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Section S1. Area-weighted methane flux measurements 5 

For the area-weighted analysis, the mean (mw) and variances (Vw) of the methane 
flux measurements (Oi) were calculated as: 

            (S1) 

          (S2) 

constrained by , where N is the total number of all methane flux 10 

measurements. Ordinarily, . However, here, we scaled wi by the area 

proportional to that of each water regime applied in rice cultivation in China: 

,  (S3) 

where Nwr is the number of measurements belonging to water regime wr, and Rwr is 
the proportion of the area of rice paddies irrigated with each of the three water 15 

regimes. Rwr assumes values of 0.1, 0.2 and 0.7, respectively, for the three water 
regimes according to previous research (Mao, 1981; Xiong et al., 1992;Li, 2002;Zou 
et al., 2009). If a methane flux measurement (i) in Equations S1 and S2 belongs to 
water regime wr, then wi = wwr. 

The standard error (SE) of the area-weighted mean (mw) is calculated as follows:  20 

             (S4) 

It should be noted that Equation S4 only holds when the measurements are 
statistically independent; if this is not the case, mostly due to spatial correlations of 
the environmental conditions that support the measurements, then the value for N 
should be smaller, depending on the strength of the correlation (Bence, 1995). 25 
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Section S2. CH4MOD model and the datasets used for simulating national rice paddy 5 

methane emissions 
CH4MOD is an empirical model that simulates methane production and emissions 

from rice paddies under various environmental conditions and agricultural practices 
(Huang et al., 1998, 2004; Xie et al., 2010). It calculates methanogenic substrate 
production from rice plant root exudates and added organic matter (OM) 10 

decomposition. Both OM decomposition and rice plant-induced substrate production 
are significantly influenced by environmental factors, including the soil texture and 
temperature, with the soil moisture content controlling the fraction of transformation 
of the substrates into methane. The amount of the substrate derived from rice root 
exudate was simulated by a power function of the rice biomass, scaled by the 15 

parametric influence of the soil context and the rice cultivar. The substrate derived 
from the added organic matter was calculated by a first-order kinetic decomposition 
equation of the organic matter in soil, also scaled by the parametric influence of the 
soil context and the temperature. Details can be found in Huang et al (2004). There 
are two major routes by which methane produced in rice paddy soils escapes into the 20 

atmosphere: via the arenchyma system of the rice plants and via methane bubbles. 
Both of these pathways are incorporated into the model.  

CH4MOD runs in a daily step, driven by the daily air temperature. Its input 
parameters include the soil sand percentage (SAND), organic matter amendment (OM), 
rice grain yield (GY), water management pattern (Wptn) and rice cultivar index (VI). 25 

 
Rice harvest area and grain production 
Data on rice production and the harvest area for each province in 2005 were 

obtained from China’s Statistical Yearbook (EBCAY, 2006) for early, late and middle 
rice. County-level rice production data were obtained from censusing conducted by 30 

the Chinese Academy of Agricultural Sciences. Although the fractions of early, late 
and single rice cultivation are not included in the county-level data, the rotation type 
for each county was formulated using the approach of Frolking et al. (2002) by 
referring to the climatic zones of each cropping system in China (Han et al., 1987). 

Several studies have shown that methane emissions differ significantly among rice 35 
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varieties (Singh et al., 1997; Wang et al., 1999). In CH4MOD, the impact of the 5 

methane variety on methane emissions was parameterized as the variety index (VI) 
(Huang et al., 1998, 2004). VI ranges from 0.5 to 1.5 but is typically approximately 
1.0 for most rice varieties (Huang et al., 1997, 2004).  

 
Climate data and rice phenologies 10 

The daily mean air temperature is the only meteorological data required to drive 
the CH4MOD model. Air temperature data were obtained for 2005 from 678 
meteorological stations included in the National Meteorological Information Center 
(NMIC), China Meteorological Administration (CMA) (http://data.cma.cn/) database. 
For counties that lack a meteorological station, air temperature data from the nearest 15 

neighboring station were substituted.  
Rice phenologies (specifically transplanting and harvesting dates) control the start 

and end of the CH4MOD run for simulating methane emissions. Data regarding rice 
phenologies were originally derived from iso-line maps edited by Zhang et al. (1987) 
in the Agricultural Climate Atlas of China. The transplanting and harvesting dates 20 

within each grid were spatially interpolated from the iso-lines via the TIN (triangular 
irregular network) technique (Aumann et al., 1991) and assigned to each county. 

 
Soil properties 
Soil properties have extremely high spatial variation and may vary largely from 25 

one place not far from another. We obtained the data from Institute of Soil Sciences, 
Chinese Academy of Sciences. They collected more than 7000 soil profile 
measurements sampled during during the Program of the Second Soil Survey of China 
and subsequent surveys from 1980s to the present, and linked them to the a soil 
database of 1:1,000,000 scale (Shi et al., 2004) to produce the gridded data of soil 30 

properties with geostatistical methods. The database comprises of 10 km × 10 km 
raster datasets of soil properties at 10-cm intervals from the surface down through the 
profile, making the spatial resolution of soil the finest of the CH4MOD input 
parameters. We compared the spatial variation explained in the gridded datasets of 
soil properties against the variations in the profile measurements to analyze the 35 



4 
 

‘missing spatial variation’ (Bodegom et al., 2002b). The ‘missing spatial variation’ is 5 

the proportion of spatial variation of the soil properties (the sand content of the 
surface soil layer in the present study) that were not accounted for by the gridded 
datasets. We used the missing variation to build the PDF of SAND in Monte Carlo 
simulation by assuming normal distributions of the missing variation.  

 10 

Organic matter amendment and water regimes in rice paddies 
The organic matter inputs into rice fields include various types of farm manure 

(e.g., green manure, animal feces) and crop straw as well as dead roots and stubble 
from previous crops. Root biomass remaining in the soil can be calculated using the 
root/shoot ratio (Huang et al., 2007). Stubble biomass was assumed to be one-tenth 15 

the aboveground straw biomass. However, the fractions of straw incorporation and 
farm manure application are not well known, and the data are therefore limited. In the 
First National Census of Pollution Sources conducted by the Ministry of 
Environmental Protection of China (CFPC, 2011), straw application in croplands was 
summarized at the provincial level in the census data (Table S1); thus, the value for 20 

straw application given in Table S1 is not rice specific but accounts for all crops in 
each province. This bias may not be significant in provinces where crop cultivation is 
dominated by rice. In addition to crop straw, the incorporated crop residues include 
dead crop roots and stubble; according to Zhao and Li (2001), stubble accounts for 
approximately 13% of the total dry weight of straw.  25 

No regular statistical data or comprehensive census data were available for manure 
application in rice cultivation. In this study, we estimated OM application in rice 
cultivation by examining more than 1000 research papers; estimates of farmyard 
manure application in each province are shown in Table S1. 

Since the mid-1960s, a diverse array of irrigation regimes have been adopted that 30 

diverge from the traditional approach of continuous flooding, representing an 
important development for rice cultivation in China (Xiong et al., 1992; Li, 2002; 
Peng et al., 2007). As such, different compositions of flooding, drainage and moisture 
irrigation have been applied according to the climate, soil and topographic conditions 
of the rice fields and factors such as the rice variety being grown, its developmental 35 
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stage and hydrological construction. To simplify CH4MOD, the forms of irrigation 5 

used for rice cultivation were grouped into five general irrigation patterns: 1) 
flooding-drainage-flooding-intermittent irrigation, 2) flooding-drainage-intermittent 
irrigation, 3) flooding-intermittent irrigation, 4) continuous flooding and 5) 
continuously intermittent irrigation (Gao and Li, 1992; Huang et al., 2004). Despite 
being the agronomic factor that is most sensitive to methane emissions (Table S2), the 10 

available data on irrigation are the scarcest among all of the inputs needed for 
CH4MOD up-scaling. Except for a few brief mentions in the literature (Mao, 1981; 
Xiong et al., 1992; MWRUC, 1996; Cai, 2000; Ma et al., 2005), almost no detailed 
data addressing spatial variations in rice irrigation are available. Given this limitation, 
we made rough assumptions about irrigation for each grand region of rice cultivation 15 

(Fig. 1, Table S2). 
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 5 
Table S1 Fraction of straw incorporation and farm manure application in rice cultivation£ 

Province 
Fraction of 

straw 
incorporation† 

Farm manure  
(kg OM ha-1) ‡  

Province 
Fraction of 

straw 
incorporation 

Farm manure  
(kg OM ha-1) 

Mean Range  Mean Range 

Beijing 0.41  821.6  321.6－1321.6  Henan 0.56  1539.2  776.2－2302.1 
Tianjin 0.29  927.4  123.1－1731.6  Hubei 0.20  2101.3  981.1－3221.6 
Hebei 0.62  1519.3  959.5－2079.1  Hunan 0.34  1836.9  846.7－2827.2 

Shanxi 0.44  1824.8  1195.5－2454.2  Guangdong 0.23  1243.2  634.5－1851.8 

Inner Mon. 0.12  1837.5  1042.4－2632.7  Guangxi 0.27  1384.7  645.4－2124.1 
Liaoning 0.03  1108.5  657.8－1559.3  Hainan 0.22  1408.5  964.8－1852.1 
Jilin 0.03  1308.4  421.5－2195.4  Chongqing 0.17  1608.7  801.5－2415.8 
Heilongjiang 0.23  1800.8  836.0－2765.6  Sichuan 0.18  1922.7  940.7－2904.7 
Jiangsu 0.23  1263.5  605.6－1921.4  Guizhou 0.09  1793.2  740.2－2546.1 
Zhejiang 0.35  1276.2  734.1－1818.3  Yunnan 0.10  1802.3  853.1－2751.5 
Anhui 0.19  1507.5  424.3－2590.7  Shaanxi 0.34  1769.6  555.3－2983.9 
Fujian 0.32  1123.1  852.6－1393.6  Gansu 0.03  1923.0  375.9－3470.1 
Jiangxi 0.38  1612.2  842.3－2382.1  Ningxia 0.15  1448.6  515.5－2381.7 

Shandong 0.55  1032.8  530.8－1534.7  Xinjiang 0.45  1612.0  407.7－2816.3 
£ No data on farm manure application were available for Shanghai and Tibet; as such, data for Jiangsu and 

Guizhou, respectively, were used as substitutes. 
† Statistics derived from the First National Pollution Source Census conducted by the Ministry of 

Environmental Protection of China (CFPC, 2011); however, the range of variation was not provided in 10 
the publication. 

‡ Statistics derived from an investigation of organic application in crop cultivation performed by the 
Institute of Atmospheric Physics, Chinese Academy of Sciences. Green manure was not included 
because it accounts for a minor proportion of the total organic matter application in rice cultivation. 
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Table S2 Proportions of different water irrigation patterns† in each grand region 

 

   Grand region‡ Baseline fraction Uncertainty fraction 

I 3: 0.92; 4: 0.08£ 1: 0.31; 2: 0.31; 3: 0.30; 4: 0.08 

II 2: 0.95; 4: 0.05 1: 0.32; 2: 0.32; 3: 0.31; 4: 0.05 

III 2: 0.82; 4: 0.18 1: 0.27; 2: 0.28; 3: 0.27; 4: 0.18 

IV 1: 1.0 1: 0.34; 2: 0.33; 3: 0.33 

V 1: 1.0 1: 0.34; 2: 0.33; 3: 0.33 

† Refer to Huang et al. (2004) for the definition of water irrigation patterns  

‡ Grand region I: Guangdong, Guangxi, Hainan, Hunan and Jiangxi; Grand region II: Fujian, Hubei, Zhejiang, 

Jiangsu, Shanghai and Anhui; Grand region III: Chongqing, Sichuan, Yunnan and Guizhou; Grand region IV: 

Heilongjiang, Liaoning and Jilin; Grand region V: other provinces. 

£ Indicates that water irrigation pattern 3 was applied in 92% of the rice cultivation area in Grand region I (Fig. 

2a), and the remaining 8% of the rice area was under continuous flooding (water irrigation pattern 4). 

Section S3 Uncertainties in regional estimates obtained via the modeling approach 
F(x) is a spatial process that has a determinative component, A(x), and a random 

component, e(x): 
F(x) = A(x) + e(x)             (S5) 
where x is the location of two dimensions in the spatial domain, D. 
When A(x) is implemented in a model M(x) that simulates the spatial variation of 

A(x), there is unavoidably an error component, Mf(x) (the model fallacy), due to the 
imperfection of the model, and therefore 

A(x) = M(x) + Mf(x)            (S6) 
Combining Mf(x) and e(x) into one component, em(x), F(x) this expression can be 

rewritten as 
F(x) = M(x) + em(x)            (S7) 
where em(x) is typically used to evaluate model performance. To explicitly address 

the model input variables, e.g., environmental factors and anthropogenic activities of 
the model mechanism, M(x) can be expressed as 

F(x) = M(v1,v2,v3,…) + em(x)          (S8) 
where v1, v2, v3, … are the model input variables. Averaging over the spatial domain 

D, Equation S8 yields: 

(x)e,...)v,v,M(vF(x) m321 +=           (S9) 

To implement the averaging of the model simulation over the spatial domain, the 
theoretical approach is 
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D

,...)dxv,v,M(v
,...)v,v,M(v D

321

321

∫
=         (S10) 

However, because it is impossible to obtain data for the model input variables at 

every location x of the domain D,  has to be represented by the model 

simulation at a specific location p, , and there emerges the 

representative error, es, which conforms to 

s
(p)
3

(p)
2

(p)
1321 e,...)v,v,M(v,...)v,v,M(v +=          (S11) 

The representative error es comes from both the error and poor spatial availability 
of the model inputs over the spatial domain. The magnitude of es therefore depends on 
the model input errors and how sensitive the model simulation is in response to the 
variation of the model inputs (Zhang et al. 2014). Combining Equations S9 and S11 
gives us 

(x)ee,...)v,v,M(vF(x) ms
(p)
3

(p)
2

(p)
1 +=−         (S12) 

The right side of Equation S12 is therefore the error of the model simulation over 
the spatial domain. From its definition in Equation S11, the statistical expectation of 
es is 0. By referring to the structural analysis of the model residue error given in Allen 

and Raktoe (1981), (x)em  can be summarized into two parts, the bias and the 

variance of the modelling residuals. We, thereafter, itemized the total uncertainty (UT), 
the right side of Equation S12, as: 

UT = Ud + Ub + Uv  or 2222
vbdT σσσσ ++=       (S13)  

where Ud ( or 2
dσ ) signifies the spatially representative error corresponding to es in 

Equation S12, and Ub+Uv is the uncertainty attributed to the model fallacy, em(x). Ub 

(or 2
bσ ) represents the model performance bias at the site scale, whereas Uv (or 2

vσ ) 

represents the model fallacy apart from UB, which is the combination of the regression 
error and the random error, as described in Allen & Raktoe (1981). The assumed 
independence between es and em(x) originates from the fact that they are due to 
separate causes. For a specific model, the model fallacy is independent of the 
accuracy and spatial availability of the model inputs that facilitate modeling in a 
spatial domain. However, changes in the model mechanism may regulate the 
relationship between Ud and Ub+Uv; for example, improving model performance by 

,...)v,v,M(v 321

,...)v,v,M(v (p)
3

(p)
2

(p)
1



9 
 

incorporating more factors as input variables may reduce the model’s fallacy but 
increase the representative error due to the additional input data requirements 
necessary to run the model . 

Due to substantial heterogeneities in spatial processes, such as fluxes in methane 
emissions from rice cultivation, the large area under study is usually split into several 
smaller regions. These regions may consist of grids of the same size or irregular 
patches of different sizes. Each division is a spatial domain with less heterogeneity to 
which modeling can be applied. To summarize the modeling results for each division, 
the spatial aggregation of Ud was discussed by Zhang et al. (2014) and is briefly 
addressed in Section S4. Section S4 also provides the rationale for the spatial 
aggregation of Ub and Uv. 

Section S4 Spatial aggregation of the estimation uncertainties in grids 
S4.1 Correlation coefficients of the model estimates between two grids due to data 
sharing of the model inputs 

In each grid, i, the model estimates obtained via Monte Carlo iteration produce a 
numeric depiction of a random variable Vi(mi, σi), where mi and σi are the statistical 
mean and standard deviation, respectively, of the random variable Vi. Thereafter, 
model up-scaling involves summation of the random variables V0=V1+V2+...+VN. The 
aggregation of uncertainty, represented by the statistical variance or standard 

deviation, is generalized as ∑∑∑
= ==

=
N

i

N

j
ji

N

i
i VVCovVVar

1 11
),()(  (Ross, 2006), and it can 

be transformed into a quadratic summation of the elementary variances via the 
standardized variance–covariance coefficient matrix: 

∑ ××=
ji

jjiid C
,

,
2 σσσ , (i=1...N, j=1...N)        (S14) 

where 2
dσ  is the aggregated variance of the regional estimation, and σi and σj are 

the standard deviations of the within-cell variations in cells i and j, respectively. 
Matrix C is composed of Ci,j coefficients, which represent “correlations” between the 
spatially representative errors (es in Equation S12) of the individual cells. “Correlation” 
here is a measure of how the model outputs in two cells vary concurrently when they 
share common data for the model inputs. If the estimate in cell i is 
over-/underestimated, then the estimate in cell j will most likely be 
over-/underestimated as well, and vice versa, because they share common data. It is 
noteworthy that the correlation represented by Ci,j is different from that between the 
“real” processes represented by F(x) in Equation S12. The aggregation of the model 
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outputs can be quite simple if the model estimate is generated with independent data 
in each cell. In this case, matrix C will be an identity matrix in which the diagonal 
elements will be 1, and all of the off-diagonal elements will be 0. The aggregation in 
Equation S14 will thereafter indicate the arithmetic sum of the within-cell variances, 
as addressed by the Law of Large Numbers. However, when there are not sufficient 
data to support independent calculation among cells, the off-diagonal elements, Ci,j, of 
matrix C will no longer be zero.  

In the present study, Ci,j was empirically calculated through numerical experiments. 
For a different level of data sharing between two cells (Table S3), the model estimates 
in the two cells were iteratively calculated with CH4MOD. The model inputs were 
randomly selected from the range of values for the variables. When data sharing 
occurred between the two cells for a variable in Table S3, the value of the variable 
was selected once for the two cells; for the variables for which there was no data 
sharing, the value of the variable was selected separately for the two cells. The 
correlation coefficients (Ci,j) of the model estimates in the two cells were statistically 
calculated with 1000 iterations of the paired model estimates in the two cells in the 
present study. 
Table S3 Look-up table of correlation coefficients of the model outputs in two cells due to 
data sharing 

Data sharing between cell i and j 
Ci,j 

 Data sharing between cell i and j 
Ci,j 

Yield OM Sand WPtn VI  Yield OM Sand WPtn VI 

0† 0 0 0 1 0.069  1 0 0 0 1 0.136 

0 0 0 1 0 0.347  1 0 0 1 0 0.430 

0 0 0 1 1 0.413  1 0 0 1 1 0.520 

0 0 1 0 0 0.295  1 0 1 0 0 0.343 

0 0 1 0 1 0.375  1 0 1 0 1 0.478 

0 0 1 1 0 0.674  1 0 1 1 0 0.776  

0 0 1 1 1 0.796  1 0 1 1 1 0.900 

0 1 0 0 0 0.082  1 1 0 0 0 0.170 

0 1 0 0 1 0.167  1 1 0 0 1 0.225 

0 1 0 1 0 0.436  1 1 0 1 0 0.481 

0 1 0 1 1 0.519  1 1 0 1 1 0.616 

0 1 1 0 0 0.396  1 1 1 0 0 0.458 

0 1 1 0 1 0.499  1 1 1 0 1 0.575 

0 1 1 1 0 0.760  1 1 1 1 0 0.849 

0 1 1 1 1 0.878  1 1 1 1 1 1.000 

1 0 0 0 0 0.066        

†1 means that the two cells share data for the variable, and 0 means that they 
do not share data for the variable 
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S4.2 Spatial aggregation of estimation uncertainties 
Analogous to Equation S14, Equation S15, S16 and S17 was used to aggregate the 

uncertainty of Ub, Uv and Ud, of the estimated methane emission, respectively. 

∑∑
= =

××××××==
N

i

N

j
bjjjibiibb rFAErFAU

1 1
,

2 )()(σ      (S15) 
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××××==
N

i

N

j
jdjjiididd ACAU

1 1
,,,

2 )()( σσσ       (S17) 

where Ai and Aj represent the rice harvesting area in grids i and j, respectively. No 
errors in the rice harvesting area were considered in Equation S15. Fi and Fj represent 
the average methane fluxes from the Monte Carlo simulation in grid i and j, and σd,i 
and σd,j are the standard deviations associated with Fi and Fj, respectively. No 
cross-correlation between the three components was considered here. Because of 
limited data availability, the neighboring grids were assigned probabilities of sharing 
data for the model input variables. The aggregation of σd,i in the grids was therefore 
kernelled using data-sharing matrix C (Ci, j represents its element, Table S3). Ei, j = 1 is 
the element of a constant matrix, E, which refers to the bias of the model estimates in 
all grids and is statistically under/overestimated concurrently in all grids. Qi, j is the 
element of matrix Q. Qi, j is not specifically known. The two extremes of matrix Q 
correspond to matrix E and the identity matrix, I. The estimation error, Fi×rv, is 
related to the factors that are not explicitly accounted for in the model, for instance, 
mineral fertilizer application (Xie et al., 2010) and soil organic carbon content (Zhan 
et al., 2011). Because the between-grid relationships of these “unknown” factors 
could not be explicitly accounted for, we assigned U the values for the mid-point of 
the two extremes E and I.  

Combining Equation S15, S16 and S17, Equation S18 is then used to aggregate the 
uncertainties in all grids to calculate the uncertainty in the national inventory:  

∑∑
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