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Abstract. Nitrogen and water availability alter canopy struc-
ture and physiology, and thus crop growth, yielding large im-
pacts on ecosystem-regulating/production provisions. How-
ever, to date, explicitly quantifying such impacts remains
challenging partially due to lack of adequate methodology
to capture spatial dimensions of ecosystem changes associ-
ated with nitrogen and water effects. A data fitting, where
close-range remote-sensing measurements of vegetation in-
dices derived from a handheld instrument and an unmanned
aerial vehicle (UAV) system are linked to in situ leaf and
canopy photosynthetic traits, was applied to capture and in-
terpret inter- and intra-field variations in gross primary pro-
ductivity (GPP) in lowland rice grown under flooded con-
ditions (paddy rice, PD) subject to three nitrogen applica-
tion rates and under rainfed conditions (RF) in an East Asian
monsoon region of South Korea. Spatial variations (SVs) in
both GPP and light use efficiency (LUEcabs) early in the
growing season were enlarged by nitrogen addition. The nu-
tritional effects narrowed over time. A shift in planting cul-
ture from flooded to rainfed conditions strengthened SVs in
GPP and LUEcabs. Intervention of prolonged drought late in
the growing season dramatically intensified SVs that were
supposed to seasonally decrease. Nevertheless, nitrogen ad-
dition effects on SV of LUEcabs at the early growth stage
made PD fields exert greater SVs than RF fields. SVs of GPP
across PD and RF rice fields were likely related to leaf area
index (LAI) development less than to LUEcabs, while numer-
ical analysis suggested that considering strength in LUEcabs
and its spatial variation for the same crop type tends to be
vital for better evaluation in landscape/regional patterns of

ecosystem photosynthetic productivity at critical phenology
stages.

1 Introduction

Agricultural landscape in most Asia monsoon regions is
featured by multicultural cropping systems comprising rel-
atively small land holdings under 2 ha (Devendra, 2007).
Changes in phenology of those crop ecosystems, where rice
makes up a larger portion and exerts a rapid completion of
the life cycle in a short period of time with marked changes
in canopy dynamics, are of significant importance in re-
gional controls of carbon balance and biogeochemical pro-
cesses (Kwon et al., 2010; Lindner et al., 2015; Xue et al.,
2017) and tend to be one of the drivers causing seasonal fluc-
tuations of atmospheric CO2 concentration in the Northern
Hemisphere (Forkel et al., 2016). To better understand their
ecological implications under current climate and environ-
mental changes, one of the main concerns lies in the spa-
tiotemporal aspects of ecosystem photosynthetic productiv-
ity in the staple crop that is subject to different methods of
field management and anthropogenic interventions, and un-
derlying physiological mechanisms that are responsible for
such spatiotemporal dimensions.

The stability, repeat measurement capability, and land-
scape to global coverage of remote sensing from satellites
have triggered widespread use of such measurements to ob-
tain spatial patterns of biophysical and biochemical vari-
ables in studies of land surface and atmospheric processes
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(Richardson et al., 2013). A recent study on flux modeling
of agroecosystems introduced satellite products as input pa-
rameters (Adiku et al., 2006) and reported pixel-size depen-
dency of prediction accuracy. A better prediction could be
obtained if satellite products were applied at finer resolution.
Accordingly, attempts made to assimilate the products into
process-based crop growth models have been increasingly
concerned (Tenhunen et al., 2009; Lee, 2014; Alton, 2017),
due to resulting overestimations and/or under estimations in
plant functional traits. Satellite images collected during plant
growing seasons have been used to monitor crop growth and
to predict yield production. However, their use has been lim-
ited by poor revisit times, coarse spatial resolution, and/or
cloudy weather. They technically conceal delicate fluctua-
tions of ecosystem productivity tightly associated with per-
field ecological conditions on which plants survival and dis-
persal depend (Seo et al., 2014). Applications of spatially
coarse satellite products generate considerable spatiotempo-
ral uncertainties in evaluating strength of daily carbon fluxes
among microsites of the same plant function type at princi-
ple growth stages. Multi-pragmatic solutions are suggested to
develop spatial/temporal data fusions that integrate spatially
hierarchical remote-sensing networks and in situ ground sur-
face observations (Lausch et al., 2016; Pause et al., 2016),
aiming to better monitor canopy dynamics and environmen-
tal impacts on them.

Of the various means that can aid the understanding of per-
field ecological processes, the close-range remote-sensing
technique is a realistically convenient measure that can pro-
vide timely temporal information of ecosystem dynamics
at high spatial resolution. Recent applications in agronomy
studies (Zhang and Kovacs, 2012; Ko et al., 2015; Jeong et
al., 2016) have reinforced the feasibility of resolving the re-
search gaps in terms of capturing spatiotemporal aspects of
intra- and inter-field ecosystem photosynthetic productivity.

To best interpret spatiotemporal variations of ecosystem
photosynthetic productivity captured by the close-range re-
mote sensing, conventional physiological studies on canopy
leaves remain essential (Sinclair and Horie, 1989; Niinemets
and Tenhunen, 1997). As leaves are the small and basic units
that constitute rice canopy volume, their functioning could
change with canopy development and changing habitat con-
ditions (Xue et al., 2016a, b), contributing to fluctuations in
strength of seasonal canopy photosynthesis.

Traditional ecophysiology approaches are very limited in
comparing neighboring plants and tend to neglect spatial di-
mensions. Landscape ecology can resolve ecosystem func-
tioning at a broad scale but tends to be restricted to re-
gional analysis at a higher hierarchical level beyond individ-
ual organisms. The central aims of this research are to con-
struct a spatially integrative concept that assimilates quan-
titatively abundant data sets collected from a close-range
remote-sensing system applied at field level and from tradi-
tional ecophysiology approaches at plot level, and to capture
and interpret effects of different field management practices

including nutrient application and water treatments on tem-
poral and spatial aspects of ecosystem photosynthetic pro-
ductivity according to their influences on canopy leaf physi-
ology and structure.

The study evaluates two hypotheses. The first posits that
the temporal course of canopy carbon gain capacity is driven
primarily by leaf area index (LAI) development and solar ra-
diation intensity at the reproductive stage (Xue et al., 2016a,
2017). Canopy leaf physiology is a primary factor that deter-
mines efficient use of canopy light use and therefore carbon
gain capacity (Sinclair and Horie, 1989). Hence, spatial vari-
ability of ecosystem gross primary productivity (GPP) could
be concurrently driven by canopy structure (i.e., LAI) and
canopy leaf physiology (i.e., light use efficiency, LUEcabs).
The second hypothesis posits that shifts of planting culture
from flooded to rainfed (RF) conditions mean that water
availability tends to be a primary factor determining ecosys-
tem photosynthetic productivity. Growth of rainfed rice suf-
fers from multiple uncertainties regarding timing/strength of
precipitation and uptake of nutrient availability in soil (Kato
et al., 2016). Significant changes in leaf and root anatomies,
and canopy structure and function in rainfed rice could occur
(Yoshida, 1981; Steudle, 2000). Greater variations in spatial
aspects of ecosystem GPP, LAI, and LUEcabs in rainfed low-
land rice than flooded rice are therefore anticipated.

2 Materials and methods

2.1 Study site

The field campaign was carried out at the agricultural field
station of Chonnam National University, Gwangju, South
Korea, which is located at 35◦10′ N, 126◦53′ E, at an al-
titude of 33 m (Fig. 1). The mean annual air temperature
and precipitation over past 2 decades averaged 13.8 ◦C and
1400 mm yr−1, respectively. The East Asian monsoon cli-
mate prevails from June to October in this region, dur-
ing which time more than half of the annual precipitation
occurs. The top layer of soil is categorized as loam with
sand of 388 g kg−1, silt of 378 g kg−1, clay of 234 g kg−1,
pH 5.5, organic carbon (C) content of 12.3 g kg−1, available
phosphorus (P) of 13.1 g kg−1, and total nitrogen (N) be-
fore fertilization of 1.0 g kg−1. Thirty-day-old seedlings of
a new breeding line, Oryza sativa cv. Unkwang (Kim et al.,
2006), were transplanted in flooded paddy rice (PD) fields
on 20 May 2013 (day of year, DOY, 140). N, P, and potas-
sium (K) were mixed at a mass ratio of 11 : 5 : 6 to gen-
erate fertilizer application rates of 0 kg N ha−1 (no supple-
mentary fertilizer, plot size ∼ 511 m2; low-nutrient group),
115 kg N ha−1 (plot size ∼ 1387 m2; normal-nutrient group),
and 180 kg N ha−1 (plot size ∼ 511 m2; high-nutrient group)
(Fig. 1). The nutrient treatment groups were isolated by
35 cm wide cement walls and inserted 1 m into the soil. N-
based fertilizer was added to 80 % of total N by hand spread-

Biogeosciences, 14, 1315–1332, 2017 www.biogeosciences.net/14/1315/2017/



W. Xue et al.: Linking canopy reflectance to crop structure and photosynthesis 1317

ing 2 days before transplanting. The remaining 20 % was
added at the active tillering phase of the vegetative stage. P-
based fertilizer was applied as 100 % of the basal dosage. K-
based fertilizer was applied as 65 % of the basal dosage, with
the remaining 35 % applied during the tillering phase. Seeds
of the same rice cultivar were directly sown in an adjacent
upland field that was being treated as RF rice (∼ 64 m2) on
22 April (DOY 112). The same fertilizer compound contain-
ing 115 kg N ha−1 (PD normal-nutrient group) was applied
to the RF Unkwang rice field twice, with 80 % applied be-
fore seeding and the rest applied at the tillering phase. The
RF field was not irrigated during the whole growing season.
All field management practices conformed to local planting
cultures. The life history of the Unkwang rice is generally
aligned to a proposed classification of phenology in tem-
perate rice (Yoshida, 1981), in which the rice spends about
30 days in the vegetative stage after transplanting, 30 days in
the reproductive stage, and 30 days in the ripening period.

To better understand the physiological mechanisms that
may contribute to the spatial patters of per-field photosyn-
thetic productivity, a pair of experiments involving the PD
and RF Unkwang rice in a controlled growth chamber at
the University of Bayreuth (11◦34′ N, 49◦56′ E) were con-
ducted in September 2014. Thirty-day-old seedlings were
transplanted into plastic containers with a top diameter of
25.4 cm and a height of 25 cm with similar plant spacing
to the planting practice in the 2013 field experiment. The
equivalent fertilizer containing 115 kg N ha−1 was applied
two times for both the PD and RF rice, before transplant-
ing/sowing and at the tillering phase. All plants were then ac-
climated in the growth chamber to daytime air temperature of
30 ◦C, relative humidity of 60 %, night temperature of 25 ◦C,
and light intensity of 900 µmol m−2 s−1 (35.64 MJ m−2 d−1).
Soil water content (SWC) in the RF rice containers was
maintained between 0.2 and 0.4 m3 m−3 using soil moisture
sensors (EC-5, Decagon, WA, USA).

2.2 Field measurements of meteorological factors and
SWC

Meteorological factors including air temperature, relative hu-
midity, wind speed, precipitation, and global radiation were
continuously measured with a 2 m high WS-GP1 automatic
weather station (AWS) installed at a margin of the RF field
(Delta-T Devices Ltd., Cambridge, UK). Weather data were
recorded every 5 min, and were averaged and logged every
30 min. Additionally, values of SWC at depths of 10, 30, and
60 cm at three sites in the RF field were continuously mea-
sured every 15 min using the soil moisture sensors. SWC data
recorded by the sensors were calibrated by actual SWC mea-
surements conducted in the laboratory with the same soil.
SWC was then converted to soil water potential (ψs) with
standard soil water retention curves of Van Genuchten (1980)
as modified by Xue et al. (2016b).

2.3 Field measurements of diurnal courses of leaf and
canopy carbon dioxide (CO2) exchange

Diurnal gas exchange and chlorophyll fluorescence measure-
ments in fully expanded uppermost, second, third, and fourth
leaves of canopy profiles for the PD high-nutrient group
were conducted on day after transplanting (DAT) 57 and 73
(DOY 197 and 213, respectively) using a GFS-3000 portable
gas exchange and PAM-Fluorometer 3050-F chlorophyll flu-
orescence system (Heinz Walz GmbH, Effeltrich, Germany)
to track ambient environmental conditions external to the leaf
cuvette. Repeated measurements of diurnal courses of leaf
gas exchange were carried out in the uppermost leaves in the
PD low-nutrient group on DOY 171, 172, 179, 180, and 199
(DAT 31, 32, 39, 40, and 59, respectively); in the PD normal-
nutrient group on DOY 175, 177, 195, and 211 (DAT 35,
37, 55, and 71, respectively); in the PD high-nutrient group
on DOY 170 and 178 (DAT 30 and 38, respectively); and
in the RF rice on DOY 157, 181, 201, 205, 222, 223, 227,
231, 235, and 238. The midportions of two or three leaves
were enclosed in the leaf chamber from sunrise to sunset.
The photosynthetic rate and momentary micrometeorologi-
cal factors just above the plant canopies were recorded every
5 min, and automatic calibration was done by a user-defined
program every 15 min. Leaf light use efficiency based on
incident photosynthetically active radiation (PAR; LUEleaf)

was estimated using photosynthesis data recorded at incident
PAR < 200 µmol m−2 s−1.

The diurnal course of canopy gas exchange was
conducted in a custom-built transparent chamber
(L 39.5×W 39.5×H 50.5 cm) used for net ecosystem
gas exchange (NEE) measurement and in an opaque cham-
ber (L 39.5×W 39.5×H 50.5 cm) designed for ecosystem
respiration (Reco) measurement (Lindner et al., 2016; Xue
et al., 2016a) on ∼DOY 159, 167, 175, 200, 220, and
240. Measurements on DOY 240 were only available at
the PD normal-nutrient group and RF rice. Four white
frames, with three filled with healthy plants and one set
on bare soil without any plants, were randomly deployed
in each PD nutrient group and in the RF field (Lindner et
al., 2016). They were inserted into the soil at a depth of
10 cm before transplanting/sowing to block air leak at the
interface between the frame and soil surface, and kept in the
fields until plants were harvested. Diurnal courses of NEE
and Reco per square meter were monitored each hour from
sunrise to sunset. Differences of air temperature between
the inside and outside of the chamber were controlled to
< 1 ◦C using ice packs positioned at the back side of the
chamber to avoid shadow effects of the ice packs. Incident
PAR inside the transparent chamber was measured with a
LI-190 quantum sensor (LI-COR, Lincoln, NB, USA). GPP
estimation was derived using the equation

GPP = −NEE + Reco, (1)
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Figure 1. Illustration of the Gwangju study site where field data collection was carried out. Yellow square and white circles represent sites
of paddy fields and those marked for measurements of ground reflectance by one handheld miltispectral radiometer (MSR) to validate UAV
imagery. T1: PD rice under low-nutrient conditions (no supplementary nitrogen applied); T2: PD rice under high-nutrient conditions (180 kg
N ha−1); T3: PD rice under normal-nutrient conditions (115 kg N ha−1); and T4: RF rice (115 kg N ha−1). PD: paddy; RF: rainfed.

where Reco rates at times when NEE rates were measured
were determined from an exponential regression with respect
to chamber air temperature (Tair) (Xue et al., 2016a). A clas-
sical hyperbolic light response function (Eq. 5; see below)
was fit to estimate GPP (sum of NEE and Reco), yielding
canopy light use efficiency (LUEcint), defined as the initial
slope of the response, and an estimate of maximum GPP
rate (GPPmax) at a relatively high PAR level (Lindner et al.,
2016).

2.4 Field measurements of canopy reflectance

In situ reflectance measurements were carried out with a
model MSR4 handheld multispectral radiometer with four
spectral bands (CROPSCAN Inc., Rochester, MN, USA). In-
cident radiation was measured with a view angle of 180◦,
and that reflected by rice canopies was measured with a
view angle of 28◦. Weekly reflectance measurements con-
ducted around plants sampled for canopy gas exchange were
repeated six times in each PD nutrient treatment and three
times in the RF field at solar noon midday, when the sky was
clear without clouds. The normalized difference vegetation
index (NDVI) was a product of differences of reflectance in
the field of red (the central bandwidth of 660.9 nm) and near
infrared (the central bandwidth of 813.2 nm). Estimations of
ground-based NDVI were made on the days of canopy gas
exchange measurements (Xue et al., 2016a).

Spectral reflectance at fine spatial resolution ≈ 10 cm for
the whole PD field and RF field was measured on 21 June
(DOY 172, vegetative stage), 11 July (DOY 192, early re-
productive stage), 25 July (DOY 206, middle reproductive
stage), 8 August (DOY 220, early ripening stage), and 21 Au-
gust (DOY 233, middle ripening stage) using an unmanned
aerial vehicle (UAV) system (details of the construction of
the UAV system are given in Jeong et al., 2016). The UAV
images were acquired at approximately local noon ±30 min
(i.e., KST 12 : 10 to 13 : 10), when there were clear skies or
homogenous cloudy skies. The camera exposure was set at its
minimum value (0.5 µm s−1) under clear-sky conditions and
ranged between 1.0 to 2.0 µm s−1 under homogenous cloudy
skies to obtain the best images. When recording UAV im-
ages, the mini-MCA6 multispectral camera (Tetracam Inc.,
Chatsworth, CA, USA) loaded on board the UAV – which de-
tected ground reflectance with the wavelength bands of 450,
550, 650, 800, 830, and 880 nm – was always positioned ver-
tically to the ground.

Pseudo-invariant targets (PITs) at three different colors
(white, black, and gray) were placed adjacent to the PD
field prior to each UAV flight. At-surface reflectance values
of two selected wavebands at 800 and 650 nm from those
PITs were obtained using the other handheld spectrome-
ter (MSR16 with 16 wave bands; CROPSCAN). Linear re-
gression correlations were made between mini-MCA6 digi-
tal values and the reflectance from the MSR16 at each cor-
responding waveband, with a correlation coefficient rang-
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Figure 2. Seasonal courses of (a) normalized difference vegetation index (NDVI), (b) leaf area index (LAI), (c) canopy light use efficiency
based on incident PAR (LUEcint), and (d) maximum gross primary production (GPPmax)measured at plot level in the PD low-, normal-, and
high- nutrient groups, and in the RF rice. Statistic analysis showed significance at the 0.05 level (small letters) and at the 0.01 level (capital
letters). Mean±SD, n= 3 to 6. DOY: day of year. PD: paddy; RF: rainfed.

ing from 0.98 to 0.99 (detailed descriptions are provided
in Ko et al., 2015; Jeong et al., 2016). Camera measure-
ments were then calibrated based on at-surface measure-
ments by applying each linear regression to the field im-
agery. Evaluation of the radiometrically corrected UAV im-
ages was carried out by comparisons with measurements
of 16 ground point reflectance values, which comprised 12
points in paddy fields and 4 points in bright cement, dark
asphalt, bare soil, and tilled soil. There were close corre-
spondences between reflectance derived from the radiomet-
rically corrected UAV images and those measured at the
ground over all UAV flight dates, with correction efficiency
(E) up to 0.99 and root mean square error (RMSE) ranging
between 0.01 and 0.05 (Appendix Fig. A1). Radiometrically
calibrated reflectance at red, green, and blue bands (450, 550,
and 650 nm, respectively) on 21 June/DOY 172 (clear sky),
when low-density vegetation canopies with large exposure of
water surface were consistently lower than at-surface mea-
surements (Fig. A1a), resulting in risks of overestimating the
field NDVI (a product of differences in reflectance of the red
(650 nm) and near infrared (800 nm)) and therefore biased es-
timation of GPPday and LUEcabs. For the sake of brevity the
radiometrically calibrated camera reflectance of red wave-
band on 21 June/DOY 172 were recalibrated by a linear
regression line against at-surface measurements (Fig. A1a;
ρred ground meas = 1.761× ρred_UAV, R2

= 0.76, p<0.01).

2.5 Measurements of leaf area, N content, and leaf
water potential

After conducting leaf and canopy gas exchange measure-
ments, leaf samples were collected to estimate leaf area and
N content. Three bundles consisting of 15 plants from each
treatment were harvested on DAT 26, 33, 54, 72, and 86, and
total plant area (leaf and stem) was determined with a LI-
3100 leaf area meter (LI-COR, Lincoln, Nebraska, USA).
Leaves of the PD and RF rice grown in the growth cham-
ber were harvested on DAT 33 and 55. All plant materials
were dried at ∼ 60 ◦C for at least 2 days before measure-
ments of leaf nitrogen content. Leaf nitrogen content was
quantified using a C : N analyzer (Model 1500, Carlo Erba In-
struments, Milan, Italy). Weekly measurements of LAI were
conducted before DOY 220 using a LI-2000 portable plant
canopy analyzer (LI-COR) at the same locations where at-
surface canopy reflectance values were sampled using the
CROPSCAN. These were calibrated using those obtained by
the harvest method. LAI measurements on DOY 240 were
supplemented referring to Lindner et al. (2016). At the same
measuring times as leaf gas exchange was conducted in Au-
gust, daily courses of leaf water potential in the RF rice were
collected with a pressure chamber (PMS Instruments, Cor-
vallis, OR, USA). Healthy and well-expanded leaves in plant
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canopies were enclosed in a plastic bag before cutting and
rapidly transferred into a pressure chamber.

2.6 Data assimilation

Assessment of influences of field management practices (i.e.,
nutrient and water availability) in crop photosynthetic traits
and interpretation of the presence of such spatiotemporal
fluctuations require development of a data assimilation pro-
cess capable of linking in situ observations of leaf and
canopy photosynthetic traits and vegetation information at
field level. Here, a simple concept model aiming to resolve
the objective stated above was developed, up-scaling appli-
cation of the classical light response model of leaf photosyn-
thesis to canopy and field dimensions using hyperspectral re-
flectance of ground surface collected at corresponding scales
in Eqs. (2–8):

LUEcint = a1×LAI+ b1, (2)
GPPmax = a2×LAI+ b2, (3)

LAI= a3×NDVI2
+ b3×NDVI+ c3, (4)

GPPday =

N∑
j=1

LUEcint×GPPmax×PARj
LUEcint×PARj +GPPmax

, (5)

fAPAR= fAPARmax

[
1−

(
NDVImax−NDVI

NDVImax−NDVImin

)ε]
,

(6)

fAPAR= a4×NDVI+ b4, (7)

LUEcabs =
GPPday

fAPAR×PARday
, (8)

where, in Eq. (2), a1 and b1 are regression coefficients for the
LUEcint–LAI correlation based on plot measurements (Ta-
ble 1). In Eq. (3), a2 and b2 are regression coefficients for the
GPPmax–LAI correlation based on plot measurements (Ta-
ble 1), consistent with previous reports (Lindner et al., 2015,
2016). In Eq. (4), a3, b3, and c3 are regression coefficients for
the LAI–NDVI mathematic correlation across all data sets
based on plot measurements (Table 1), which is consistent
with a 3-year report in rice in terms of LAI–NDVI trajectory
by Jo et al. (2015). In Eq. (5) GPPday is daily integrated GPP
per pixel, a product of light use efficiency based on incident
PAR (LUEcint), GPPmax, and half-hourly averaged PARj ob-
tained from the AWS. N is the number of observations of in-
cident PAR during daytime. In Eq. (6), fAPARmax is the max-
imum fraction of absorbed photosynthetically active radia-
tion, NDVImax is the maximum NDVI of the fAPAR–NDVI
relationship, NDVImin is the minimum NDVI, and ε is a coef-
ficient for green crop canopies, referring to Table 1 and Xue
et al. (2016a). a4 and b4 in Eq. (7) are regression coefficients
for the fAPAR–NDVI correlation in senescing canopies (Ta-
ble 1, referring to the stage after the middle ripening stage in
rice), derived from Inoue et al. (2008). Light use efficiency
based on daily canopy light interception per pixel (LUEcabs)

in Eq. (8) is a product of GPPday, fAPAR, and PARday (daily
integrated incident PAR).

2.7 Geospatial statistic

Regionalized variable theory takes the differences between
pairs of values separated by a certain quantity, usually dis-
tance, commonly expressed as variance (Vieira et al., 1983).
A widely used geostatistical analysis to depict the spatial cor-
relation structure of observations in space such as field soil
fertility and temperature as well as other ecological processes
is semi-variogram (Pierson and Wight, 1991; Loescher et al.,
2014), given by

γ (h)=
1

2N(h)

N(h)∑
j=1

[
z
(
xj
)
− z

(
xj +h

)]2
, (9)

CVsill =

√
2× γsill

Mean
, (10)

where z(xj ), j = 1, 2, . . ., n denotes the set of
GPPday/LUEcabs data; xj is the vector of spatial coordinates
of the jth observation; h is the pixel distance of sample val-
ues (lag); N(h) is the number of pairs of values separated by
lag; and γ (h) is semi-variance for the lag. CVsill is a coeffi-
cient of variance using the sill and value of the mean for esti-
mation. The semi-variogram simply describes how the vari-
ance of observations changes with the distance in a given
direction, or it is averaged over all directions. The averaged
semi-variance over all directions used in this research looked
for an overall pattern between proximity and the similarity
of pixel values, providing a single value that describes the
spatial autocorrelation of the data set as a whole. Most of-
ten, semi-variance values increase until they reach a maxi-
mum approximately equal to the sample variance of the mea-
sured variable known as the “sill”. The lag at which the sill is
reached is known as the “range”. Beyond the range, values of
observations are no longer spatially correlated. Sill values re-
fract magnitude of spatial variability of variables in the field.
Several simple functions are commonly used to model semi-
variogram, which must be proven to be definitely positive.
An exponential rise to the maximum function for approxi-
mating a spherical model was used to extrapolate the value
of the sill, listed below:

γ (h)= a× (1− exp(−b×h)), (11)

where b is the sill and a is the nugget value.

2.8 Statistical analysis

Descriptive statistics of the data-included computation of
the sample mean, maximum (max), and coefficient of vari-
ation (CVtraditional). A nonlinear least-squares method for
GPP/PAR curves was executed using R software (R 3.2.3,
R Development Core Team, Austria). The data fitting that
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Table 1. Values of coefficients for Eqs. (2–7).

Eqs. Coef. Values Coef. Values Coef. Values Coef. Values

Eq. (2) a1_PD 0.0074 b1_PD 0.0107
a1_RF 0.0211 b1_RF 0.0070

Eq. (3) a2 8.571 b2 4.081
Eq. (4) a3 7.398 b3 −1.752 c3 0.452
Eq. (6) fAPARmax 0.95 NDVImax 0.94 NDVImin 0.11 ε 0.6
Eq. (7) a4 0.169 b4 0.765

∗ Values of coefficients for Eq. (7) were derived from Inoue et al. (2008). PD: paddy rice; RF: rainfed rice.

links remote-sensing data and ecophysiological measure-
ments and geostatistical analyses were processed using IDL
8.0/ENVI 4.8 software (EXELIS Inc., Rochester, NY, USA).

3 Results

3.1 Seasonal courses of at-surface NDVI, LAI, LUEcint,
and GPPmax

Analysis of variance (ANOVA) for NDVI indicated that
NDVI values measured around DOY 170 between the PD
normal- and high-nutrient groups were analogous but signif-
icantly higher than the low-nutrient group at the 0.05 level
(Fig. 2a; p = 0.026). There was not a statistical difference
at the 0.05 significance level between the RF and PD low-
nutrient group. No significant discrepancy existed between
the PD normal- and high-nutrient groups over the growing
season (p>0.1). Higher NDVI at the PD fertilizer addition
groups was evident during the vegetative stage and early in
the reproductive stage before DOY 200 (p = 0.06). Such
a clear discrepancy in NDVI between the PD low-nutrient
and fertilization groups and the RF rice was not evident
after DOY 210 (p = 0.10). NDVI values advanced to de-
cline after plants in the PD field arrived at maximum lev-
els around DOY 210. However, the RF rice remained green
around DOY 240 with approximately 23 % higher LAI when
plants in the PD field started senescence (Fig. 2b), which re-
sulted in a relatively higher at-surface NDVI that was cap-
tured also by field images of NDVI derived from the UAV
system. LAI in the PD normal-nutrient group was simi-
lar to those of the high-nutrient group at the corresponding
growth stages (Fig. 2b), consistent with a seasonal course of
NDVI for the normal/high-nutrient groups. Enhanced LAI
development with addition of fertilizer was evident after
DOY 180 (Fig. 2b; p<0.05), and N-related effects persisted
until around DOY 210, consistent with NDVI development
among PD nutrient groups. LAI in the RF rice ranged be-
tween the PD low-nutrient and fertilization groups, while it
remained higher on DOY 240. Regression analysis for the
NDVI–LAI relationship in grouped data sets showed a com-
mon trajectory across the PD nutrient groups and RF rice
(Fig. 3a; R2

= 0.95, p<0.001).

A curvilinear response of the GPP rate to incident PAR
fit well with the classical light response model at each mea-
suring date (data not shown), as previously reported (Eq. 5;
Lindner et al., 2016). The resulting LUEcint on DOY 160 was
approximately 0.01 µmol CO2 µmol−1 PARincident, crossing
the PD nutrient groups and the RF rice, and rapidly increased
after DOY 180 (Fig. 2c). Differences in LUEcint among the
PD nutrient groups were relatively small (< 20 %) on the cor-
responding dates. Nevertheless, the RF rice presented dra-
matically high LUEcint as compared to the PD rice from
DOY 180 to the end of the growing season, showing the
highest values at 0.11 and 0.05 µmol CO2 µmol−1 in the RF
and PD rice, respectively. Generally speaking, PD rice in the
fertilization groups had dramatically higher GPPmax, with
a maximum level of 51.60 µmol CO2 m−2 s−1 compared to
38.90 µmol CO2 m−2 s−1 of the low-nutrient group (Fig. 2d).
Maximum GPPmax in the RF rice was analogous to that of the
PD rice and remained higher on DOY 240 (p<0.01), which
was ascribed to green LAI (Fig. 2b). Similarities in photo-
synthetic traits in terms of NDVI, LAI, GPPmax, and LUEcint
between the normal- and high-nutrient groups at the corre-
sponding growth stages were evident. Hence, comparisons
in those parameters stated below referred to the PD low- and
normal-nutrient groups.

Relatively low LAI in the RF rice during the reproduc-
tive stage but higher LUEcint than the PD at the same grow-
ing stage resulted in a distinction regarding the LAI–LUEcint
correlation associated with slope (Fig. 3c; R2

= 0.74, p =
0.02 in RF, R2

= 0.85, p<0.0001 in PD; F = 22.16, p =
1.398e− 05; see Table 1). A common linear regression for
the LAI–GPPmax correlation that interpreted approximately
88 % of variations in GPPmax across the PD nutrient groups
and RF rice was evident (Fig. 3b; R2

= 0.88, p<0.0001).
Canopy leaf nitrogen content (Nm, %) collected in the field
and controlled growth chamber was significantly higher in
the RF rice after DOY 180 (Fig. 4a, b; p<0.05). Light use ef-
ficiency at leaf level (LUEleaf) was positively correlated with
Nm (Fig. 4b; R2

= 0.65, p = 0.0007). This implied that the
improved LUEcint in the RF rice observed after DOY 180
could be related to strengthened capacity of N accumulation
in canopy leaves.
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Figure 3. Correlations between (a) normalized difference vegetation index (NDVI) and LAI, (b) GPPmax and LAI, and (c) canopy light use
efficiency (LUEcint) and LAI across the PD low-, normal-, and high-nutrient groups, and in the RF rice. Mean±SD, n= 3 to 6. PD: paddy;
RF: rainfed.

Figure 4. Seasonal courses of leaf nitrogen content (Nm) in (a) the PD low-, normal-, and high-nutrient groups, and in the RF rice in the
field, and (b) in a controlled growth chamber. (c) Correlation between leaf light use efficiency (LUEleaf) and Nm crossing the PD and RF
rice. Mean±SD, n= 3 to 6. Statistic analysis showed significance at the 0.05 level (small letters) and at the 0.01 level (capital letters). DOY:
day of year; DAT: day after transplanting; PD: paddy; RF: rainfed; GC: growth chamber.

3.2 Field mapping of GPPday and LUEcabs

Field maps of GPPday and LUEcabs at principle growth stages
(Figs. 5 and 6) clearly showed that seasonal change of within-
field GPPday at each nutrient group could be quantitatively
mapped using three colors (yellow, blue, and red) corre-
sponding to low, medium, and high numerical values (respec-
tively). Pink pixels and bright red pixels were respectively
observed in the PD and RF rice on measuring date 8 August
(DOY 220), during which time most rice plants proceeded to
ripen, showing the highest LAI. However, color distribution
in space at a specific growth stage within nutrient groups, es-
pecially in the normal- and low-nutrient groups on 11 July
(DOY 192) and 21 August (DOY 223), seemed to be uneven
(Fig. 5b, d). Furthermore, uneven distribution in the RF rice
was intensified as compared with the PD rice on the corre-
sponding dates. For LUEcabs, appearance of greater spatial
variability in color distribution was seen at the early growth
stage in both PD and RF rice (Fig. 6a, e), which seemed
to contrast with spatial aspects of GPPday over the growing

season. LUEcabs distributions in space over the reproductive
stage (11 July, DOY 192) tended to approach homogeneity
in either PD nutrient groups or RF rice (Fig. 6b, c, f, g).

Descriptive statistics including mean, max, and
CVtraditional in GPPday and LUEcabs respectively de-
scribed their mean, their maximum values at field scale,
and within-field variation of mean across the growing
season (Table 2). Max GPPday differed significantly between
the normal- (7.29 g C m−2 d−1) and low-nutrient (3.78 g
C m−2 d−1) groups 4 weeks after transplantation, which
was clearly apparent in the visual display of pixel GPPday
as well (Fig. 5a, d). Nevertheless, field mean values among
the three nutrient groups were close to one another. The
enhanced field mean of GPPday in the normal-nutrient group
by approximately 36 % compared to the low-nutrient group
appeared on 11 June (DOY 192). Such a large discrepancy
persisted until the end of the growing season. Except for
the early growth stage, the three nutrient groups showed
similar values in the maximum GPPday, which reached
12.49 g C m−2 d−1 for the normal-nutrient group around
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Figure 5. Field mapping of daily integrated gross primary productivity (GPPday) in the PD rice and RF rice at principle growth stages:
vegetative stage (21 June/DOY 172), middle reproductive stage (11 July/DOY 192), early ripening stage (8 August/DOY 220), and middle
ripening stage (21 August/DOY 233). Date are expressed as MM DD/DOY. DOY: day of year; PD: paddy; RF: rainfed.

Figure 6. Field mapping of canopy light use efficiency (LUEcabs) in the PD rice and RF rice at principle growth stages: vegetative stage
(21 June/172), middle reproductive stage (11 July/192), early ripening stage (8 August/220), and middle ripening stage (21 August/233).
Date is expressed as MM DD/DOY. DOY: day of year; PD: paddy; RF: rainfed.
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8 August (DOY 220) and then declined with senescence.
The maximum GPPday predicted using a light use efficiency
model in our previous report (Xue et al., 2016a) tended to
be higher than the one shown here for the normal-nutrient
group, which is thought to be due to model sensitivity to
changes in ambient light environment.

Rice plants grown in the RF field showed significantly
higher mean and maximum GPPday than the PD rice at re-
spective growth stages (Table 2). However, CVtraditional in
the RF rice was about 2 times higher than the PD normal-
and low-nutrient groups several weeks after transplantation.
The PD normal-nutrient group displayed a higher CVtraditional
quantified on 21 June (DOY 172), followed by the high- and
low-nutrient groups. Differences in CVtraditional among the
PD nutrient groups disappeared over time, consistent with the
color display in field map of GPPday in Fig. 5c and d. The re-
sults suggested that although addition of fertilizer in the tra-
ditional way can promote increment of field average GPPday,
it dramatically strengthened field variations of GPPday during
the early growth stage in the paddy field setting. As we ex-
pected, the change in planting culture from flooding to rain-
fed promoted the enhancement of field variations in the mean
of field GPPday, probably due to the rising risk of soil water
availability when prolonged drought events occur.

LUEcabs appeared to be higher early in the growing sea-
son; rapidly declined after plant growth and development ad-
vanced to the reproductive stage; and gradually decreased
to approximately 0.52 and 0.81 g C MJ−1 at the senescence
stage in the PD and RF rice, respectively (Table 2). The RF
rice had clearly high values of average LUEcabs as compared
to the PD by approximately 21, 35, 26, and 36 % on 11 July,
25 July, 8 August, and 21 August, respectively, apart from
21 June, when the PD and RF showed similar LUEcabs of
around 1.4 g C MJ−1. Enhanced LUEcabs in the RF rice over
the growing season was likely due to higher leaf nitrogen
content as shown in Fig. 4a.

The seasonal course of CVtraditional of LUEcabs among the
PD nutrient groups exerted a similar tendency, assembling
the mean of GPPday (Table 2). CVtraditional in the normal-
and high-nutrient groups was analogous over time, while ap-
pearing to be higher on 21 June (DOY 172) and 11 July
(DOY 192) by approximately 62 and 50 %, respectively, than
the low-nutrient group. Interestingly, CVtraditional in the fertil-
ization groups (normal- and high-nutrient groups) displayed
approximately 53 and 30 % higher values, respectively, than
the RF rice at the early growth stage (21 June/DOY 172
and 11 July/DOY 192). Similar to drought impacts in am-
plifying CVtraditional in GPPday on 21 August (DOY 233) in
the RF rice, amplified CVtraditional in LUEcabs was also ob-
served. Lower CVtraditional and similarities in LUEcabs over
field space on 25 July (DOY 206) and 8 August (DOY 220)
corresponded well to the field map of LUEcabs at correspond-
ing dates, meaning that field mapping in proper ways also
could visibly deliver distribution information of ecosystem
photosynthetic traits in space.

3.3 Semi-variograms of GPPday, LUEcabs, and LAI

Semi-variogram analysis is a widely used geostatistical pa-
rameter to quantitatively evaluate spatial variation. Sill val-
ues were derived from exponential rise to maximum func-
tion, which fit the values of semi-variogram at each nutrient
and/or water treatment (R2>0.83, p<0.01). Values of CVsill
in GPPday were significantly and positively correlated with
CVtraditional (R2

= 0.83, p<0.001; Fig. 7a), demonstrating
that the semi-variogram accurately captured patterns of spa-
tial variability in those ecophysiological traits among the nu-
trient treatments and RF rice. Estimates of CVsill among the
nutrient groups were generally close to those of CVtraditional,
approaching the 1 : 1 line (Fig. 7a). However, CVtraditional
values in the RF rice were commonly lower by approxi-
mately 20 % than CVsill at the principle growth stages. This
occurred because the traditional method of calculating CV
does not account for spatial correlation in data, suggesting
that spatial heterogeneity in the RF field associated with wa-
ter availability and resulting crop growth was greater than in
the PD rice. This was also proven by averaged CVsill in the
RF that was greater by about 50 % than that of the PD rice
averaged across the nutrient groups (Table 3).

A significantly positive correlation between CVsill and
CVtraditional was observed in LUEcabs as well (R2

= 0.89,
p<0.001; Fig. 7b). All CVsill sampled across the PD nutri-
ent groups and RF rice resided at the right side of the 1 : 1
line, being higher than CVtraditional but analogous between
the PD and RF rice, which was different from the signif-
icant difference in CVsill of GPPday between the PD and
RF rice shown in Fig. 7a. It was also evident by average
CVsill of 11.66 (%) in the RF rice, which was close to the
value of 14.37 of the PD rice averaged across nutrient groups
(Table 3), meaning that spatial variability of LUEcabs in the
PD rice exerted great amplitude that tended to be similar to
the RF rice. A positively linear correlation between CVsill
and CVtraditional was evident in LAI (R2

= 0.80, p<0.001;
Fig. 7c). Data points collected over the PD nutrient groups
oscillated closely around the 1 : 1 line; an exception was ob-
served in the RF rice, which reassembled the phenomena ob-
served in the CVsill–CVtraditional relationship for GPPday but
differed from that for LUEcabs. Given the tight correlation be-
tween CVsill and sill values, sill instead of CVsill was used in
spatial analysis for GPPday and LUEcabs as discussed below.

3.4 Spatial patterns of GPPday, LUEcabs, and LAI

Seasonal development in sill values of GPPday exhibited a
similar tendency across the PD nutrient groups and RF rice,
with an increase from the vegetative stage to the early re-
productive stage followed by a decline (Table 3, upper part).
A paired t test across the range of DOY showed that differ-
ence of sill in the RF rice was significantly different from the
PD nutrient groups (p<0.05). Nevertheless, significant dif-
ferences were not repeatedly observed among the PD nutrient
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Table 2. Descriptive statistics of GPPday (g C m−2 d−1) and LUEcabs (g C MJ−1) at each nutrient treatment in the PD rice and at the RF
rice over principle growing stages. Date is expressed as MM DD/DOY. DOY: day of year; PD: paddy; RF: rainfed.

GPPday LUEcabs

Low Normal High Rainfed Low Normal High Rainfed

21 June/172

Mean 2.32 2.56 2.33 4.53 1.16 1.67 1.43 1.3
Max 3.78 7.29 3.51 10.57 ∼ 3.50 ∼ 3.50 ∼ 3.50 3.18
CVtraditional 2.16 % 14.06 % 5.15 % 25.81 % 17.24 % 47.90 % 48.95 % 22.00 %

11 July/192

Mean 6.16 9.57 8.35 10.99 0.68 0.62 0.73 0.86
Max 11.21 12.73 11.97 16.93 1.72 2.75 2.86 2.35
CVtraditional 21.36 % 14.52 % 20.37 % 26.32 % 4.92 % 11.29 % 9.20 % 7.09 %

25 July/206

Mean 7.93 9.74 9.45 14.28 0.7 0.68 0.68 1.08
Max 10.97 11 11.04 17.15 0.87 1.32 1.06 1.79
CVtraditional 13.55 % 9.22 % 10.12 % 16.89 % 4.38 % 8.82 % 4.94 % 4.81 %

8 August/220

Mean 9.56 10.85 10.57 15.41 0.66 0.62 0.63 0.87
Max 12.28 12.49 12.41 18.11 1.58 1.42 1.57 0.95
CVtraditional 8.89 % 7.77 % 8.77 % 15.36 % 4.54 % 4.19 % 4.12 % 4.65 %

21 August/233

Mean 7.13 7.69 7.45 12.14 0.49 0.52 0.52 0.81
Max 9.94 10.73 10.22 15.91 0.66 0.71 0.68 1.05
CVtraditional 9.23 % 8.49 % 8.88 % 19.91 % 6.93 % 7.69 % 6.73 % 19.75 %

groups. Early in the growth season (i.e., 21 June/DOY 172
and especially on 11 July/DOY 192), the normal- and high-
nutrient groups had relatively high sill by an average of
44 % as compared to the low-nutrient group, suggesting that
fertilizer addition could contribute to spatial variability of
GPPday, which conforms to differences in CVtraditional (Ta-
ble 2). As expected, sill of the RF rice measured on 21 Au-
gust/DOY 233 increased in contrast to observed seasonal
tendency of sill that was supposed to decline, due to oc-
currence of a prolonged drought event in mid-August dur-
ing which time leaf water potential around solar noon de-
clined to−2.0 MPa and severe leaf rolling occurred (data not
shown). Significant impacts by drought on GPPday were ob-
served. Seasonal courses of sill in LAI across the PD nutrient
groups and the RF rice were similar to those of GPPday (Ta-
ble 3, middle part). Sills of LAI in the RF rice were generally
higher than the PD rice at corresponding growth stages.

Sill of LUEcabs showed a seasonal trend that was simi-
lar to GPPday (Table 3, lower part). The prolonged drought
event occurring in August contributed to spatial variability in
the RF rice as indicated by greater sill of 0.0142 compared
with 0.0032 on 8 August (DOY 220). ANOVA indicated no
difference at the 0.05 significance level among the three PD

nutrient groups over the growing season (p = 0.67), whereas
the mean sill value of 0.4492 on 21 June (DOY 172) was
improved by approximately 94 % for the normal- and high-
nutrient groups compared to the value of 0.03 for the low-
nutrient group, resembling comparisons in sill of GPPday and
field maps shown in Fig. 6a. The results implied that fertil-
izer addition can enhance spatial variability of LUEcabs espe-
cially early in the growing season. Interestingly, at the early
growth stage, especially on 21 June (DOY 172) and 11 July
(DOY 192), the PD nutrient addition groups had average sill
values that were approximately 85 % than the RF rice. There-
after the values of RF rice became greater, meaning that spa-
tial variability of LUEcabs in the PD rice amplified by field
nutrient application could be even greater than the RF rice, in
contrast with aforementioned GPPday spatial variability be-
tween the PD and RF rice.

3.5 Spatial correlation for GPPday, LUEcabs, and LAI

LUEcabs was calculated by Eq. (8), consisting of GPPday
and fAPAR variables, meaning that spatial variations of
LUEcabs may greatly influence GPPday. Sill values or CVsill
for GPPday and LUEcabs were not significantly correlated
with one another when all data sets were grouped across
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Figure 7. Coefficient of variation (CVtraditional) calculated by dividing the standard deviation by the mean versus coefficient of variation
(CVsill) calculated using the semi-variogram sill across the PD nutrient groups and the RF rice for variables (a) GPPday, (b) LUEcabs, and
(c) LAI. Subplot (d) shows the sillGPP–sillLAI relationship in the PD and RF rice. RF: rainfed; PD: paddy.

Table 3. Sill values of semi-variograms and CVsill for GPPday (g C m−2 d−1, upper part), LAI (m2 m−2, middle part), and LUEcabs
(g C MJ−1, lower part) at the PD rice subject to low, normal, and high nitrogen gradients and at the RF rice over the principle grow-
ing seasons: vegetative stage (21 June), reproductive stage (11 and 25 July), ripening stage (8 and 21 August). Date is expressed as
MM DD/DOY. DOY: day of year; PD: paddy; RF: rainfed.

Growth stage Date/DOY Low Normal High Rainfed

GPPday Sill CVsill Sill CVsill Sill CVsill Sill CVsill

Vegetative 21 June/172 0.01 2.86 % 0.09 16.57 % 0.01 6.10 % 0.98 30.91 %
Reproductive 11 July/192 0.45 15.40 % 0.78 13.05 % 0.79 15.05 % 6.15 31.91 %

25 July/206 0.37 10.85 % 0.31 8.08 % 0.37 9.10 % 6.03 24.32 %
Ripening 8 August/220 0.42 9.59 % 0.25 6.52 % 0.43 8.77 % 2.57 14.71 %

21 August/233 0.20 8.87 % 0.23 8.82 % 0.22 8.90 % 4.77 25.44 %

LAI

Vegetative 21 June/172 0.0015 14.19 % 0.0219 42.48 % 0.0026 18.40 % 0.1079 43.75 %
Reproductive 11 July/192 0.1111 20.81 % 0.2869 19.96 % 0.2076 18.91 % 0.6915 37.36 %

25 July/206 0.1866 14.68 % 0.2924 14.76 % 0.1535 10.71 % 0.6127 22.07 %
Ripening 8 August/220 0.4306 23.99 % 0.1148 10.10 % 0.1174 10.37 % 0.4050 18.83 %

21 August/233 0.0910 12.02 % 0.2015 16.72 % 0.0879 11.14 % 0.6622 27.59 %

LUEcabs

Vegetative 21 June/172 0.0302 21.19 % 0.5478 62.68 % 0.3506 58.56 % 0.0633 27.37 %
Reproductive 11 July/192 0.0190 28.67 % 0.0065 18.39 % 0.0073 16.55 % 0.0041 10.53 %

25 July/206 0.0008 5.71 % 0.0031 11.58 % 0.0011 6.90 % 0.0070 10.96 %
Ripening 8 August/220 0.0011 7.11 % 0.0010 7.21 % 0.0007 5.94 % 0.0032 9.20 %

21 August/233 0.0009 8.66 % 0.0024 13.32 % 0.0008 7.69 % 0.0142 20.81 %
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the PD nutrient groups and RF rice over the growing sea-
son (R2 < 0.14, p>0.01). Significantly positive correlations
were found for the sillGPP day–sillLAI relationship in the PD
nutrient groups (Fig. 7d; R2

= 0.36, p = 0.012) and in the
RF rice (Fig. 7d; R2

= 0.85, p = 0.015), suggesting that the
primary factor that mediated GPPday spatial variation in the
PD nutrient groups, especially in the RF rice, was LAI devel-
opment.

3.6 Implied ecological implications of canopy leaf
physiology

Ecological implications of canopy leaf physiology (i.e.,
LUEcabs) in monitoring of spatial variation and strength of
GPPday for the same plant function type (PD and RF rice)
were analyzed using scenario analysis. The analysis applied
LUEcabs of the PD rice on 8 August (DOY 220) in the es-
timation of the RF rice GPPday on the same date, yielding
comparisons in field map of GPPday (Fig. 8a, b) and quantita-
tive assessment (Fig. 8c). The field map of predicted GPPday
using PD LUEcabs indicated blue as the prevailing color as
compared to the prevailing red color in the field map of the
initial estimation, indicating a significant underestimation of
GPPday especially at the sites showing high LAI (Fig. 8c).
The results suggested that delicate variations in canopy leaf
physiology among the same plant function type across vari-
ous habitat conditions are vital.

4 Discussions

A series of successive effects regarding rice growth and en-
vironment perspectives from the leaf to the ecosystem have
been revealed in our research group, with the aim of clar-
ifying the physiological mechanisms responsible for opti-
mal carbon gain and water use at the leaf level as well as
their plastic acclimation to changing ambient environments
(Xue et al., 2016b, c); discerning the roles of canopy struc-
ture and function in determining canopy carbon gain in in-
dividual organisms in different field management conditions
and anthropogenic interventions (Lindner et al., 2016; Xue
et al., 2016a); increasing the understanding of the influences
of climate change, phenology, and rice ecosystem photosyn-
thetic productivity (Xue et al., 2017); and facilitating a dis-
cussion of the ecological implications of the life history of
rice crops in controlling regional carbon fluxes in the agri-
culture landscape (Lindner et al., 2015). There are large fluc-
tuations of ecosystem photosynthetic productivity at differ-
ent geographic sites. However, the fluctuations have not been
statistically correlated with the rate of N application, which
does significantly contribute to rice growth at the individual
level. This is thought to be due to various factors, including
inter- and intra-field variations of ecosystem photosynthetic
productivity. This highlights the need for field/microsite-
directed research to gain new insights into how water and

Figure 8. Effects of light use efficiency (LUEcint) on estimation of
daily integrated photosynthetic productivity (GPPday) at ripening
stage in the RF rice. GPPday estimation using (a) observed LUEcint
in the RF rice, (b) LUEcint of the PD rice (GPPday_LUEcint_PD);
i.e., GPPday estimation of the RF rice was carried out by adopting
the LUEcint value of the PD rice at the ripening stage. (c) Quantita-
tive comparisons between GPPday and GPPday_LUEcint_PD based
on pixel LAI. PD: paddy; RF: rainfed.

N availability affect photosynthetic productivity at individ-
ual and microsite scales.

4.1 Feasible application of the UAV system to capture
spatiotemporal variations of GPPday

Applications of close-range remote sensing in studies of
vegetation dynamics regarding plant growth and phenol-
ogy have been increasingly explored, partially due to small-
scale pixel-to-pixel detection that eliminates the averaging
involved in larger pixels. It compensates for the regional ob-
servations of a satellite remote-sensing system. UAV-based
applications in agronomical studies has been tested and in-
clude evaluation of spatial variability of soil N content in
a winter wheat field (Cao et al., 2012), detection of canopy
N status in irrigated maize (Bausch and Khosla, 2010), and
mapping of cereal yield using field vegetation indices (Fisher
et al., 2009; Swain et al., 2010; Tubaña et al., 2012; Zhang
and Kovacs, 2012) with rice growth and yield included (Ko et
al., 2015). Recent attempts were made to apply narrow-band
multispectral imagery derived at the plot level in monitoring
of whole field C content of lucerne plants (Wehrhan et al.,
2016). Furthermore, an applicable crop information deliv-
ery system tested in rice ecosystems by Ko et al. (2015) and
Jeong et al. (2016), which took several valuable high-spatial-
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resolution vegetation indices into account, captured delicate
changes in crop growth and yield among the pixels. In this
research, diagnostic information derived from high-spatial-
resolution images could be strongly linked to canopy bio-
physical traits in the paddy and rainfed rice, allowing season-
ally zonal maps of GPPday and LUEcabs to be made (Figs. 5
and 6), and assisting in the evaluation of spatial variation of
those functional traits.

Practical application of the UAV technique in the field re-
quires a number of procedural steps. They include image pre-
processing, image interpretation, and data extraction. Inte-
gration of the data with agronomic data in expert systems
still needs to be developed and improved before end prod-
ucts can be germane for decision making (Zhang and Ko-
vacs, 2012). An empirical calibration method adopting spec-
tral reflectance from three types of PITs was applied to pro-
cess radiometric correction of UAV images on each mea-
suring date. Although calibrated UAV reflectance and at-
surface measurements usually closely corresponded during
the middle and late growing seasons, the empirical calibra-
tion tended to underestimate ground reflectance especially
in red reflectance at the early growth stage. This was prob-
ably due to water scattering effects. The UAV flight sched-
ule that is always scheduled at solar noon may not be the
best option to obtain a close correspondence between cam-
era reflectance and ground surface measurements at the early
growth stage. Another empirical regression linking radiomet-
rically calibrated UAV images and plot measurements was
applied instead of considering complex mechanisms of light
scattering in the area of physical category. The methods used
to recalibrate UAV images on 21 June (DOY 172) may yield
biased estimations of field reflectance due to the limited num-
ber of ground reflectance swatches that were deployed in the
limited space. Leaves of plants grown under fertilizer ad-
dition conditions had higher N content at the early growth
stage, resulting in greater LUEcabs (Sinclair and Horie, 1989;
Xue et al., 2017). On average, LUEcabs in the fertilization
groups where plants accumulated more N in leaves on 21
June (Fig. 4a) was higher than in the low-nutrient group (Ta-
ble 2), which implies the pragmatic feasibility of adopting
the recalibration routine to acquire correct UAV products.

The data fitting concept that integrates traditional physi-
ology approaches at the plot level and close-range remote-
sensing information requires reliable establishments regard-
ing correlations between ground surface measurements of
VIs and LAI, LAI and LUEcint, and GPPmax. Reliable re-
lationships between those biophysical traits were inferred
across the paddy and rainfed rice (Fig. 3). Nevertheless, data
sets for the LAI–LUEcint correlation in the rainfed rice were
limited mainly due to the difficulty in physically performing
measurements of diurnal courses of leaf and canopy gas ex-
change and measurements of other plant parameters in the
paddy nutrient groups and rainfed rice. Supplement data sets
in terms of the LAI–LUEcint correlation in the rainfed rice, as

well as other main crops, will be conducted as the technical
barriers are overcome.

4.2 Spatial variability of photosynthetic trait in the
rainfed field is not always greater than in the paddy
field

The burgeoning global population continues to increase the
demand for water and food staples, including rice. Further-
more, the looming specter of water scarcity in the coming
decades in some regions now capable of flooding of crop
fields highlights the need for turning flooding culture into
multicultural management, including the paddy and rainfed
systems. The expansion of rice planting to different geo-
graphic sites, particularly in regions lacking the capability of
irrigation and/or flooding of crop fields is always featured by
large variations of seasonal photosynthetic productivity (Ser-
raj et al., 2008). Therefore, a critical concern related to the
reported observation is how water availability in the rainfed
fields could influence spatiotemporal variations of ecosystem
photosynthetic productivity as compared to paddy fields. In
the present study, spatial variations of GPPday and LAI in the
rainfed field were amplified compared to the paddy nutrient
groups at corresponding growth stages (Table 3). However,
spatial variation of LUEcabs at the early growth stage (21
June/DOY 172 and 11 July/DOY 192) in the paddy fertiliza-
tion groups was significantly greater than the rainfed rice at
the same times, suggesting that spatial variability of the pho-
tosynthetic trait in the rainfed field does not always exceed
that of paddy fields, depending on nutrient availability. Fur-
thermore, nutrient addition at the early growth stage could
amplify spatial heterogeneity of GPPday and LUEcabs in the
paddy field, while such nutritional effects are dismissed at
reproductive and ripening stages.

4.3 Implied ecological implications of field niche in a
spatially hierarchical remote-sensing network

In situ plot data are important for the accurate interpretation
of ecosystem carbon dynamics in response to different field
management methods and anthropogenic interventions that
involve influences on plant structure and physiology. While
plot data provide the most detailed information on rice car-
bon and water vapor gas exchange, applying this understand-
ing to broader spatial and temporal domains requires scaling
approaches. As mentioned before, the field niche between in
situ plot and regional dimension is supposed to be a key chain
of a spatially hierarchical remote-sensing network (Masek et
al., 2015; Pause et al., 2016). Applications of the data fu-
sion at the microsite/field scale that combine observations of
in situ canopy structure and function with field crop infor-
mation derived from the UAV system capture critical growth
information of rice crop in space.

Spatial variations in GPPday over the paddy nutrient
groups and rainfed rice tend to be primarily mediated by
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LAI. Canopy structure (i.e., LAI) is the main biotic factor
in paddy rice ecosystems, yielding a great impact on the sea-
sonal course of ecosystem photosynthetic productivity (Xue
et al., 2017). Variations of the overall growing season pho-
tosynthetic productivity are significantly mediated by fluctu-
ations of daily GPP at the ripening stage when canopy LAI
is maximized. The scenario analysis in Fig. 8 documented
marked underestimations of GPPday in the rainfed rice at the
beginning of the ripening stage when applying LUEcabs of
the paddy rice in spatial monitoring of GPPday in the rain-
fed field. Enhanced LUEcabs after DOY 180 in the rainfed
rice could be primarily ascribed to greater capacity of N ac-
cumulation (Fig. 4) and/or to efficient P uptake (Kato et al.,
2016) that was not quantified here. Changes in leaf N allo-
cation within leaves that relate to photosynthetic activity of
individual leaves may also have important implications like
plant biomass production (Karaba et al., 2007; Wang et al.,
2014) or may not affect biomass (Tanaka et al., 2013; Dow
and Bergmann, 2014), and they must be investigated along
with canopy structure. There is a need to consider variations
in canopy leaf physiology for the same plant function type
across various habitat conditions. The results will hopefully
assist in better monitoring of per-field photosynthetic pro-
ductivity and biological interpretation of its spatial patterns
using the remote-sensing technique.

5 Conclusions

As far as we know, this is the first work aiming to assess
influences of N and water availability in spatial and tempo-
ral patterns of ecosystem photosynthetic productivity at the
microscale. Abundant and high-quality data derived from the
close-range remote-sensing system refract crop growth infor-
mation linked to biotic and abiotic factors at critical growth
stages. Fertilizer addition in the paddy rice field enhanced
spatial variations of GPPday and LAI as well as LUEcabs dur-
ing the early growing stage. A change of planting culture
from flooding to rainfed conditions contributed to their spa-
tial heterogeneity in space. Nevertheless, nutritional effects
in the paddy rice at the early growth stage with greater spatial
variations of LUEcabs than the rainfed field were evident. The
physiological basis related to LUEcabs in the rainfed rice and
its contribution in determination of daily GPP highlight that
taking delicate changes in canopy leaf physiology in space
for the same plant function type into account could add to
our understanding of interannual fluctuations of ecosystem
photosynthetic productivity at agricultural landscapes.

Data availability. Most raw data has been shown in Figs. 2, 3, 4.
Abundant UAV remote sensing data such as NDVI could be acces-
sible when directly contact the first correspondence author.
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Appendix A

Figure A1. Validation of radiometrically calibrated UAV-based re-
flectance by measurements of group point reflectance set up in
paddy fields across the whole growing season (a–e) and in other
land covers obtained on day of year (DOY) 172, 192, and 220 in-
cluding bright cement, dark asphalt, bare soil, and tilled soil (f).
Dashed line in each subplot shows 1 : 1 ratio. Recalibration for
UAV-based reflectance in red waveband was conducted on 21 June
(DOY 172), shown in subplot a (coarse dashed line).
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