



## Supplement of

# Mapping the reduction in gross primary productivity in subarctic birch forests due to insect outbreaks

Per-Ola Olsson et al.

Correspondence to: Per-Ola Olsson (per-ola.olsson@nateko.lu.se)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

#### PAR modelled GPP

The Misterlich light response curve (Eq. S1; Falge et al. 2001) was fitted to daytime NEE from the growing season of 2009.

$$NEE = -(F_{csat} + R_d) \left[ 1 - e^{\frac{-aQ}{F_{csat} + R_d}} \right] + R_d$$
(S1)

where  $F_{csat}$  (µmol CO<sub>2</sub> m<sup>-2</sup> s<sup>-1</sup>) is net photosynthesis at light saturation level,  $R_d$  (µmol CO<sub>2</sub> m<sup>-2</sup> s<sup>-1</sup>) is daytime ecosystem respiration,  $\alpha$  (µmol CO<sub>2</sub> m<sup>-2</sup> s<sup>-1</sup>/µmol photons m<sup>-2</sup> s<sup>-1</sup>) is quantum efficiency and Q (µmol photons m<sup>-2</sup> s<sup>-1</sup>) is PAR. Since the aim was to check how light available for photosynthesis influenced GPP for all years, one arbitrary chosen year was sufficient to get comparable results. Parameters of the fit were: F<sub>csat</sub> = 5.052, R<sub>d</sub> = 1.933,  $\alpha$  = 0.02219. The GPP model was based on a modified Misterlich light response function (Eq. S2) and GPP was computed according to Eq. S3.

$$GPP = R_d - NEE \tag{S2}$$

$$GPP = (F_{csat} + R_d) \left[ 1 - e^{\frac{-\alpha Q}{F_{csat} + R_d}} \right]$$
(S3)

#### References

Falge, E., et al.: Gap filling strategies for defensible annual sums of net ecosystem exchange, Agric. For. Meteorol., 107, 43–69, 10.1016/S0168-1923(00)00225-2, 2001.

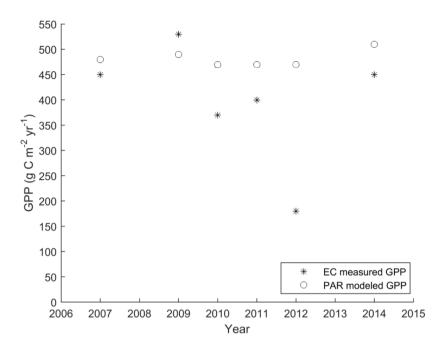



Figure S1. PAR modelled and EC measured GPP for the years 2007, 2009, 2010, 2011, 2012 and 2014.

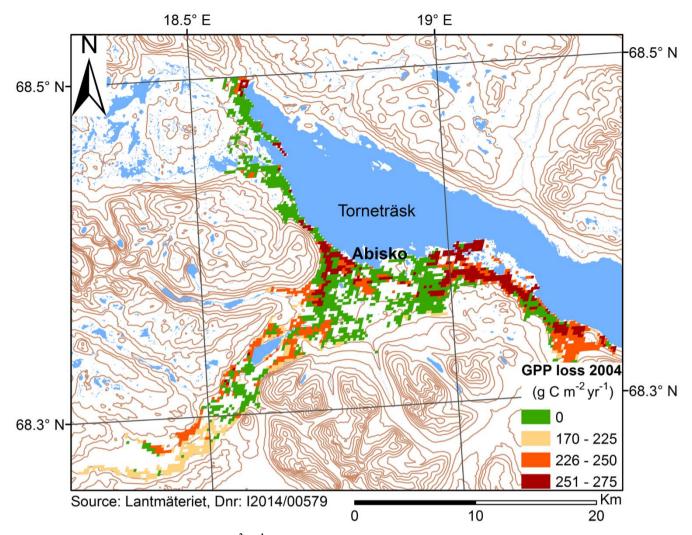



Figure S2. Reduction in annual GPP (g C m<sup>-2</sup> yr<sup>-1</sup>) due to the outbreak of autumnal moth and winter moth in 2004 computed with a LUE model also for defoliation (Method 2). One standard deviation of the GPP losses is estimated to 35% of the given values. Areas with only the background map have a canopy cover less than 50% or are outside the study area shown in Fig. 1. The reference system is SWEREF99 TM and latitude and longitude are in WGS84. Source of background map: Lantmäteriet (Dnr: I2014/00579).

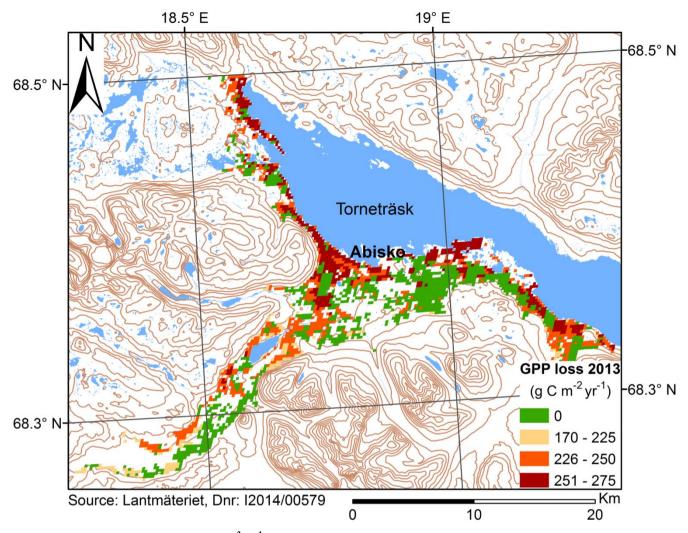



Figure S3. Reduction in annual GPP (g C m<sup>-2</sup> yr<sup>-1</sup>) due to the outbreak of autumnal moth and winter moth in 2013 computed with a LUE model also for defoliation (Method 2). One standard deviation of the GPP losses is estimated to 35% of the given values. Areas with only the background map have a canopy cover less than 50% or are outside the study area shown in Fig. 1. The reference system is SWEREF99 TM and latitude and longitude are in WGS84. Source of background map: Lantmäteriet (Dnr: I2014/00579).

### Table S1. Variables used in the developed method with descriptions.

| Variable                         | Description                                                                                 |
|----------------------------------|---------------------------------------------------------------------------------------------|
| ε <sub>max</sub>                 | Maximum light use efficiency for undisturbed birch forest                                   |
| $\epsilon_{max, def}$            | Maximum light use efficiency for defoliated birch forest                                    |
| $\mathbf{f}_{8day}$              | Reduction factor that reduces $\epsilon_{max}$ depending in temperature                     |
| $\mathrm{fAPAR}_{\mathrm{8day}}$ | fAPAR for a MODIS 8-day period                                                              |
| <b>GDD</b> <sub>thres</sub>      | Threshold set to control when temperature no longer influences $\epsilon_{\text{max}}$      |
| GPP <sub>lue</sub>               | GPP estimated with the LUE model                                                            |
| GPP <sub>EC</sub>                | GPP derived from the EC-data                                                                |
| NDVI <sub>DL</sub>               | NDVI smoothed with double logistic functions in TIMESAT                                     |
| P <sub>frost</sub>               | Reduction factor the influence $f_{8day}$ depending on frost events                         |
| PAR <sub>8day</sub>              | Mean daily PAR over an MODIS 8-day period                                                   |
| $\mathbf{S}_{\mathrm{GDD}}$      | Reduction factor that influence $f_{8\text{day}}$ depending on $P_{\text{frost}}$ and GDD   |
| T <sub>mean8</sub>               | Mean temperature for a MODIS 8-day period                                                   |
| $T_{min8}$                       | Min temp for a MODIS 8-day period                                                           |
| T <sub>thres</sub>               | Factor controlling how $T_{mean8}$ influences $f_{8day}$ in the $2^{nd}$ part of the season |
|                                  |                                                                                             |