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Abstract. Terrestrial ecosystems have absorbed roughly
30 % of anthropogenic CO2 emissions over the past decades,
but it is unclear whether this carbon (C) sink will endure into
the future. Despite extensive modeling and experimental and
observational studies, what fundamentally determines tran-
sient dynamics of terrestrial C storage under global change
is still not very clear. Here we develop a new framework
for understanding transient dynamics of terrestrial C storage
through mathematical analysis and numerical experiments.
Our analysis indicates that the ultimate force driving ecosys-
tem C storage change is the C storage capacity, which is
jointly determined by ecosystem C input (e.g., net primary
production, NPP) and residence time. Since both C input and
residence time vary with time, the C storage capacity is time-
dependent and acts as a moving attractor that actual C stor-
age chases. The rate of change in C storage is proportional to

the C storage potential, which is the difference between the
current storage and the storage capacity. The C storage ca-
pacity represents instantaneous responses of the land C cycle
to external forcing, whereas the C storage potential repre-
sents the internal capability of the land C cycle to influence
the C change trajectory in the next time step. The influence
happens through redistribution of net C pool changes in a
network of pools with different residence times.

Moreover, this and our other studies have demonstrated
that one matrix equation can replicate simulations of most
land C cycle models (i.e., physical emulators). As a result,
simulation outputs of those models can be placed into a three-
dimensional (3-D) parameter space to measure their differ-
ences. The latter can be decomposed into traceable compo-
nents to track the origins of model uncertainty. In addition,
the physical emulators make data assimilation computation-
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ally feasible so that both C flux- and pool-related datasets
can be used to better constrain model predictions of land C
sequestration. Overall, this new mathematical framework of-
fers new approaches to understanding, evaluating, diagnos-
ing, and improving land C cycle models.

1 Introduction

Terrestrial ecosystems have been estimated to sequester ap-
proximately 30 % of anthropogenic carbon (C) emissions in
the past 3 decades (Canadell et al., 2007). Cumulatively, land
ecosystems have sequestered more than 160 Gt C from 1750
to 2015 (Le Quéré et al., 2015). Without land C seques-
tration, the atmospheric CO2 concentration would have in-
creased by an additional 95 parts per million and resulted
in more climate warming (Le Quéré et al., 2015). During
1 decade from 2005 to 2014, terrestrial ecosystems seques-
trated 3± 0.8 Gt C year−1 (Le Quéré et al., 2015), which
would cost 1 billion dollars if the equivalent amount of C was
sequestrated using C capture and storage techniques (Smith
et al., 2016). Thus, terrestrial ecosystems effectively mitigate
global change through natural processes with minimal cost.
Whether this terrestrial C sequestration will endure into the
future, however, is not clear, making the mitigation of global
change greatly uncertain. To predict future trajectories of C
sequestration in the terrestrial ecosystems, it is essential to
understand fundamental mechanisms that drive terrestrial C
storage dynamics.

To predict future land C sequestration, the modeling com-
munity has developed many C cycle models. According to
a review by Manzoni and Porporato (2009), approximately
250 biogeochemical models have been published over a time
span of 80 years to describe carbon and nitrogen miner-
alization. The majority of those 250 models follow some
mathematical formulations of ordinary differential equations.
Moreover, many of those biogeochemical models incorpo-
rate more and more processes in an attempt to simulate C
cycle processes as realistically as possible (Oleson et al.,
2013). As a consequence, terrestrial C cycle models have be-
come increasingly complicated and less tractable. Almost all
model intercomparison projects (MIPs), including those in-
volved in the last three IPCC (Intergovernmental Panel on
Climate Change) assessments, indicate that C cycle models
have consistently projected widely spread trajectories of land
C sinks and were also found to fit observations poorly (Todd-
Brown et al., 2013; Luo et al., 2015). The lack of progress in
uncertainty analysis urges us to understand the mathemati-
cal foundation of those terrestrial C models so as to diagnose
causes of model spreads and improve model predictive skills.

Meanwhile, many countries have made great investments
on various observational and experimental networks (or plat-
forms) in hope of quantifying terrestrial C sequestration. For
example, FLUXNET was established about 20 years ago

to quantify net ecosystem exchange (NEE) between the at-
mosphere and biosphere (Baldocchi et al., 2001). Orbiting
Carbon Observatory 2 (OCO-2) satellite was launched in
2014 to quantify carbon dioxide concentrations and distri-
butions in the atmosphere at high spatiotemporal resolution
to constrain land surface C sequestration (Hammerling et al.,
2012). Networks of global change experiments have been de-
signed to uncover processes that regulate ecosystem C se-
questration (Rustad et al., 2001; Luo et al., 2011; Fraser et
al., 2013; Borer et al., 2014). Massive data have been gener-
ated from those observational systems and experimental net-
works. They offer an unprecedented opportunity for advanc-
ing our understanding of ecosystem processes and constrain-
ing model prediction of ecosystem C sequestration. Indeed,
many of those networks were initiated with the goal of im-
proving our predictive capability. Yet the massive data have
rarely been integrated into earth system models to constrain
their predictions. It is a grand challenge in our era to develop
innovative approaches to integration of big data into com-
plex models so as to improve prediction of future ecosystem
C sequestration.

From a system perspective, ecosystem C sequestration oc-
curs only when the terrestrial C cycle is in a transient state,
under which C influx into one ecosystem is larger than C ef-
flux from the ecosystem. Olson (1963) is probably among the
first to examine organic matter storage in forest floors from
the system perspective. His analysis approximated steady-
state storage of organic matter as a balance of litter pro-
ducers and decomposers for different forest types. However,
global change differentially influences various C cycle pro-
cesses in ecosystems and results in transient dynamics of ter-
restrial C storage (Luo and Weng, 2011). For example, rising
atmospheric CO2 concentration primarily stimulates photo-
synthetic C uptake, while climate warming likely enhances
decomposition. When ecosystem C uptake increases in a uni-
directional trend under elevated CO2, terrestrial C cycle is at
disequilibrium, leading to net C storage. The net gained C is
first distributed to different pools, each of which has a differ-
ent turnover rate (or residence time) before C is eventually
released back to the atmosphere via respiration. Distribution
of net C exchange to multiple pools with different residence
times is an intrinsic property of an ecosystem to gradually
equalize C efflux with influx (i.e., internal recovery force
toward an attractor). In contrast, global change factors that
cause changes in C input and decomposition are considered
external forces that create disequilibrium through altering in-
ternal C processes and pool sizes. The transient dynamics of
terrestrial C cycle at disequilibrium are maintained by inter-
actions of internal processes and external forces (Luo and
Weng, 2011). Although the transient dynamics of terrestrial
C storage have been conceptually discussed, we still lack a
quantitative formulation to estimate transient C storage dy-
namics in the terrestrial ecosystems.

This paper was designed to address a question: what deter-
mines transient dynamics of C storage in terrestrial ecosys-
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tems from a system perspective? We first reviewed the ma-
jor processes that most models have incorporated to simulate
terrestrial C sequestration. The review helps establish that
terrestrial C cycle can be mathematically represented by a
matrix equation. We also described the Terrestrial ECOsys-
tem (TECO) model with its numerical experiments in sup-
port of the mathematical analysis. We then presented results
of mathematical analysis on determinants of the terrestrial
C storage, direction and magnitude of C storage at a given
time point, and numerical experiments to illustrate climate
impacts on terrestrial C storage. We carefully discussed as-
sumptions of those terrestrial C cycle models as represented
by the matrix equation, the validity of this analysis, and two
new concepts introduced in this study, which are C storage
capacity and C storage potential. We also discussed the po-
tential applications of this analysis to model uncertainty anal-
ysis and data–model integration. Moreover, we proposed that
the C storage potential be a targeted variable for research,
trading, and government negotiation for C credit.

2 Methods

2.1 Mathematical representation of terrestrial C cycle

This study was conducted mainly with mathematical analy-
sis. We first established the basis of this analysis, which is
that the majority of terrestrial C cycle models can be repre-
sented by a matrix equation.

Hundreds of models have been developed to simulate ter-
restrial C cycle (Manzoni and Porporato, 2009). All the mod-
els have to simulate processes of photosynthetic C input, C
allocation and transformation, and respiratory C loss. It is
well understood that photosynthesis is a primary pathway of
C flow into land ecosystems. Photosynthetic C input is usu-
ally simulated according to carboxylation and electron trans-
port rates (Farquhar et al., 1980). Ecosystem C influx varies
with time and space mainly due to variations in leaf photo-
synthetic capacity, leaf area index of canopy, and a suite of
environmental factors such as temperature, radiation, and rel-
ative humidity (or other water-related variables) (Potter et al.,
1993; Sellers et al., 1996; Keenan et al., 2012; Walker et al.,
2014; Parolari and Porporato, 2016).

Photosynthetically assimilated C is partly used for plant
biomass growth and partly released back into the atmosphere
through plant respiration. Plant biomass in leaves and fine
roots usually lives for several months up to a few years be-
fore death, while woody tissues may persist for hundreds of
years in forests. Dead plant materials are transferred to lit-
ter pools and decomposed by microorganisms to be partially
released through heterotrophic respiration and partially sta-
bilized to form soil organic matter (SOM). SOM can store C
in the soil for hundreds or thousands of years before it is bro-
ken down into CO2 through microbial respiration (Luo and
Zhou, 2006). This series of C cycle processes has been repre-

sented in most ecosystem models with multiple pools linked
by C transfers among them (Jenkinson et al., 1987; Parton
et al., 1987, 1988, 1993), including those embedded in Earth
system models (Ciais et al., 2013).

The majority of the published 250 terrestrial C cycle mod-
els use ordinary differential equations to describe C transfor-
mation processes among multiple plant, litter, and soil pools
(Manzoni and Porporato, 2009). Those ordinary differential
equations can be summarized into a matrix formula (Luo et
al., 2001, 2003, 2015, 2016; Luo and Weng, 2011; Sierra and
Müller, 2015) as{
X′(t)= Bu(t)−Aξ(t)KX(t)
X (t = 0)=X0

, (1)

where X′(t) is a vector of net C pool changes at time t , X(t)
is a vector of pool sizes, B is a vector of partitioning co-
efficients from C input to each of the pools, u(t) is C in-
put rate, A is a matrix of transfer coefficients (or microbial
C use efficiency) to quantify C movement along the path-
ways, K is a diagonal matrix of exit rates (mortality for plant
pools and decomposition coefficients of litter and soil pools)
from donor pools, ξ(t) is a diagonal matrix of environmental
scalars to represent responses of C cycle to changes in tem-
perature, moisture, nutrients, litter quality, and soil texture,
and X0 is a vector of initial values of pool sizes of X. In
Eq. (1), all the off-diagonal elements of matrix A, aji , are
negative to reverse the minus sign and indicate positive C
influx to the receiving pools. The equation describes net C
pool change, X′(t), as a difference between C input, u(t),
distributed to different plant pools via partitioning coeffi-
cients, B, and C loss through the C transformation matrix,
Aξ(t)K, among individual pools, X(t). Elements in vector
B and matrices A and K could vary with many factors, such
as vegetation types, soil texture, microbial attributes, and lit-
ter chemistry. For example, vegetation succession may influ-
ence elements in vector B and matrices A and K in addition
to C input, u(t), and forcing that affects C dynamics through
environmental scalars, ξ(t).

After synthesis of all the possible soil C cycle models
based on six principles (mass balance, substrate dependence
of decomposition, heterogeneity of decay rates, internal
transformations of organic matter, environmental variability
effects, and substrate interactions), Sierra and Müller (2015)
concluded that this form of matrix equation such as Eq. (1)
represents the majority of terrestrial C cycle models. Simi-
larly, Manzoni and Porporato (2009) concluded in their re-
view of 250 models that the majority of them use ordinary
differential equations, which can be summarized by Eq. (1),
to describe land C cycle. Our mathematical analysis in this
study used matrix operations of Eq. (1) to reveal determi-
nants of transient dynamics of the terrestrial C cycle, in-
cluding direction and rate of C storage changes, in response
to global change. We examined assumptions underlying this
equation and the validity of our analysis in the discussion
section.

www.biogeosciences.net/14/145/2017/ Biogeosciences, 14, 145–161, 2017



148 Y. Luo et al.: Land carbon storage dynamics

Figure 1. The Terrestrial ECOsystem (TECO) model and its outputs. Panel (a) is a schematic representation of C transfers among multiple
pools in plant, litter, and soil in the TECO model. TECO has feedback loops of C among soil pools. CWD is coarse wood debris, SOM is soil
organic matter. Panel (b) compares the original TECO model outputs with those from matrix equations for net ecosystem production (NEP is
the sum of elements inX′(t) from Eq. 1). The perfect match between the TECO outputs and NEP from Eq. (1) is due to the fact that they are
mathematically equivalent. Panel (c) compares the original TECO model outputs with those from matrix equations for ecosystem C storage
(equal to the sum of elements in X(t) from Eq. 2). The C storage values calculated with Eq. (2) are close to a 1 : 1 line with r2

= 0.998 with
the modeled values (c). The minor mismatch in estimated C storage between the matrix equation calculation and TECO outputs is due to
numerical errors via inverse matrix operation with some small numbers.

2.2 TECO model, its physical emulator, and numerical
experiments

We conducted numerical experiments to support mathe-
matical analysis and thus help understand the characteris-
tics of terrestrial C storage dynamics using the Terrestrial
ECOsystem (TECO) model. TECO has five major compo-
nents: canopy photosynthesis, soil water dynamics, plant
growth, litter and soil carbon decomposition and transforma-
tion, and nitrogen dynamics, as described in detail by Weng
and Luo (2008) and Shi et al. (2016). Canopy photosynthesis
is from a two-leaf (sunlit and shaded) model developed by
Wang and Leuning (1998). This submodel simulates canopy
conductance, photosynthesis, and partitioning of available
energy. The model combines the leaf photosynthesis model
developed by Farquhar et al. (1980) and a stomatal conduc-
tance model (Harley et al., 1992). In the soil water dynamic
submodel, soil is divided into 10 layers. The surface layer
is 10 cm deep and the other nine layers are 20 cm deep. Soil
water content (SWC) in each layer results from the mass bal-
ance between water influx and efflux. The plant growth sub-
model simulates C allocation and phenology. Allocation of C
among three plant pools, which are leaf, fine root, and wood,
depends on their growth rates (Fig. 1a). Phenology dynamics
is related to leaf onset, which is triggered by growing degree
days, and leaf senescence, which is determined by tempera-

ture and soil moisture. The C transformation submodel esti-
mates carbon transfer from plants to two litter pools and three
soil pools (Fig. 1a). The nitrogen (N) submodel is fully cou-
pled with C processes with one additional mineral N pool.
Nitrogen is absorbed by plants from mineral soil and then
partitioned among leaf, woody tissues, and fine roots. Nitro-
gen in plant detritus is transferred among different ecosystem
pools (i.e., litter, coarse wood debris, and fast, slow, and pas-
sive SOM) (Shi et al., 2016). The model is driven by climate
data, which include air and soil temperature, vapor-pressure
deficit, relative humidity, incident photosynthetically active
radiation, and precipitation at hourly steps.

We first calibrated TECO with eddy flux data collected at
Harvard Forest from 2006–2009. The calibrated model was
spun up to the equilibrium state in preindustrial environmen-
tal conditions by recycling a 10-year climate forcing (1850–
1859). Then the model was used to simulate C dynamics
from 1850 to 2100 with the historical forcing scenario for
1850–2005 and RCP8.5 scenario for 2006–2100 as in the
Community Land Model 4.5 (Oleson et al., 2013) in the grid
cell where Harvard Forest is located.

To support the mathematical analysis using Eq. (1), we
first developed a physical emulator (i.e., the matrix represen-
tation of Eq. 1) of the TECO model and then verified that
the physical emulator can closely represent simulations of
the original TECO model. We first identified those parame-
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ter values in each of the C balance equations in the TECO
model that correspond to elements in matrices A and K in
Eq. (1). The time-dependent variables for u(t), elements in
vector B, and elements in matrix ξ(t) in the physical emula-
tor were directly from outputs of the original TECO model.
Then those parameter values and time-dependent variables
were organized into matrices A, ξ(t), and K; vectors X(t),
X0, and B; and variable u(t). Note that values of u(t), B,
and ξ(t) could be different among different climate scenar-
ios. Those matrices, vectors, and variables were entered to
matrix calculation to compute X′(t) using Eq. (1). The sum
of elements in calculated X′(t) is a 100 % match with simu-
lated net ecosystem production (NEP) with the TECO model
(Fig. 1b).

Once Eq. (1) was verified to exactly replicate TECO simu-
lations, we used TECO to generate numerical experiments to
support the mathematical analysis of the transient dynamics
of terrestrial C storage. To analyze the seasonal patterns of C
storage dynamics, we averaged 10 series of 3-year seasonal
dynamics from 1851–1880. Then we used a 7-day moving
window to further smooth the data.

3 Results

3.1 Determinants of C storage dynamics

The transient dynamics of terrestrial carbon storage are de-
termined by two components: the C storage capacity and the
C storage potential. The two components of C storage dy-
namics can be mathematically derived by multiplying both
sides of Eq. (1) by (Aξ(t)K)−1 as

X(t)= (Aξ(t)K)−1Bu(t)− (Aξ(t)K)−1X′(t). (2)

The first term on the right-hand side of Eq. (2) is the C stor-
age capacity and the second term is the C storage potential.
Figure 2a shows time courses of C storage and its capacity
over 1 year for the leaf pool of Harvard Forest.

In Eq. (2), we name the term (Aξ(t)K)−1 the chasing time,
τ ch(t), with a time unit used in exit rate K. The chasing time
is defined as

τ ch(t)= (Aξ(t)K)−1. (3)

τ ch(t) is a matrix of C residence times through the network
of individual pools, each with a different residence time and
fractions of received C connected by pathways of C trans-
fer. Analogous to the fundamental matrix measuring life ex-
pectancies in demographic models (Caswell, 2000), the ma-
trix, τ ch(t), measures expected residence time of a C atom
in pool i when it has entered from pool j . We call this ma-
trix the fundamental matrix of chasing times to represent
the timescale at which the net C pool change, X′(t), is re-
distributed in the network. Meanwhile, the residence times
of individual pools in the network, τN(t), can be estimated

Figure 2. Seasonal cycles of C storage capacity and C storage dy-
namics for the leaf pool (i.e., pool 1 as shown in Fig. 1). All the com-
ponents are shown in panels (b–d) to calculate xc,1(t)= b1u(t)τ1
through multiplication, where u(t)= NPP and τ1 = 1/k1 for leaf.

by multiplying the fundamental matrix of chasing times,
(Aξ(t)K)−1, with a vector of partitioning coefficients, B, as

τN(t)= (Aξ(t)K)−1B. (4a)

Ecosystem residence time, τE(t), is the sum of the residence
time of all individual pools in the network as

τE(t)= (1 1 . . . 1)τN(t). (4b)

Thus, the C storage capacity can be defined by

Xc(t)= (Aξ(t)K)−1Bu(t). (5a)

Alternatively, it can be estimated from C input, u(t), and res-
idence time, τN(t), as

Xc(t)= τN(t)u(t). (5b)

As C input (e.g., gross or net primary productions, GPP or
NPP) and residence times vary with time, the C storage ca-
pacity varies with time. It represents instantaneous responses
of the terrestrial C cycle to external forcing. The modeled
C storage capacity in the leaf pool (Fig. 2a), for example, in-
creases in spring, reaches the peak in summer, declines in au-
tumn, and becomes minimal in winter, largely due to strong
seasonal changes in C input (Fig. 2b). Note that either GPP
or NPP can be used as C input for analysis of transient C
dynamics. Estimated residence times, however, are smaller
with GPP as C input than those with NPP as input. In this
paper, we mostly used NPP as C input since that fraction of
C is distributed among pools.
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The C storage potential at time t ,Xp(t), can be mathemat-
ically described as

Xp(t)= (Aξ(t)K)−1X′(t). (6a)

Or it can be estimated from net C pool change, X′(t), and
chasing time, τ ch(t) as

Xp(t)= τ ch(t)X
′(t). (6b)

Equation (6a) and (6b) suggest that the C storage potential
represents redistribution of net C pool change,X′(t), of indi-
vidual pools through a network of pools with different resi-
dence times as connected by C transfers from one pool to the
others through all the pathways. As time evolves, the net C
pool change, X′(t), is redistributed again and again through
the network of pools. The network of redistribution of the
next C pool change thus represents the potential of an ecosys-
tem to store additional C when it is positive and lose C when
it is negative. The C storage potential can also be estimated
from the difference between the C storage capacity and the C
storage itself at time t as

Xp(t)=Xc(t)−X(t). (6c)

The C storage potential in the leaf pool, for example, is about
zero in winter and early spring when the C storage capacity
is very close to the storage itself (Fig. 2a). The C storage po-
tential is positive when the capacity is larger than the storage
itself from late spring to summer and early fall. As the stor-
age capacity decreases to the point when the storage equals
the capacity on the 265th day of the year (DOY), the C stor-
age potential is zero. After that day, the C storage potential
becomes negative.

Dynamics of ecosystem C storage, X(t), can be charac-
terized by three parameters: C influx, u(t), residence times,
τN(t), and the C storage potential, Xp(t), as

X(t)= τN(t)u(t)−Xp(t). (7)

Equation (7) represents a three-dimensional (3-D) parameter
space within which model simulation outputs can be placed
to measure how and how much they diverge.

Note that sums of elements of vectors X(t), Xc(t), Xp(t),
and X′(t) correspond, respectively, to the whole ecosystem
C stock, ecosystem C storage capacity, ecosystem C storage
potential, and NEP. In this paper, we describe them wherever
necessary rather than use a separate set of symbols to repre-
sent those sums.

3.2 Direction and rate of C storage change at
a given time

Like studying any moving object, quantifying dynamics of
land C storage needs to determine both the direction and the
rate of its change at a given time. To determine the direction
and rate of C storage change, we rearranged Eq. (2) to be

τ chX
′(t)=Xc(t)−X(t)=Xp(t), (8a)

or rearranging Eq. (6a) leads to

X′(t)= Aξ(t)KXp(t). (8b)

Since all the elements in τ ch are positive, the sign of X′(t) is
the same as forXp(t). That means that X′(t) increases when
Xc(t) >X(t), does not change when Xc(t)=X(t), and de-
creases whenXc(t) <X(t) at the ecosystem scale. Thus, the
C storage capacity, Xc(t), is an attractor and hence deter-
mines the direction toward which the C storage,X(t), chases
at any given time point. The rate of C storage change, X′(t),
is proportional to Xp(t) and is also regulated by τ ch.

When we study C cycle dynamics, we are interested in
understanding dynamics of not only a whole ecosystem but
also individual pools. Equation (8a) can be used to derive
equations to describe C storage change for an ith pool as

n∑
j=1

fij τix
′

j (t)=

n∑
j=1

fij τibju(t)− xi(t)= xp,i(t), (9a)

where n is the number of pools in a C cycle model, fij is
a fraction of C transferred from pool j to i through all the
pathways, τi measures residence times of individual pools in
isolation (in contrast to τN in the network), x′j is the net C
change in the j th pool, bj is a partitioning coefficient of C
input to the j th pool, xi(t) is the C storage in the ith pool, and
xp,i(t) is the C storage potential in the ith pool. Equation (9a)
means that the C storage potential of each pool at time t ,
xp,i(t), is the sum of all the individual net C pool change,
x′j , multiplied by corresponding residence time spent in pool
i coming from pool j . Through rearrangement, Eq. (9a) can
be solved for each individual pool net C change as a function
of C storage potential of all the pools as

x′i(t)=
xc,i,u(t)− xc,i,p(t)− xi(t)

fiiτi
, (9b)

where xc,i,u(t)=
n∑
j=1

fij τibju(t) for the maximal amount of

C that can transfer from C input to the ith pool. xc,i,p(t)=
n∑

j=1,j 6=i
fij τix

′

j (t) for the maximal amount of C that can

transfer from all the other pools to the ith pool. fii = 1 for
all the pools if there is no feedback of C among soil pools.
fii < 1 when there are feedbacks of C among soil pools.

As plant pools get C only from photosynthetic C input,
u(t), but not from other pools, the direction and rate of C
storage change in the ith plant pool is determined by x′i(t)=

xc,i(t)− xi(t)

τi
=
Xp,i(t)

τi
xc,i(t)= biu(t)τi

for i = 1,2,3. (10)

The C storage capacity of plant pools equals the product of
plant C input, u(t) (i.e., net primary production, NPP), par-
titioning coefficient, bi , and residence time, τi , of its own
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Figure 3. Seasonal cycles of the C storage capacity and C storage dynamics for the litter pool (i.e., pool 4 as shown in Fig. 1). All the

components are shown to calculate xc,4,u(t)=
n∑
j=1

f4j τ4bju(t) in panels (b–e) and xc,4,p(t)=
n∑

j=1,j 6=4
f4j τ4x

′
j
(t) in panels (f–i) for litter.

xc,4,u(t) is the maximal amount of C that can transfer from C input to the litter pool. xc,4,p(t) is the maximal amount of C that can transfer
from all the other pools to the litter pool. This figure is to illustrate the network of pools through which C is distributed.

pool (Fig. 2b–d). Thus, the C storage capacities of the leaf,
root, and wood pools are high in summer and low in win-
ter. Plant C storage, xi(t), still chases the storage capac-
ity, xc,i(t), of its own pool at a rate that is proportional to
Xp,i(t). For the leaf pool, the C storage, x1(t), increases
when xc,1(t)> x1(t) (or xp,1(t)> 0) from late spring until
early fall on the 265th day of the year (DOY) and then de-
creases when xc,1(t)< x1(t) (or xp,1(t)< 0) from 265 until
326 DOY during fall (Fig. 2a).

However, the direction of C storage change in litter and
soil pools is no longer solely determined by the storage ca-
pacity, xc,i(t), of their own pools or at a rate that is propor-
tional to Xp,i(t). The C storage capacity of one litter or soil
pool has two components. One component, xc,i,u(t) is set by
the amount of plant C input, u(t), going through all the pos-
sible pathways, fijbj , multiplied by residence time, τi , of its
own pool. The second component measures the C exchange
of one litter or soil pool with other pools according to net
C pool change, x′j (t), through pathways, fij ,j 6= i, weighed
by residence time, τi , of its own pool. For example, C input
to the litter pool is a combination of C transfer from C in-
put through the leaf, root, and wood pools (Fig. 3c, d, and e)
and C transfer due to the net C pool changes in the leaf, root,
and wood pools (Fig. 3f, g, and h). Thus, the first capacity
component of the litter pool to store C is the sum of three
products of NPP, C partitioning coefficient, and network res-
idence time through the leaf, root, and wood pools, respec-
tively (Fig. 3c, d, and e). The second capacity component is

the sum of the other three products of C transfer coefficient
along all the possible pathways, network residence time, and
net C pool changes in the leaf, root, and wood pools, respec-
tively (Fig. 3f, g, and h). Thus, C storage in the ith pool,
xi(t), chases an attractor,(

n∑
j=1

fijbju(t)−

n∑
j=1,j 6=i

fij τix
′

j (t)

)
τi,

for litter and soil pools (Fig. 4).
In summary, due to the network of C transfer, C storage

in litter and soil pools does not chase the C storage capaci-
ties of their own pools in a multiple C pool model (Fig. 4).
The capacities for individual litter and soil pools measure the
amount of C that is transferred from photosynthetic C in-
put through plant pools to be stored in those pools. However,
those litter and soil pools also exchange C with other pools
according to transfer coefficients along pathways of C move-
ment, multiplying net C pool change in those pools. Integra-
tion of the C input and C exchanges together is still a moving
attractor toward which individual pool C storage approaches
(Fig. 4).

3.3 C storage dynamics under global change

In response to a global change scenario that combines histor-
ical change and simulated RCP8.5 in the TECO experiment,
the modeled ecosystem C storage capacity (the sum of all
elements in vector Xc(t)) at Harvard Forest increases from
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Figure 4. Components of the C storage capacity for litter pool (i.e.,
pool 4 as shown in Fig. 1). Component xc,4,u(t) is the C from C in-
put and component xc,4,p(t) is the C moved from all the other pools
to the litter pool. The sum of them is the attractor that determines
the direction of C storage change in pool 4.

27 kg C m−2 in 1850 to approximately 38 kg C m−2 in 2100
with strong interannual variability (Fig. 5a). The increasing
capacity results from a combination of a nearly 44 % increase
in NPP with a ∼ 2 % decrease in ecosystem residence times
(the sum of all elements in vector τE(t)) during that period
(Fig. 5b). The strong interannual variability in the modeled
capacity is attributable to the variability in NPP and residence
times, both of which directly respond to instantaneous vari-
ations in environmental factors. In comparison, the ecosys-
tem C storage (the sum of all elements in vector X(t)) itself
gradually increases, lagging behind the capacity, with much
dampened interannual variability (Fig. 5a). The dampened
interannual variability is due to smoothing effects of pools
with various residence times. In response to global change
scenario RCP8.5, the ecosystem C storage potential (the sum
of all elements in vectorXp(t)) in the Harvard Forest ecosys-
tem increases from zero at 1980 to 3.5 kg C m−2 in 2100 with
strong fluctuation over the years (Fig. 5a). Over seasons, the
potential is high during the summer and low in winter, simi-
lar to the seasonal cycle of the C storage capacity.

Since chasing time, τ ch, is a matrix and net C pool change,
X′(t), is a vector, Eq. (6a) or (6b) (i.e., the C storage poten-
tial) can not be analytically separated into the chasing time
and net C pool change as the capacity can be into C input
and residence time in Eq. (5a) or (5b) for traceability analy-
sis. The relationships among the three quantities can be ex-
plored using regression analysis. The ecosystem C storage
potential fluctuates in a similar phase with NEP from 1850 to
2100 (Fig. 5c). Consequently, the C storage potential is well
correlated with NEP at the whole ecosystem scale (Fig. 5d).
The slope of the regression line is a statistical representa-
tion of ecosystem chasing time. In this study, we find that r2

of the relationship between the storage potential and NEP
is 0.79. The regression slope is 28.1 years in comparison
with the ecosystem residence time of approximately 22 years
(Fig. 5b).

Figure 5. Transient dynamics of ecosystem C storage in response to
global change in Harvard Forest. Panel (a) shows the time courses
of the ecosystem C storage capacity, the ecosystem C storage po-
tential, and ecosystem C storage (i.e., C stock) from 1850 to 2100.
Panel (b) shows time courses of NPP(t) as C input and ecosystem
residence times. Panel (c) shows correlated changes in ecosystem
C storage potential and net ecosystem production (NEP). Panel (d)
illustrates the regression between the C storage potential and NEP.

The capacity and storage of individual pools display sim-
ilar long-term trends and interannual variability to those for
the total ecosystem C storage dynamics (Fig. 6). Noticeably,
the deviation of the C storage from the capacity, which is
the C storage potential, is much larger for pools with long
residence times than those with short residence times. For
individual pools, the potential is nearly zero for those fast
turnover pools and becomes very large for those pools with a
long residence time (Fig. 6).

For individual plant pools, Eq. (10) describes the depen-
dence of the C storage potential, xp,i(t), on the pool-specific
residence time, τi, i = 1, 2, and 3, and net C pool change of
their own pools, x′i(t), i = 1, 2, and 3. Thus, one value of
xp,i(t) corresponds exactly to one value of x′i(t) at slope of
τi , leading to a correlation coefficient in Fig. 7 of 1.00 for
leaf, root, and wood pools. For a litter or soil pool, however,
the C storage potential is not solely dependent on the res-
idence time and net C pool change of its own pool but is
influenced by several other pools. Thus, the potential of one
litter or soil pool is correlated with net C pool changes of
several pools with different regression slopes (Fig. 7).

Biogeosciences, 14, 145–161, 2017 www.biogeosciences.net/14/145/2017/



Y. Luo et al.: Land carbon storage dynamics 153

Figure 6. The C storage capacity (xc,i(t)), the C storage potential (xp,i(t)), and C storage (xi(t)) of individual pools. The potential is nearly
zero for those fast turnover pools with short residence times but very large for those pools with long residence times.

Figure 7. The C storage potential of individual pools (xp,i) as in-
fluenced by net C pool change of different pools (x′

i
) in their cor-

responding rows. The correlation coefficients show the degree of
influence of net C pool change in one pool on the C storage po-
tential of the corresponding pool through the network of C transfer.
The empty cells indicate no pathways of C transfer between those
pools as indicated in Fig. 1.

4 Discussion

4.1 Assumptions of the C cycle models and validity of
this analysis

This analysis is built upon Eq. (1), which represents the ma-
jority of terrestrial C cycle models developed in the past

decades (Manzoni and Porporato, 2009; Sierra and Müller,
2015). These models have several assumptions, which may
influence the validity of this analysis. First, these models as-
sume that donor pools control C transfers among pools and
decomposition follows first-order decay functions (assump-
tion 1). This assumption is built upon observations from litter
and SOC decomposition. Analysis of data from nearly 300
studies of litter decomposition (Zhang et al., 2008), about
500 studies of soil incubation (Schädel et al., 2014; Xu et al.,
2016), more than 100 studies of forest succession (Yang et
al., 2011), and restoration (Matamala et al., 2008) almost all
suggests that the first-order decay function captures macro-
scopic patterns of land C dynamics. Even so, its biological,
chemical, and physical underpinnings need more study (Luo
et al., 2016). This assumption has recently been challenged
by a notion that microbes are actively involved in decomposi-
tion processes. To describe the active roles of microbes in or-
ganic C decomposition, a suite of nonlinear microbial mod-
els has been proposed using Michaelis–Menten or reverse
Michaelis–Menten equations (Allison et al., 2010; Wieder et
al., 2013). Those nonlinear models exhibit unique behaviors
of modeled systems, such as damped oscillatory responses
of soil C dynamics to small perturbations and insensitivity
of the equilibrium pool sizes of litter or soil carbon to in-
puts (Li et al., 2014; Wang et al., 2014, 2016). Oscillations
have been documented for single enzymes at timescales be-
tween 10−4 and 10 s (English et al., 2006; Goldbeter, 2013;
Xie, 2013). Over longer timescales with largely diverse mix-
tures of enzyme-substrate complexes in soil, oscillations may
be likely averaged out so that the first-order decay functions
may well approximate these average dynamics of organic
matter decomposition (Sierra and Müller, 2015).
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Second, those models all assume that multiple pools can
adequately approximate transformation, decomposition, and
stabilization of SOC in the real world (assumption 2). The
classic SOC model, CENTURY, uses three conceptual pools,
active, slow, and passive SOC, to represent SOC dynamics
(Parton et al., 1987). Several models define pools that cor-
respond to measurable SOC fractions to match experimen-
tal observation with modeling analysis (Smith et al., 2002;
Stewart et al., 2008). Carbon transformation in soil over time
has also been described by a partial differential function of
SOM quality (Bosatta and Ågren, 1991; Ågren and Bosatta,
1996). The latter quality model describes the external inputs
of C with certain quality, C loss due to decomposition, and
the internal transformations of the quality of soil organic mat-
ter. It has been shown that multi-pool models can approx-
imate the partial differential function or continuous quality
model as the number of pools increases (Bolker et al., 1998;
Sierra and Müller, 2015).

Assumption 3 is on partitioning coefficients of C input
(i.e., elements in vector B) and C transformation among
plant, litter, and soil pools (i.e., elements in the matrix
Aξ(t)K). Some of the terrestrial C cycle models assume that
elements in vectorB and matrices A and K are constants. All
the factors or processes that vary with time are represented in
the diagonal matrix ξ(t). In the real world, C transformation
is influenced by environmental variables (e.g., temperature,
moisture, oxygen, N, phosphorus, and acidity varying with
soil profile, space, and time), litter quality (e.g., lignin, cel-
lulose, N, or their relative content), organomineral proper-
ties of SOC (e.g., complex chemical compounds, aggrega-
tion, physiochemical binding and protection, reactions with
inorganic, reactive surfaces, and sorption), and microbial at-
tributes (e.g., community structure, functionality, priming,
acclimation, and other physiological adjustments) (Luo et al.,
2016). It is not practical to incorporate all of those factors and
processes into one model. Only a subset of them is explicitly
expressed, while the majority is implicitly embedded in the
C cycle models. Empirical studies have suggested that tem-
perature, moisture, litter quality, and soil texture are primary
factors that control C transformation processes of decompo-
sition and stabilization (Burke et al., 1989; Adair et al., 2008;
Zhang et al., 2008; Xu et al., 2012; Wang et al., 2013). Nitro-
gen influences C cycle processes mainly through changes in
photosynthetic C input, C partitioning, and decomposition.
It is yet to be identified how other major factors and pro-
cesses, such as microbial activities and organomineral pro-
tection, regulate C transformation.

Assumption 4 is that terrestrial C cycle models use dif-
ferent response functions (i.e., different ξ(t) in Eq. 1) to
represent C cycle responses to external variables. As tem-
perature modifies almost all processes in the C cycle, dif-
ferent formulations, including exponential, Arrhenius, and
optimal response functions, have been used to describe C
cycle responses to temperature changes in different mod-
els (Lloyd and Taylor, 1994; Jones et al., 2005; Sierra and

Müller, 2015). Different response functions are used to con-
nect C cycle processes with moisture, nutrient availability,
soil clay content, litter quality, and other factors. Different
formulations of response functions may result in substan-
tially different model projections (Exbrayat et al., 2013) but
are unlikely to change basic dynamics of the model behav-
iors.

Assumption 5 is that disturbance events are represented
in models in different ways (Grosse et al., 2011; West et
al., 2011; Goetz et al., 2012; Hicke et al., 2012). Fire, ex-
treme drought, insect outbreaks, land management, and land
cover and land use change influence terrestrial C dynamics
via (1) altering rate processes, for example, gross primary
productivity (GPP), growth, tree mortality, or heterotrophic
respiration; (2) modifying microclimatic environments; or
(3) transferring C from one pool to another (e.g., from live
to dead pools during storms or release to the atmosphere
with fire) (Kloster et al., 2010; Thonicke et al., 2010; Luo
and Weng, 2011; Prentice et al., 2011; Weng et al., 2012).
Those disturbance influences can be represented in terrestrial
C cycle models through changes in parameter values, envi-
ronmental scalars, and/or discrete C transfers among pools
of Eq. (1) (Luo and Weng, 2011). While Eq. (1) does not ex-
plicitly incorporate disturbances for their influences on land
C cycle, Weng et al. (2012) developed a disturbance regime
model that combines Eq. (1) with frequency distributions of
disturbance severity and intervals to quantify net biome ex-
changes.

The sixth assumption that those models make is that the
lateral C fluxes through erosion or local C drainage are neg-
ligible so that Eq. (1) can approximate terrestrial C cycle over
space. If soil erosion is substantial enough to be modeled
with horizontal movement of C, a third dimension should
be added in addition to two-dimensional transfers in classic
models.

Our analysis on transient dynamics of terrestrial C cycle is
valid unless some of the assumptions are violated. Assump-
tion 1 on the first-order decay function of decomposition ap-
pears to be supported by thousands of datasets. It is a burden
on microbiologists to identify empirical evidence to support
the nonlinear microbial models. Assumption 2 may not affect
the validity of our analysis no matter how C pools are divided
in the ecosystems. Our analysis in this study is applicable no
matter whether elements are time-varying or constant in vec-
tor B and matrices A and K as in assumption 3. Neither as-
sumption 4 nor 5 would affect the analysis in this study. The
environmental scalar, ξ(t), as related to assumption 4 can be
any forms in the derived equations (e.g., Eq. 2). Disturbances
of fire, land use, and extreme drought change rate processes
but do not alter the basic formulation of Eq. (1). If soil ero-
sion and lateral transportation of C become major research
objectives, Eq. (1) can no longer be analyzed to understand
the mathematical foundation underlying transient dynamics
of terrestrial C cycle.
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4.2 Carbon storage capacity

One of the two components this analysis introduces to un-
derstand transient dynamics of terrestrial C storage is the C
storage capacity (Eq. 2). Olson (1963) is probably among the
first who systematically analyzed C storage dynamics at the
forest floor as functions of litter production and decompo-
sition. He collected data of annual litter production and ap-
proximately steady-state organic C storage at the forest floor,
from which decomposition rates were estimated for a variety
of ecosystems from Ghana in the tropics to alpine forests in
California. Using the relationships among litter production,
decomposition, and C storage, Olson (1963) explored sev-
eral issues, such as decay without input, accumulation with
continuous or discrete annual litter fall, and adjustments in
production and decay parameters during forest succession.
His analysis approximated the steady-state C storage as the
C input times the inverse of decomposition (i.e., residence
time). The steady-state C storage is also considered the max-
imal amount of C that a forest can store.

This study is not only built upon Olson’s analysis but also
expands it in at least two aspects. First, we similarly define
the C storage capacity (i.e., Eq. 5a and 5b). Those equa-
tions can be applied to a whole ecosystem with multiple C
pools, while Olson’s analysis is for one C pool. Second, Ol-
son (1963) treated the C input and decomposition rate as
yearly constants at a given location even though they varied
with locations. This study considers both C input and rate of
decomposition being time dependent. A dynamical system
with its input and parameters being time dependent math-
ematically becomes a nonautonomous system (Kloeden and
Rasmussen, 2011). As terrestrial C cycle under global change
is transient, we need to treat it as a nonautonomous system
to better understand the properties of transient dynamics. Ol-
son (1963) approximated the nonautonomous system at the
yearly timescale without global change so as to effectively
understand properties of steady-state C storage at the forest
floor. In comparison, Eq. (5a) and (5b) are not only more gen-
eral but also essential for understanding transient dynamics
of the terrestrial C cycle in response to global change.

Under the transient dynamics, the C storage capacity as
defined by Eq. (5a) and (5b) still sets the maximal amount of
C that one ecosystem can store at time t . This capacity repre-
sents instantaneous responses of ecosystem C cycle to exter-
nal forcing via changes in both C input and residence time,
and thus varies within 1 day, over seasons of a year, and inter-
annually over longer timescales as forcings vary. The varia-
tion of the C storage capacity can result from cyclic envi-
ronmental changes (e.g., dial and seasonal changes), direc-
tional global change (e.g., rising atmospheric CO2, nitrogen
deposition, altered precipitation, and warming), disturbance
events, disturbance regime shifts, and changing vegetation
dynamics (Luo and Weng, 2011). Since the capacity sets the
maximal amount of C storage (Fig. 2a), it is a moving attrac-
tor toward which the current C storage chases. When the ca-

pacity is larger than the C storage itself, C storage increases.
Otherwise, the C storage decreases.

4.3 Carbon storage potential

The C storage potential represents the internal capability to
equilibrate the current C storage with the capacity. Biogeo-
chemically, the C storage potential represents redistribution
of net C pool change, X′(t), of individual pools through
a network of pools with different residence times as con-
nected by C transfers from one pool to the others through
all the pathways. The potential is conceptually equivalent
to the magnitude of disequilibrium as discussed by Luo and
Weng (2011).

Extensive studies have been done to quantify terrestrial C
sequestration. The most commonly estimated quantities for
C sequestration include net ecosystem exchange (NEE) and
C stocks in ecosystems (i.e., plant biomass and SOC) and
their changes (Baldocchi et al., 2001; Pan et al., 2013). This
study, for the first time, offers the theoretical basis to estimate
the terrestrial C storage potential in at least two approaches:
(1) the product of chasing time and net C pool change with
Eq. (6a) and (6b) and (2) the difference between the C stor-
age capacity and the C storage itself with Eq. (6c). Since the
time-varying C storage capacity is fully defined by residence
time and C input at any given time, C storage potential can
be estimated from three quantities: C input, residence time,
and C storage.

To effectively quantify the C storage potential in terrestrial
ecosystems, we need various datasets from experimental and
observatory studies to be first assimilated into models. For
example, data from Harvard Forest were first used to con-
strain the TECO model. The constrained model was used to
explore changes in ecosystem C storage in response to global
change scenario, RCP8.5. That scenario primarily stimulated
NPP, which increased from 1.06 to 1.8 kg C m−2 yr−1 in the
Harvard Forest (Fig. 5b). Although climate warming de-
creased ecosystem C residence time in the Harvard Forest,
the substantial increases in NPP resulted in increases in the
C storage potential over time.

4.4 Novel approaches to model evaluation and
improvement

Our analysis of transient C cycle dynamics offers new ap-
proaches to understand, evaluate, diagnose, and improve land
C cycle models. We have demonstrated that many global land
C cycle models can be exactly represented by the matrix
equation (Eqs. 1 and 2) (i.e., physical emulators). As a con-
sequence, outputs of all those models can be placed into a
three dimensional (3-D) space (Eq. 7) to measure their dif-
ferences. In addition, components of land C cycle models are
simulated in a mutually independent fashion so that modeled
C storage can be decomposed into traceable components for
traceability analysis. Moreover, the physical emulators com-
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putationally enable data assimilation to constrain complex
models.

4.4.1 Physical emulators of land C cycle models

We have developed matrix representations (i.e., physical
emulators) of CABLE, LPJ-GUESS, CLM3.5, CLM4.0,
CLM4.5, BEPS, and TECO (Xia et al., 2013; Hararuk et al.,
2014; Ahlström et al., 2015; Chen et al., 2015). The emula-
tors can exactly replicate simulations of C pools and fluxes
with their original models when driven by a limited set of
inputs from the full model (GPP, soil temperature, and soil
moisture) (Fig. 1b and c). However, the physical emulators
differ for different models since the elements of each matrix
could be differently parameterized or formulized in different
models. Also, different models usually have different pool-
flux structures, leading to different non-zero elements in the
A matrix. Nonetheless, the physical emulators make complex
models analytically clear, and therefore give us a way to un-
derstand the effects of forcing, model structures, and param-
eters on modeled ecosystem processes. They greatly simplify
the task of understanding the dynamics of submodels and in-
teractions between them. The emulators allow us to analyze
model results in the 3-D parameter space and the traceability
framework.

4.4.2 Parameter space of C cycle dynamics

Equation (7) indicates that transient dynamics of modeled
C storage are determined by three parameters: C input, resi-
dence time, and C storage potential. The 3-D parameter space
offers one novel approach to uncertainty analysis of global
C cycle models. As global land models incorporate more
and more processes to simulate C cycle responses to global
change, it becomes very difficult to understand or evaluate
complex model behaviors. As such, differences in model pro-
jections cannot be easily diagnosed and attributed to their
sources (Chatfield, 1995; Friedlingstein et al., 2006; Luo et
al., 2009). Equation (7) can help diagnose and evaluate com-
plex models by placing all modeling results within one com-
mon parameter space in spite of the fact that individual global
models may have tens or hundreds of parameters to represent
C cycle processes as affected by many abiotic and biotic fac-
tors (Luo et al., 2016). The 3-D space can be used to measure
how and how much the models diverge.

4.4.3 Traceability analysis

The two terms on the right side of Eq. (2) can be decomposed
into traceable components (Xia et al., 2013) so as to identify
sources of uncertainty in C cycle model projections. Model
intercomparison projects (MIPs) all illustrate great spreads in
projected land C sink dynamics across models (Todd-Brown
et al., 2013; Tian et al., 2015). It has been extremely challeng-
ing to attribute the uncertainty to sources. Placing simulation
results of a variety of C cycle models within one common pa-

rameter space can measure how much the model differences
are in a common metric (Eq. 7). The measured differences
can be further attributed to sources in model structure, pa-
rameter, and forcing fields with traceability analysis (Xia et
al., 2013; Rafique et al., 2014; Ahlström et al., 2015; Chen et
al., 2015). The traceability analysis can also be used to evalu-
ate effectiveness of newly incorporated modules into existing
models, such as adding the N module on simulated C dynam-
ics (Xia et al., 2013) and locate the origin of model ensemble
uncertainties to external forcing vs. model structures and pa-
rameters (Ahlström et al., 2015).

4.4.4 Constrained estimates of terrestrial C
sequestration

Traditionally, global land C sink is indirectly estimated from
airborne fraction of C emission and ocean uptake. Although
many global land models have been developed to estimate
land C sequestration, a variety of MIPs indicate that model
predictions widely vary among them and do not fit obser-
vations well (Schwalm et al., 2010; Luo et al., 2015; Tian
et al., 2015). Moreover, the prevailing practices in the mod-
eling community, unfortunately, may not lead to significant
enhancements in our confidence on model predictions. For
example, incorporating an increasing number of processes
that influence the C cycle may represent the real-world phe-
nomena more realistically but makes the models more com-
plex and less tractable. MIPs have effectively revealed the ex-
tent of the differences between model predictions (Schwalm
et al., 2010; Keenan et al., 2012; De Kauwe et al., 2013)
but provide limited insights into sources of model differ-
ences (see Medlyn et al., 2015). The physical emulators make
data assimilation computationally feasible for global C cycle
models (Hararuk et al., 2014, 2015) and thus offer the pos-
sibility to generate independent yet constrained estimates of
global land C sequestration to be compared with the indirect
estimate from the airborne fraction of C emission and ocean
uptake. With the emulators, we can assimilate most of the
C flux- and pool-related datasets into those models to better
constrain global land C sink dynamics.

5 Concluding remarks

In this study we theoretically explored the transient dynamics
of terrestrial C storage. Our analysis indicates that transient
C storage dynamics can be partitioned into two components:
the C storage capacity and the C storage potential. The ca-
pacity, which is the product of C input and residence time,
represents their instantaneous responses to a state of external
forcing at a given time. Thus, the C storage capacity quanti-
fies the maximum amount of C that an ecosystem can store
at the given environmental condition at a point of time. Thus,
it varies diurnally, seasonally, and interannually as environ-
mental conditions change.
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The C storage potential is the difference between the ca-
pacity and the current C storage and thus measures the mag-
nitude of disequilibrium in the terrestrial C cycle (Luo and
Weng, 2011). The storage potential represents the internal
capability (or recovery force) of the terrestrial C cycle to in-
fluence the change in C storage in the next time step through
redistribution of net C pool changes in a network of multi-
ple pools with different residence times. The redistribution
drives the current C storage towards the capacity and thus
equilibrates C efflux with influx.

The two components of land C storage dynamics represent
interactions of external forces (via changes in the capacity)
and internal capability of the land C cycle (via changes in the
C storage potential) to generate complex phenomena of C cy-
cle dynamics, such as fluctuations, directional changes, and
tipping points, in the terrestrial ecosystems. From a system
perspective, these complex phenomena can not be generated
by relatively simple internal processes but are mostly caused
by multiple environmental forcing variables interacting with
internal processes over different temporal and spatial scales,
as explained by Luo and Weng (2011) and Luo et al. (2015).
Note that while those internal processes can be mathemati-
cally represented with a relatively simple formula, their eco-
logical and biological underpinnings can be very complex.

The theoretical framework developed in this study has the
potential to revolutionize model evaluation. Our analysis in-
dicates that the matrix equation as in Eqs. (1) and (2) can
adequately emulate most of the land C cycle models. In-
deed, we have developed physical emulators of several global
land C cycle models. In addition, predictions of C dynamics
with complex land models can be placed in a 3-D parameter
space as a common metric to measure how much model pre-
dictions are different. The latter can be traced to its source
components by decomposing model predictions to a hierar-
chy of traceable components. Moreover, the physical emula-
tors make it computationally possible to assimilate multiple
sources of data to constrain predictions of complex models.

The theoretical framework we developed in this study can
explain dynamics of C storage in response to cyclic sea-
sonal change in external forcings (e.g., Figs. 2 and 3), cli-
mate change, and rising atmospheric CO2 well (Fig. 5). It
can also explain responses of ecosystem C storage to dis-
turbances and other global change factors, such as nitrogen
deposition, land use changes, and altered precipitation. The
theoretical framework is simple and straightforward but able
to characterize the direction and rate of C storage change,
which are arguably among the most critical issues for quan-
tifying terrestrial C sequestration. Future research should ex-
plicitly incorporate stochastic disturbance regime shifts (e.g.,
Weng et al., 2012) and vegetation dynamics (Moorcroft et al.,
2001; Purves and Pacala, 2008; Fisher et al., 2010; Weng et
al., 2015) into this theoretical framework to explore their the-
oretical issues related to biogeochemistry.

6 Code availability

Computer code of the TECO model and its physical emulator
are available at Yiqi Luo’s website (EcoLab, 2017).
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