax has been found to
reach up to 3.50 g C MJ−1 PAR−1 in the wet (growing) sea-
son (Sjöström et al., 2013; Tagesson et al., 2015). These
LUEmax values are much larger than that used in the MOD17
A2 algorithm, which suggests that tree : grass (C3 vs. C4) ra-
tios need to be better accounted for in the LUE model. Re-
cent work from Yan et al. (2015) has shown this to be the
case, where the application of different LUEmax values to C3
(1.8 g C MJ−1 PAR−1) and C4 (2.76 g C MJ−1 PAR−1) plants
improved global model estimates of GPP.

Finally, the flux tower estimates of GPP are not without
their own limitations, as the towers measure NEE that is then
partitioned into GPP and respiration most commonly by us-
ing a friction velocity (u∗) threshold at night and upscaling
method for the daytime (Reichstein et al., 2005; Bowman,
2000; Keith et al., 2012). Use of the u∗ technique has been
shown to be problematic at sites with complex terrain (van
Gorsel et al., 2009), where drainage flows result in horizon-
tal loss of carbon from an ecosystem that is not accounted
for by the flux instruments. While Howard Springs is a rel-
atively flat site (slope < 1◦) that should prevent issues with
using the u∗ technique, the flux tower estimates from this site
should still be considered with an amount of uncertainty as
well (Moore et al., 2016a). However, these issues have been
addressed by previous work at this site (Moore et al., 2016a)
so we have confidence in the fluxes used for this study. De-
spite these limitations, we were able to show that the input
of phenological information into LUE models can provide
a useful constraint for estimating GPP within the uncertainty
limits of tower-derived estimates, a similar conclusion to that
found over a subalpine grassland in the Italian Alps (Migli-
avacca et al., 2011).

4 Conclusions

We have shown the utility of phenocams for the monitor-
ing of tree and grass phenology in savannas and how these
data can improve the quantification of productivity. Pheno-
cams offer the ability to decipher species level phenological
signals, as shown by our time series analysis of understory
grasses and woody green species, as well as in the tracking
of seasonal overstory leaf area change. Phenocams have also
shown to be useful for improving LUE models that have tra-
ditionally failed to capture the wet–dry season transition pe-
riods well in savannas, which are characterised by phenology
changes in the understory that are out of sync with meteoro-
logical variability. This approach needs to be tested in more
ecosystems to determine its applicability for a wider range
of ecosystem types, but it promises improved results for bet-
ter understanding of ecosystem GPP and phenology. Pheno-
logical information offers an important link for our under-
standing of ecosystem function as it provides a more accu-
rate means of independently verifying tower-derived GPP es-
timates in savannas. We have demonstrated that phenocams
can be used in conjunction with eddy covariance flux towers
to improve current knowledge of savanna productivity and
phenology, which will assist in our understanding of how the
tree–grass relationship in savannas may alter in the future.

5 Data availability

The eddy covariance data used in this manuscript are freely
available from the OzFlux data portal (http://ozflux.org.au).
The Howard Springs main tower data are provided by
Beringer (2013a) and the understory data are provided by
Beringer (2013b). The phenocam data will soon be freely
available on the Australian Phenocam Network (https://
phenocam.org.au), or via contact with the corresponding au-
thor.

The Supplement related to this article is available online
at doi:10.5194/bg-14-111-2017-supplement.
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