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Abstract. It is projected that forest disturbances, such as in-
sect outbreaks, will have an increasingly negative impact on
forests with a warmer climate. These disturbance events can
have a substantial impact on forests’ ability to absorb atmo-
spheric CO2, and may even turn forests from carbon sinks
into carbon sources; hence, it is important to develop meth-
ods both to monitor forest disturbances and to quantify the
impact of these disturbance events on the carbon balance. In
this study we present a method to monitor insect-induced de-
foliation in a subarctic birch forest in northern Sweden, and
to quantify the impact of these outbreaks on gross primary
productivity (GPP). Since frequent cloud cover in the study
area requires data with high temporal resolution and limits
the use of finer spatial resolution sensors such as Landsat,
defoliation was mapped with remote sensing data from the
MODIS sensor with 250 m× 250 m spatial resolution. The
impact on GPP was estimated with a light use efficiency
(LUE) model that was calibrated with GPP data obtained
from eddy covariance (EC) measurements from 5 years with
undisturbed birch forest and 1 year with insect-induced de-
foliation. Two methods were applied to estimate the impact
on GPP: (1) applying a GPP reduction factor derived from
EC measured GPP to estimate GPP loss, and (2) running a
LUE model for both undisturbed and defoliated forest and
deriving the differences in modelled GPP. In the study area
of 100 km2 the results suggested a substantial setback to the
carbon uptake: an average decrease in regional GPP over
the three outbreak years (2004, 2012, and 2013) was esti-
mated to 15± 5 Gg C yr−1, compared to the mean regional
GPP of 40± 12 Gg C yr−1 for the 5 years without defolia-
tion, i.e. 38 %. In the most severe outbreak year (2012), 76 %
of the birch forests were defoliated, and annual regional GPP
was merely 50 % of GPP for years without disturbances. The

study has generated valuable data on GPP reduction, and
demonstrates a potential for mapping insect disturbance im-
pact over extended areas.

1 Introduction

It is estimated that forests account for half of the global ter-
restrial net primary productivity and act as important sinks
of atmospheric CO2 (Bonan, 2008). Forests in the North-
ern Hemisphere contribute significantly to this sink, with
the mid- and high-latitude ecosystems as major contribu-
tors (Goodale et al., 2002; Kurz et al., 2008b). The high-
latitude forests are predicted to be among the ecosystems
that are most strongly influenced by climate change (Kurz
et al., 2008b); a warmer climate is likely to increase forest
productivity (e.g. Nemani et al., 2003; Boisvenue and Run-
ning, 2006), and result in higher uptake of CO2 from the at-
mosphere. On the other hand, it is projected that the impact
of forest disturbances will increase with a warmer climate
(Seidl et al., 2014), and there are indications that disturbances
such as wind, fires, and insect outbreaks have led to satura-
tion of the carbon sink in European forests (Nabuurs et al.,
2013). One important forest disturbance agent is insects; it is
projected that the temporal and spatial dynamics, as well as
the intensities and ranges of insect herbivore outbreaks, will
be influenced by global warming (Vanhanen et al., 2007; Bat-
tisti 2008; Jepsen et al., 2008; Netherer and Schopf, 2010).
These insect outbreaks can severely disturb forest ecosys-
tems, and have a strong impact on carbon dynamics (Kurz
et al., 2008a; Jepsen et al., 2009; Heliasz et al., 2011). Quan-
titative effects of insect outbreaks on the carbon balance are,
however, not well known (Clark et al., 2010; Schäfer et al.,
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2010; Hicke et al., 2012), and insect outbreaks are generally
excluded in large scale carbon modelling, which may result
in overestimation of forests’ ability to act as carbon sinks
(Kurz et al., 2008b; Hicke et al., 2012). Consequently, it is
important to develop methods both to monitor the spatial ex-
tent of insect outbreaks and to quantify the impact of these
outbreaks on the carbon balance.

One alternative to estimate the impact on forest produc-
tivity is modelling: the impact of a large-scale outbreak of
the mountain pine beetle (Dendroctonus ponderosae Hop-
kins) in British Columbia, Canada, was studied with a for-
est ecosystem model by Kurz et al. (2008a). The impact on
the carbon balance of gypsy moth (Lymantria dispar L.) de-
foliation in New Jersey, USA, was also modelled with both
a canopy assimilation model (Schäfer et al., 2010) and a
terrestrial biosphere model (Medvigy et al., 2012). The im-
pact of spruce budworm (Choristoneura fumiferana Clem.)
outbreaks in eastern Canada were modelled by Dymond et
al. (2010), and Landry et al. (2016) developed a Marauding
Insect Module (MIM) in the Integrated Biosphere Simulator
(IBIS) that enables simulation of insect outbreak for three in-
sect functional types. Another alternative to quantify the in-
fluence of an insect outbreak on the carbon balance is to ap-
ply eddy covariance (EC) measurements: Brown et al. (2010,
2012) studied how a mountain pine beetle outbreak influ-
enced net ecosystem productivity (NEP) in British Columbia,
Canada; Clark et al. (2010, 2014) studied differences in net
ecosystem exchange (NEE) between undisturbed years and
years with severe defoliation by the gypsy moth in New Jer-
sey, USA; and Heliasz et al. (2011) estimated the reduction in
NEE during the growing season due to outbreaks of autum-
nal moth (Epirrita autumnata Borkhausen) and winter moth
(Operophtera brumata L.) in northern Sweden in 2004. Even
though not explicitly studied, there was gypsy moth defoli-
ation of holm oak (Quercus ilex L.) present in a time series
of EC measurements in southern France (Allard et al., 2008).
These methods generate valuable data on the impact of in-
sect defoliation on the carbon balance; however, to quantify
the total regional impact, data on the extent of defoliation
events are required.

To generate wall-to-wall estimates of the disturbance ef-
fect on the carbon balance, remotely sensed data from satel-
lites can be used. Several studies have demonstrated that
satellite based remote sensing techniques can be applied to
detect insect disturbances with high accuracy; see, for exam-
ple, Wulder et al. (2006), Adelabu et al. (2012), and Rullan-
Silva et al. (2013) for reviews. In this paper we study out-
breaks of autumnal moth and winter moth in subarctic moun-
tain birch (Betula pubescens ssp. czerepanovii N.I. Orlova)
forests in northern Sweden. These outbreaks often cover
large areas, but are often followed by within-season recov-
ery of the foliage in parts of the outbreak areas, which in
combination with cloudy conditions can limit the possibility
to map the outbreaks with remote sensing methods. Never-
theless, outbreaks of autumnal and winter moth have been

mapped in northern Fennoscandia with high accuracy with
Landsat data (Tømmervik et al., 2001; Babst et al., 2010).
The low temporal resolution of Landsat (16 days revisit time)
can, however, be a limitation; as an example, only fractions
of the area included in this study were visible in Landsat data
during the peak of a severe outbreak in 2013. An alternative
to Landsat data is coarse spatial resolution data from, for ex-
ample, the Moderate Resolution Imaging Spectroradiometer
(MODIS) sensor, which provides data with high (daily) tem-
poral resolution and a spatial resolution of 250 m× 250 m
or coarser. MODIS-derived normalized difference vegetation
index (NDVI) has been used to map autumnal and winter
moth outbreaks with high accuracy in northern Fennoscan-
dia (Jepsen et al., 2009), and Olsson et al. (2016b) developed
a method for near-real-time monitoring of insect-induced de-
foliation that facilitates monitoring of refoliation later in the
growing season.

Furthermore, there is a large body of research demonstrat-
ing that vegetation primary productivity can be estimated
with remotely sensed data and a light use efficiency (LUE)
approach (e.g. Prince, 1991; Ruimy et al., 1994; Running et
al., 2004; Xiao et al., 2004; Wu et al., 2010; McCallum et
al., 2013; Gamon 2015). The LUE concept was introduced
by Monteith (1972) and Monteith and Moss (1977), suggest-
ing that the primary productivity of plants has a strong lin-
ear relationship to the absorbed amount of photosynthetically
active radiation (APAR), i.e. solar radiation in the spectral
range 400–700 nm that is absorbed by the plant canopy. Since
near-linear relationships between satellite-derived vegetation
indices and the fraction absorbed PAR (fAPAR) have been
established (e.g. Asrar et al., 1984; Sellers, 1987; Goward
and Huemmrich, 1992; Myneni and Williams, 1994; Olofs-
son and Eklundh, 2007), it is possible to create a LUE model
driven by remote sensing data. Such a LUE model could be
applied for large-area estimates of the impact of forest distur-
bance on the uptake component of the carbon balance. Bright
et al. (2013) utilized Landsat data to map bark beetle damage
in northern Colorado, USA, and MODIS GPP data, which are
based on a LUE model, to quantify the impact of the damage
on GPP. However, to the knowledge of the authors, no pre-
vious study has utilized remote sensing data and developed a
LUE model to monitor and quantify the impact of defoliating
insects’ outbreak on GPP.

In this study we utilized EC measured GPP to develop a
LUE model, driven by MODIS-derived NDVI, to quantify
the regional impact on GPP of insect-induced defoliation,
and to map the spatial extent of the defoliation. Our main
study objective was to compare GPP for years with insect
damage (2004, 2012 and 2013) with GPP for years with-
out insect damage (2007, 2009, 2010, 2011 and 2014) in the
birch forest of a subarctic valley of northern Sweden. The
analysis was achieved with two methods: (1) finding GPP
for undisturbed forest and estimate the impact of an insect
outbreak with a common reduction factor derived from EC
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data, and (2) by applying a LUE model for both undisturbed
and defoliated pixels and computing the differences.

2 Materials and methods

2.1 Study area

The study area was the mountain birch (Betula
pubescens ssp. Czerepanovii N.I. Orlova) forests in a
valley south-west of the village of Abisko (68.35◦ N,
18.82◦ E), and along Lake Torneträsk, as illustrated in Fig. 1
(green). The area is located in the subarctic zone in northern
Sweden with Lake Torneträsk at an altitude of 345 m a.s.l.
and with the highest mountains reaching 1700 m a.s.l. (Inter-
act, 2016). These birch forests are infested by the autumnal
moth (Epirrita autumnata Borkhausen) and the winter moth
(Operophtera brumata L.) in time intervals of 9–10 years
(Bylund, 1995; Tenow et al., 2007). The first reported
outbreaks by the autumnal moth in northern Fennoscandia
are from the mid-1800s, and the winter moth has been ob-
served in the northern parts of Fennoscandia since late 1800
(Tenow, 1972). These insect outbreaks strongly influence
the birch forests (Ammunét et al., 2015): severe defoliation
events may result in stem mortality, requiring decades of
recovery (e.g. Tenow, 1996; Tenow and Bylund, 2000;
Jepsen et al., 2013), and understorey vegetation can shift into
more grass-dominated communities (Karlsen et al., 2013;
Jepsen et al., 2013). Root-associated fungal communities
can change (Saravesi et al., 2015), as can chemical and
physical properties of the soil (Kaukonen et al., 2013).
A warmer climate, especially a lower frequency of years
with extremely cold winters, as reported by Callaghan et
al. (2010), strongly influences birch moth populations (Babst
et al., 2010). The autumnal moth outbreaks have expanded
into colder, more continental regions, and the winter moth
has reached further to the north-east into areas where the
autumnal moth previously dominated (Jepsen et al., 2008).
The latest outbreaks in the study area occurred in 2004, with
a documented reduction in carbon sink strength of 89 % at
an EC tower located in birch forest (Heliasz et al., 2011), and
in 2012 and 2013 (Bengt Landström, county administrative
board of Norrbotten, personal communication, 31 October
2013). These outbreak events were included in this study.

2.2 Data

2.2.1 Remote sensing data and smoothing of time series

We used two Terra/MODIS satellite data products with 8-
day temporal resolution: (1) MOD09Q1 version 5, surface
reflectance in the red and near-infrared (NIR) bands, includ-
ing quality assurance (QA) information, with 250 m× 250 m
spatial resolution, used mainly to derive NDVI (LPDAAC
2016a); and (2) MOD09A1 version 5, surface reflectance, as
well as QA data, with 500 m× 500 m spatial resolution (LP-

DAAC, 2016b), utilized due to the product’s more compre-
hensive QA data.

NDVI was computed from the MODIS data as (Rouse et
al., 1973; Tucker, 1979)

NDVI= (NIR− red)/(NIR+ red), (1)

where red is reflectance in the red wavelength band, and NIR
is reflectance in the near-infrared wavelength band. We cre-
ated time series for the period 2000–2014 for all pixels in the
study area and processed in TIMESAT ver. 3.2. TIMESAT
is a software package used to reduce the influence of noise
by fitting smoothed functions to time series of data (Jönsson
and Eklundh, 2002, 2004). In this study we applied the same
fittings and weights as in Olsson et al. (2016b): Double lo-
gistic functions were used to smooth the raw NDVI data and
QA data from both MOD09Q1 and the more comprehensive
QA flags in MOD09A1 were utilized to estimate the qual-
ity of the NDVI observations. In this study we use the term
NDVIDL to refer to the smoothed time series of NDVI.

2.2.2 Fraction of canopy-absorbed PAR and
relationships with NDVI

The fraction of PAR absorbed by the canopy (fAPARcanopy)

was measured at a spectral tower located in birch forest
north-west from Abisko (Fig. 1, black star). fAPARcanopy
was obtained using the four-component method, i.e. mea-
surements of incoming PAR above canopy, the total re-
flected PAR above the canopy, the transmitted PAR below the
canopy, and the reflected PAR by the understorey vegetation
and ground below the canopy. See Eklundh et al. (2011) for
detailed information about the estimation of fAPARcanopy.
All PAR sensors were calibrated at the field site following
the procedure by Jin and Eklundh (2015), and fAPARcanopy
at solar noon time was calculated and used in the final anal-
ysis. fAPARcanopy data were available for the years 2010 and
2011.

Average fAPARcanopy over 8-day periods, coinciding with
the MODIS 8-day periods, were computed, and an ordinary
least squares (OLS) regression was performed to find the re-
lationship between fAPARcanopy and NDVIDL Myneni and
Williams (1994). The linear equation derived was used in the
LUE model to obtain fAPAR from the double logistic fitted
NDVI.

2.2.3 Eddy covariance and meteorological data

The EC tower is situated in the eastern part of the study area
(Fig. 1, black triangle) and located near the crossing point
of four nominal MODIS pixels with 250 m× 250 m spatial
resolution (Fig. 2). Vegetation in the four pixels is similar,
with some open mires in the north-east pixel and a paved
road crossing the two southernmost pixels. The tower’s foot-
print is estimated to be about 200 m long, which is slightly
smaller than a MODIS pixel. The prevailing wind directions

www.biogeosciences.net/14/1703/2017/ Biogeosciences, 14, 1703–1719, 2017



1706 P.-O. Olsson et al.: Mapping the reduction in gross primary productivity

Figure 1. The studied birch forest (green) along the south-west part of Lake Torneträsk and in the valley to the south-west of the village of
Abisko. The locations of the eddy covariance (EC) tower used to obtain GPP and the spectral tower used to obtain fAPAR data are also shown.
Reference system is SWEREF99 TM and latitude and longitude are in WGS84. Source of background map: Lantmäteriet (Dnr: I2014/00579).

are from the west and from the east; hence, the main foot-
print of the EC tower is to the west and east from the tower,
where vegetation is most homogeneous. Time series of NDVI
were extracted and mean values and standard deviations were
computed for the four MODIS pixels to study whether there
were any larger deviations in the pixels’ NDVI signals. In
Fig. 3, mean NDVI and standard deviation for the four pixels
in the period 2010–2014 are shown. The low standard devi-
ations indicate that there are minor differences in the NDVI
signal between the pixels during the main growing season
for both raw NDVI and NDVIDL both for years without dis-
turbance and for outbreak years. Hence, we assume that a
varying footprint of the EC tower due to varying wind di-
rections and stability will have a limited influence on the EC
measurements.

The EC measurements were made 8 m above ground,
3.3 m above canopy, using a three-dimensional sonic
anemometer (Metek USA-1; METEK GmbH, Germany) and
an open-path infrared gas analyzer (Licor 7500; LI-COR
Inc., USA). The system was operated with a frequency of
20 Hz, and data were recorded by a data logger (CR1000;
Campbell Scientific, Inc., USA). Additional measurements
of air temperature (Vaisala WXT510; Vaisala, Finland) and
incoming photosynthetic flux density (PPFD; JYP 1000,
SDEC, France), used for flux partitioning and gap filling,
were made at the tower. Data were obtained each year dur-
ing the period 1 May to 30 September, which is from be-
fore the start of the growing season (Karlsson et al., 2003)
until the late growing season; during the years included in
this study GPP was approaching zero by the last week of
September. For the years 2004 and 2013, temperature and

Figure 2. The location of the eddy covariance (EC) tower (yellow
triangle) near the crossing point of four nominal MODIS pixels
with 250× 250 m spatial resolution (white lines). Reference sys-
tem: SWEREF99 TM. Lantmäteriet (Dnr: I2014/00579).

PAR were obtained from Abisko Scientific Research Station
(ANS, 2015); comparisons between data from ANS and the
EC tower showed small differences for the years when data
were available from both sources.

EC flux calculations were done with the EddyPro soft-
ware ver. 5.2.1 (LI-COR Inc., USA). Gaps caused by bad
weather conditions, bad EC measuring conditions, or short
breaks in instrument functioning were filled with the “Eddy
covariance gap-filling & flux-partitioning tool” (http://www.
bgc-jena.mpg.de/~MDIwork/eddyproc/). The main reasons
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Figure 3. Mean (black) and standard deviation (grey) of NDVI 2010–2014 for the four pixels around the eddy covariance (EC) tower. Panel
(a) is raw NDVI and (b) is NDVI fitted with double logistic functions in TIMESAT (NDVIDL). Years 2012 and 2013 are those with insect
outbreak. In 2013 the birch forest was refoliating later in the growing season. There is small secondary peak in raw NDVI (a) appearing each
year. This peak appears during the winter, when there is no vegetation in the study area, and is hence removed from the smoothed data (b).

for removing data were precipitation, as we used an open-
path gas analyser, and atmospheric conditions that did not
fulfil the turbulence conditions required. We considered the
gap-filling approach suitable also for defoliated years since
the gap-filling function is created based on data from short
time windows, usually 7 days, and hence adjusts the fit-
ting parameters for changing ecosystem conditions. A model
from the same website was used to partition NEE into GPP
and ecosystem respiration (Reco). It was assumed that night-
time NEE is equal to night-time Reco. Accordingly, the ac-
cepted night-time data were fitted to the Lloyd and Tay-
lor (1994) model based on air temperature. This model was
also used to estimate Reco during daytime conditions. GPP
was estimated as the residual after subtracting Reco from the
measured NEE. Details about gap filling and flux partitioning
are described in Reichstein et al. (2005).

2.2.4 Land cover and elevation data

Land cover data were obtained from the Swedish map-
ping, cadastral, and land registration authority (Lantmäteriet;
Dnr: I2014/00579). These land cover data are based on a
classification of Landsat TM data, were updated in the year
2000 as a part of the CORINE land cover project, and have a
spatial resolution of 25 m× 25 m (Lantmäteriet, 2010). Birch
forests in the study area were identified by extracting all pix-
els with broadleaved forest. Since birch is the dominating
tree species with only a few sporadic individuals of other
species (Sonesson and Lundberg, 1974), all forests were con-
sidered to be birch. These data were used to calculate the
fraction forest cover per MODIS pixel.

Elevation data were obtained from Lantmäteriet (Na-
tional survey of Sweden) as a digital elevation model
(DEM) with 50 m× 50 m spatial resolution (Lantmäteriet;
Dnr: I2014/00579). Mean elevation for each MODIS pixel
was computed as the average altitude of all DEM pixels

covered by a MODIS pixel. To adjust for altitudinal differ-
ences in temperatures across the study area, a mean summer
temperature gradient of 0.5 ◦C per 100 m (Josefsson, 1990;
Holmgren and Tjus, 1996) was applied to the temperature
data from the EC tower.

2.3 Light use efficiency model

A LUE model with mean values of daily GPP in 8-day in-
tervals (GPPlue) (g C m−2 day−1), corresponding to the time
interval of the MODIS data, was developed as

GPPlue = ε× fAPAR8day×PAR8day, (2)

where ε (g C MJ−1) is the light use efficiency, fAPAR8day
is fAPAR for a MODIS 8-day period derived from NDVIDL,
and PAR8day (MJ m−2 day−1) is mean daily PAR measured at
the EC tower over the 8-day period. The light use efficiency
varies between vegetation types, and variability in meteoro-
logical conditions is accounted for through reductions factors
for temperature and vapour pressure deficit (e.g. Field et al.,
1995; Prince and Goward, 1995; Potter et al., 1999; Turner et
al., 2003). In this study the light use efficiency was computed
as

ε = εmax× f8day, (3)

where εmax (g C MJ−1) (see Sect. 2.3.3) is the maximum ef-
ficiency applied in the model and f8day is a reduction factor.
We assumed that accounting for temperature only is suffi-
cient in our study region, which is supported by Bergh et
al. (1998) and Lagergren et al. (2005). Two models were
created to describe f8day, as in Lagergren et al. (2005): one
model for the first part of the growing season and one model
for the second part of the growing season.
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2.3.1 First part of the growing season

During the first part of the growing season, covering May to
late June, f8day depended on growing degree days (GDDs)
and frost events, where GDD was computed with a base tem-
perature of 5 ◦C, following Senn et al.’s (1992) method ap-
plied to mountain birch development in northern Finland:

GDDt =

{
GDDt−1 ,Tmean8 ≤ 5
GDDt−1+ Tmean8− 5 ,Tmean8 > 5 (4)

where Tmean8 (◦C) is the mean temperature for a MODIS 8-
day period. The reduction factor was computed as

f8day =


1 ,GDDt ≥ GDDthres

1−
GDDthres− SGDD

GDDthres+ SGDD
,GDDt < GDDthres

,

(5)

where GDDthres (see Sect. 2.3.3) is a threshold applied to
decide when temperature and frost events no longer influence
ε, in a similar fashion to Bergh et al. (1998) and Lagergren
et al. (2005). SGGD is a reduction factor influenced by GDD
and frost events and computed as

SGDD =
GDDt

1+Pfrost
, (6)

where Pfrost is a reduction factor controlled by frost events
and computed as

Pfrost =


0 ,Tmin8 ≥ −3

0.05× (−3− Tmin8)

5
,−8≤ Tmin8 < −3

0.05 ,Tmin8 < −8

, (7)

where Tmin8 (◦C) is the lowest temperature during a MODIS
8-day period.

2.3.2 Second part of the growing season

In the second part of the growing season, covering late June
to September, f8day is controlled by mean temperature only
as

f8day =

 1 ,Tmean8 ≥ Tthres
Tmean8

Tthres
,Tmean8 < Tthres

, (8)

where Tthres (◦C) (see Sect. 2.3.3) is a temperature factor for
controlling the influence of the 8-day mean temperature dur-
ing the second part of the growing season.

2.3.3 LUE model optimization

The LUE model was optimized to find three factors:
(1) the GDD threshold (GDDthres), (2) the temperature fac-
tor (Tthres), and (3) the period to change from the first to the

second seasonal model. These were found by minimizing the
root mean square error (RMSE) and maximizing R2, based
on GPPlue and daily mean values of GPP from the EC tower
over MODIS 8-day periods (GPPEC). To compute εmax, the
mean value of the light use efficiency for all MODIS peri-
ods with maximum efficiency, i.e. f8day = 1, was calculated,
where the efficiency was computed as

εmax =
GPPEC

fAPAR8day×PAR8day
, (9)

where GPPEC was derived from the EC tower. Two
εmax values were computed: one including data from the
5 years (2007, 2009, 2010, 2011 and 2014) with undisturbed
birch forest, and one (εmax, def) for the year 2012 with insect
defoliation. No data were available from 2008 due to equip-
ment failure, and in 2013 the measurements were disturbed
by larvae climbing the equipment.

2.3.4 LUE model uncertainty

A Monte Carlo approach was applied to evaluate the uncer-
tainty of the LUE model by creating sets with 100 parameter
values each for εmax and slope and intercept derived from
the OLS regression between fAPARcanopy and NDVIDL. The
standard deviation of εmax was estimated from all MODIS
periods with maximum efficiency, as described in Sect. 2.3.3,
and a 95 % confidence interval for the regression line was
estimated. The different sets of parameters were created ran-
domly from a uniform distribution, and the Monte Carlo sim-
ulation was run for all possible combinations of parameter
values for the 5 years with undisturbed forests and over 15
sets of 100 MODIS pixels with birch forest. Mean and stan-
dard deviation of LUE modelled GPP were estimated from
these simulations.

2.4 Identifying MODIS pixels with defoliated birch
forest

Defoliated MODIS pixels were identified for the 3 years with
insect outbreaks with a near-real-time monitoring method
based on Kalman filtering and cumulative sums (Olsson et
al., 2016b). The method identifies a seasonal trajectory of
NDVI representing birch forest during a year without distur-
bances, called stable season. A Kalman filter (Kalman, 1960)
is applied to the raw NDVI observations from the year of
study and deviations from the stable season are computed. A
cumulative sum (CUSUM) filter (Page, 1954) is applied to
these deviations, and a pixel is classified as defoliated when
the cumulative sum of deviations reaches a given threshold.
In a near-real-time application the stable season can only be
derived from years prior to the year of study. In this study
we modified the method so that the stable season was de-
rived from all years with available data. For high detection
accuracy, the method requires that a MODIS pixel is covered
by at least 50 % forest. Hence, based on the land cover data
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Figure 4. Correlation between ground-measured fraction of ab-
sorbed PAR by the canopy (fAPARcanopy) and MODIS-derived
NDVI smoothed with a double logistic function in TIMESAT
(NDVIDL) in 8-day intervals. Only NDVIDL values≥ 0.4 were in-
cluded in the OLS regression resulting in the black line. R2

= 0.81
and N = 29.

from Lantmäteriet, forest in pixels with lower forest cover
was excluded, resulting in 100 km2 of the in total 125 km2

birch forest in the study area being included; the mean for-
est cover was 80 % per MODIS pixel. The method detected
74 % of the defoliated sampling areas in the study area with a
misclassification of undisturbed areas of 39 % (Olsson et al.,
2016b).

2.5 Annual GPP loss due to insect defoliation

GPP for years without insect defoliation was estimated for all
pixels by applying the LUE model and computing the mean
value for the 5 years without insect outbreak, and with data
available from the EC tower. The 8-day average of incom-
ing PAR (PAR8day), measured at the EC tower, was assumed
to be valid for all pixels in the study area, which was also
suggested by comparisons between PAR measured at the EC
tower and ANS.

Two methods were applied to study the reduction in an-
nual GPP due to the insect outbreaks: (1) a method based on
a reduction factor derived from the EC data from 2012, when
the birch forest in the footprint of the tower was severely
defoliated and no refoliation occurred. This reduction factor
was applied to all pixels in the study area and (2) a method
where the LUE model was applied to all defoliated pixels
with εmax, def computed for defoliated growing seasons, and
where the loss in GPP was computed as the difference be-
tween undisturbed and defoliated years.

2.5.1 Method 1 – GPP reduction factor

The fraction of the measured annual GPP at the EC tower that
was lost due to the insect outbreak in 2012 was computed as

GPPredfact = 1−GPPdefoliated/GPPundisturbed, (10)

where GPPredfact is the reduction factor and GPPdefoliated is
annual GPP from the EC tower in 2012. GPPundisturbed is GPP
from the tower representing a year without disturbances and
computed as the mean of annual GPP for the 5 years without
disturbances.

The reduction in annual GPP was computed for each pixel
by applying the reduction factor to GPP for undisturbed years
and multiplying with the area forest cover in the pixel. The
same reduction factor was applied to all years with insect
defoliation. The total impact of the defoliation was computed
as the sum of GPP loss for all defoliated pixels in the study
area, and for each year with insect outbreak.

2.5.2 Method 2 – LUE model for defoliated pixels

The LUE model, modified to model growing season with de-
foliation, was applied to all defoliated pixels in the study
area to estimate annual GPP for each year with defoliation.
Derivation of εmax, def was done with the same method as
εmax, but only data from 1 year with insect outbreak (2012)
were available to estimate εmax, def and to evaluate the per-
formance of the defoliation LUE model. For each year with
insect outbreak, the regional reduction in GPP was computed
by summing, over all pixels identified as defoliated, the dif-
ference between GPP for years without outbreak and GPP
for this specific outbreak year.

2.5.3 Influence of refoliation

We also studied how recovering foliage later in the growing
season influenced the two methods. The assumption was that
recovering foliage would result in slightly higher NDVIDL
values, which would enable Method 2 to capture the re-
foliation and, hence, estimate GPP losses more accurately.
All pixels that were detected as defoliated were classified
as refoliated or non-refoliated with the defoliation monitor-
ing method. The differences between GPP loss derived with
methods 1 and 2 were computed as GPP loss method 1 minus
GPP loss method 2. Finally, the mean differences for refoli-
ated and non-refoliated pixels were derived.

3 Results

3.1 Correlation between fAPAR and NDVI

There was a strong linear relationship between 8-day
mean values of fAPARcanopy and NDVIDL for NDVIDL
values≥ 0.4 (Fig. 4). The influence of observations with
NDVIDL values < 0.4 and with f8day > 0 was small. For the
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Figure 5. Influence on RMSE and R2 of GDDthres (a), Tthres (b), and the optimal period to change from the first to the second f8day
model (c). RMSE is computed from mean of daily GPP over 8-day periods.

Figure 6. Light use efficiency (ε), NDVI fitted with double logistic
functions (NDVIDL) scaled×2 (green), and PAR (orange) for the 6
years with data from the EC tower. Black lines with error bars and
black circles are the light use efficiency values included when εmax
and εmax, def were computed for undisturbed and defoliated years,
respectively. The error bars are symmetric and 1 standard deviation
higher or lower than the mean values.

years with data available from the EC tower 8 % of the 8-
day periods had NDVIDL < 0.4 and f8day > 0 in the MODIS
pixels surrounding the tower. For these time periods average
f8day was 0.068. Hence, an OLS regression equation was cal-
culated with NDVIDL values≥ 0.4 to model the relationship
between fAPAR8day and NDVIDL. This resulted in an R2 of
0.81 and the relationship

fAPAR8day =−0.05+ 0.60×NDVIDL. (11)

The 95 % confidence intervals for slope and intercept
applied in the Monte Carlo simulation to estimate the
LUE model’s uncertainty were −0.05± 0.18 (intercept) and
0.60± 0.11 (slope).

3.2 Light use efficiency

Optimization resulted in a GDDthres of 32 growing degree
days (Fig. 5, left) and a Tthres of 8 ◦C (Fig. 5, middle). The op-
timal period to change the model for f8day was after MODIS
period 23, i.e. the last week of June (Fig. 5, right).

Light use efficiency for years with no disturbance and with
f8day = 1 (black line with error bars in Fig. 6) gave an εmax

Figure 7. Correlation between GPP from the EC tower and
LUE modelled GPP for the 5 years with undisturbed forests.
GPPlue=−0.11× 1.01GPPEC, R2

= 0.90 and N = 95.

of 1.85± 0.36 g C MJ−1 (±1 standard deviation), resulting in
the following LUE model:

GPPlue = 1.85× f8day · (−0.05+ 0.60×NDVIDL)

×PAR8day. (12)

The correlation between GPPEC and GPPlue was strong
with R2

= 0.90 (Fig. 7). The intercept is−0.11 and the slope
is 1.01, indicating that the LUE model performs well for
years without outbreaks. The low GPP observations with sev-
eral zero values for LUE modelled GPP are from May, before
budburst for the birch forest. These low GPP values have lit-
tle influence on annual GPP. The Monte Carlo simulation re-
sulted in an estimated standard deviation of 30 % of the mean
annual GPP. Hence, all annual GPP values derived from the
LUE model are given with a standard deviation of 30 % of
annual GPP.
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Table 1. Annual GPP derived from the EC tower for the 5 years without insect outbreak and the year 2012 with insect outbreak.

Years without insect outbreak Outbreak

Year 2007 2009 2010 2011 2014 2012
GPP (g C m−2 yr−1) 450 530 370 400 450 180

3.3 Impact of insect outbreaks on annual GPP

3.3.1 Reduction factor and LUE model applied to
quantify loss in GPP

Method 1 – reduction factor

GPP measured from the EC tower and the 5 years with
available data (Table 1) resulted in a mean annual GPP of
440 g C m−2 yr−1. During the outbreak in 2012 annual GPP
was 180 g C m−2 yr−1, which resulted in a reduction in GPP
compared to undisturbed conditions of 59 %. Hence, a reduc-
tion factor of 0.59 was applied to quantify the impact of the
insect outbreak on GPP.

Method 2 – LUE model for defoliated pixels

The correlation between GPPEC and GPPlue for the year with
defoliation (2012) and data available from the EC tower was
weaker than for years without disturbances, with an R2 of
0.83 (Fig. 8). The figure, with an intercept of −0.54 and a
slope of 1.25, indicates that the LUE model underestimates
GPP for lower values. The light use efficiency for the MODIS
8-day periods with f8day = 1 (black circles in Fig. 6) gave
an εmax, def of 0.98± 0.25 g C MJ−1 (±1 standard deviation),
resulting in the following LUE model for defoliated pixels:

GPPlue, defoliated = 0.98× f8day · (−0.05+ 0.60×NDVIDL)

×PAR8day. (13)

In Fig. 6, NDVIDL has higher values in the year with defolia-
tion compared to undisturbed years in May (periods 16–18).
These high NDVIDL values are due to poor fitting of the dou-
ble logistic function during winter and early spring in 2012
(see Fig. 3, where NDVIDL increases earlier in 2012 com-
pared to the other years). The impact on the result is, how-
ever, small, since these eight periods are in the early part of
the growing season when f8day is zero.

The Monte Carlo simulation resulted in an estimated stan-
dard deviation of 35 % of the mean annual GPP for years
with defoliation. Hence, all annual GPP losses estimated with
Method 2 are given with a standard deviation of 35 %.

3.3.2 Defoliated areas and quantifying the insect
outbreaks impact on annual GPP

In the year 2012, with the most widespread defoliation in this
study, 76 % of the 100 km2 forests were defoliated (Table 2
and Fig. 9). In 2004 and 2013, 53 and 55 % of the forests

Figure 8. Correlation between GPP from the EC tower and
LUE modelled GPP for the year 2012, with insect outbreak.
GPPlue, defoliated =−0.54× 1.25GPPEC, R2

= 0.83 and N = 19.

were defoliated, respectively. The mean annual reduction in
regional GPP due to the insect outbreaks for the three out-
breaks studied was 15± 5 Gg C yr−1 according to Method 1,
with the largest outbreak in 2012 with a negative impact on
regional GPP of 18± 5 Gg C yr−1 (Table 2). The average an-
nual regional GPP in the study area, derived with the LUE
model (Eq. 12) and the 5 years without insect outbreak, was
41± 12 Gg C yr−1, which gives a reduction in 2012 of 44 %.
The impacts of the outbreaks in 2004 and 2013 were reduc-
tion in regional GPP of 32 and 34 %, respectively. There
were no differences in the GPP reduction per square metre
between the outbreak years.

When a LUE model was also applied to model GPP dur-
ing defoliation events (Method 2) the mean annual decrease
in regional GPP was 15± 5 Gg C yr−1, which is the same
estimate as with Method 1. The regional GPP loss in 2012
was 20± 7 Gg C yr−1, which is slightly higher compared
to Method 1. In the year 2004 the two methods resulted
in similar decreases in GPP, while the GPP decrease was
larger with Method 1 in 2013. Differences in GPP loss per
square metre between the years were larger with Method 2:
190± 67 g C m−2 yr−1 in 2013 was the lowest GPP loss, and
270± 95 g C m−2 yr−1 in 2012 was the largest GPP loss.

We compared the differences in GPP decrease between
Method 1 (GPP reduction factor) and Method 2 (two LUE
models) to study whether Method 2 performed better for
MODIS pixels where the birch trees recovered later in the
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Table 2. Defoliated area (km2) and annual reduction in GPP∗ (Gg C yr−1) for the 3 years with insect defoliation since the year 2000. The
total area with forest cover is 100 km2.

Year 2004 2012 2013

Defoliated area (km2) 53 76 55
GPP decrease∗ Mean (g C m−2 yr−1) 240± 72 240± 72 240± 72
Method 1 Total (Gg C yr−1) 13± 4 18± 5 14± 4
(GPP reduction factor) Total (%) 31 45 33
GPP decrease∗ Mean (g C m−2 yr−1) 250± 88 270± 95 190± 67
Method 2 Total (Gg C yr−1) 13± 5 20± 7 10± 4
(Defoliation LUE model) Total (%) 33 49 25

∗ GPP for undisturbed conditions is derived with the LUE model (Eq. 12) and as the mean of the 5 years without
insect defoliation.

Table 3. Differences in GPP loss (g C m−2 yr−1) between methods 1 and 2 for MODIS pixels with recovering foliage later in the season,
and pixels with no refoliation according to the defoliation monitoring method. Higher GPP loss with Method 2 gives negative values.

Year 2004 2012 2013

Refoliated pixels 48 % 14 % 52 %
Difference, refoliated (g C m−2 yr−1) −9± 3 −19± 7 57± 20
Difference, non-refoliated (g C m−2 yr−1) −15± 5 −24± 8 54± 19

Figure 9. Reduction in annual GPP (g C m−2 yr−1) due to the out-
break of autumnal moth and winter moth in 2012 computed with a
LUE model also for defoliation (Method 2). One standard deviation
of the GPP losses is estimated to 35 % of the given values. Areas
with only the background map have a canopy cover less than 50 %
or are outside the study area shown in Fig. 1. The reference sys-
tem is SWEREF99 TM and latitude and longitude are in WGS84.
Source of background map: Lantmäteriet (Dnr: I2014/00579).

growing season (Table 3). For all years the mean differences
in GPP loss (g C m−2 yr−1) between the methods were lower
for pixels that recovered later in the growing season. These
results suggest that Method 2 captured some of the refoli-

ation, though the differences are small and within the error
margin.

4 Discussion

This study has shown a substantial setback in GPP caused by
insect defoliation in a subarctic deciduous forest in north-
ern Fennoscandia. At the EC tower, GPP decreased by
260 g C m−2 yr−1 (59 %) during the outbreak in 2012 com-
pared to the mean GPP of undisturbed years. In the entire
study area annual mean values of decrease in GPP ranged
from 190± 67 to 270± 95± g C m−2 yr−1. The total de-
crease in regional GPP due to the three insect defoliation
events studied here was estimated to be 45± 14 Gg C, which
is of the same magnitude as the average annual regional
GPP of 41± 12 Gg C yr−1 for single years with no distur-
bances. During the most severe outbreak year (2012), the
annual regional GPP loss was nearly 50 % (20 Gg C yr−1),
with 76 % of the 100 km2 birch forests in the study area de-
foliated. In this study we have estimated the impact on GPP
only but we noted that during the outbreak in 2012 the de-
crease in Reco was larger than the decrease in GPP during
the growing season around the EC tower. Respiration is af-
fected by insect outbreaks in two ways: (1) autotrophic res-
piration is reduced as defoliated trees cannot photosynthe-
size and (2) heterotrophic respiration increases when dead
larvae decompose. The amount of carbon respired by lar-
vae is likely to be the same as the amount of carbon in the
eaten leaves, so we should only observe a shift of respiration
in time. In addition, larvae transport nutrients from trees to
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fungi and bacteria living in soil, which further increase res-
piration. The increase in heterotrophic respiration did not off-
set decrease in autotrophic respiration, and Reco for the out-
break year decreased in comparison to non-disturbed years.
This study also highlights the advantage of combining EC
data and remote sensing data by applying data from an EC
tower to calibrate a LUE model and applying satellite data to
estimate the impact on GPP over larger areas. EC measure-
ment alone cannot be extrapolated with high accuracy if the
spatial and temporal extent of an outbreak is unknown, and
the LUE model could not be developed without EC data. The
combination facilitates wall-to-wall mapping of forest distur-
bances and quantitative estimates of the impacts on primary
productivity.

There are, however, limitations in the study that must be
considered. One major challenge is to establish baseline con-
ditions for GPP in areas with reoccurring insect outbreaks, as
in Abisko. As a comparison, Olsson et al. (2016a) tested a de-
foliation detection method on the outbreak in Abisko in 2013
and achieved the highest detection accuracies when the base-
line conditions were based on the 6 years with highest NDVI
values in the period 2000–2012. In this study the annual GPP
for years without disturbances was estimated as the mean of
the 5 years without insect outbreak and with available EC
data. It is likely that some of these years were influenced by
the insect outbreak in 2012. The 2 years prior to when the
insect populations reached outbreak levels (2010 and 2011)
had lower annual GPP than the years 2007 and 2009 (Ta-
ble 1), and it is likely that GPP in 2014 was influenced by
the insect defoliation in 2012 and 2013. Heliasz (2012) sug-
gested that GPP reaches pre-outbreak levels 2–3 years after
an outbreak, and Hoogesteger and Karlsson (1992) showed
that leaf area index (LAI) returned to pre-defoliation levels 2
years after 100 % artificial defoliation even though tree ring
width was lower than normal at least 3 years after the ex-
periment. For the birch forests it may take decades to fully
recover from severe outbreaks (Tenow and Bylund, 2000).
To get an indication of the potential influence on GPP by
insect defoliation for the non-outbreak years we modelled
GPP based on PAR for the years with data available from
the EC tower and compared with EC-derived GPP (see Sup-
plement). The result showed that measured GPP at the EC
tower, and GPP modelled with PAR data, were similar in
2007 and 2009. In the 2 years prior to the outbreak (2010 and
2011), measured GPP was lower than PAR modelled GPP, in-
dicating that there were signs of defoliation by growing larval
population. Also in 2014 when the birch forests were recov-
ering, measured GPP was lower than PAR modelled GPP.
During the insect outbreak in 2012 measured annual GPP
was 290 g C m−2 yr−1 lower than PAR modelled GPP, which
is larger than the decrease of 260 g C m−2 yr−1 applied in this
study. In addition, we ran the LUE model with meteorologi-
cal data from ANS for the year 2008 to fill the gap in the time
series with measured GPP and to study how well it agreed
with the years 2007 and 2009. According to the LUE model,

annual GPP at the EC tower was 440 g C m−2 yr−1 in 2008,
which agrees with the GPP value for undisturbed years of
440 g C m−2 yr−1 applied in the study. However, since years
that are influenced by pre-outbreak defoliation as well as a
recovery year are included as undisturbed years, it is likely
that the baseline GPP applied in this study is lower than
GPP for undisturbed conditions. This is also indicated by the
larger difference between PAR modelled and measured GPP
in 2012 and suggests that the estimated decreases in GPP due
to insect outbreaks in this study are on the lower side.

Another limitation is the assumption that no other factors
than insect outbreaks influence annual GPP, even though it
is likely that also meteorological conditions influence GPP.
The comparison between EC-derived GPP and PAR mod-
elled GPP suggests that only 2 years with EC data represent
undisturbed forest; hence, the amount of data from the EC
tower is too small to study correlations between EC-derived
GPP and meteorological variables. Instead we studied corre-
lations between NDVI and meteorological data from ANS,
where we used the mean of the highest NDVIDL value of
each year derived from 200 MODIS pixels with birch forest.
To minimize the influence of insect-induced defoliation we
excluded the outbreak years and years prior to and after out-
breaks. No linear correlations between PAR and GPP were
found. There were, however, negative correlations between
temperature and seasonal maximums of NDVIDL, with the
strongest correlation between NDVI and the mean temper-
ature in May–June. The influence of temperature on NDVI
was weak, and due to the estimated uncertainties of the LUE
model of 30 % we did not include these correlations in the
analysis. However, with data from the EC tower available
for more years it would be a potential improvement of the
method to include meteorological data when estimating the
decrease in annual GPP.

There are also uncertainties in the LUE model. The re-
lationship between fAPAR8day and NDVIDL (Eq. 11) was
estimated from two growing seasons without disturbances.
Due to larvae disrupting the PAR sensors there were no fA-
PAR data available from the outbreak years; hence, Eq. (11)
was used also for defoliation events. Furthermore, the rela-
tionship was derived from fAPAR obtained from the upper
canopy, which may not be representative of the entire for-
est, since the relationship between fAPAR8day and NDVIDL
is likely to vary with understorey and forest densities in the
study area. The relationship is also likely to vary with varying
understorey responses due to defoliation, which may influ-
ence the estimated decreases in annual GPP. Accounting for
these uncertainties would require more data on the fAPAR
and NDVI relationship as well as more detailed land cover
data, which would make the model more complex. Hence,
we assume this limitation to be acceptable, and since the aim
of the study was to estimate the influence of defoliation of the
birch trees, we considered fAPARcanopy to be the most suit-
able variable. Another potential limitation is that the LUE
model developed for years with defoliation seems to under-
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estimate GPP for values lower than about 1.5 g C m−2 day−1

(Fig. 8). However, for the outbreak year with available EC
data (2012) the underestimated values from the LUE model
are mainly due to a cold spring that resulted in a large re-
duction factor (f8day). During the main growing season LUE
modelled and EC-derived GPP agrees well, which increases
confidence in the modelling.

It may also seem surprising that the difference in NDVIDL
was comparably low in relation to the difference in light use
efficiency. It is, however, known that NDVI saturates for high
LAI and that small changes in NDVI can be associated with
large changes in LAI (e.g. Myneni et al., 2002). The light
use efficiency, on the other hand, can decrease substantially
with lower LAI since more leaves will operate in the light-
saturated portion of the photosynthesis (e.g. Medlyn, 1998).
There are also uncertainties in how well the EC tower foot-
print represents the entire study area. Heliasz (2012) utilized
a permanent EC tower as reference and a mobile EC tower
to study variability in carbon exchange in the birch forests
around Abisko and concluded that there were only minor
differences in GPP at seven sites during the peak growing
season in 2008 and 2009. Hence, we consider the EC tower
footprint to be representative for the study area.

The accuracy of the defoliation detection method also in-
fluences the results of the study. The method missed 26 % of
the defoliated MODIS pixels and misclassified 39 % of the
undisturbed pixels as defoliated in the evaluation data used
by Olsson et al. (2016b). This implies that the defoliated ar-
eas in 2004 and 2013 were slightly overestimated, while the
defoliated area in 2012 is likely underestimated, though the
impact on the total numbers is likely small. It should also be
considered that 20 % of the forests in the study area were ex-
cluded since they are located in MODIS pixels with < 50 %
forests cover. Thus, the current estimate of a total reduction
in GPP may be conservative.

A limitation with the developed LUE model for large-
area estimates is that it includes observed meteorological
data (temperature and PAR). An alternative for running the
model over larger areas would be to use modelled meteo-
rological data (Olofsson et al., 2007; Schubert et al., 2010).
There are also uncertainties related to the temperature data
utilized. The gradient applied to model mean temperatures
depending on altitude is likely to give accurate estimates in
the study area. However, minimum temperatures are more
uncertain since cold air can drain downhill and accumulate
in valleys and low areas, rather than decrease with altitude.
Altogether, since the EC tower is located on a small ridge
in the lower, flat parts of the study area, we anticipate that
the temperatures there are not substantially lower than the
area in general. We compared with lowest daily temperature
from Abisko research station, which is located near the spec-
tral tower 10 km to the west (Fig. 1), and at a slightly higher
altitude than the EC tower. For all periods with frost events
during the early season, i.e. when the lowest temperature in-
fluences f8day, the mean value of absolute differences, with

the coldest temperatures at the research station, was only
0.4 ◦C. With these small temperature differences and since
frost events only influence GPP in the early growing season,
the impact on annual GPP was considered minor.

The defoliation detection methods used in this study gives
a time series of smoothed NDVI that captures the timing of
the defoliation event as well as the potential refoliation. The
LUE model, on the other hand, utilizes NDVI smoothed with
double logistic functions. These functions do not capture the
typical seasonal trajectory for years with refoliation. This is
illustrated in Fig. 3, where raw NDVI stays around 0.6 dur-
ing the entire growing season in 2012, when there was no
refoliation around the EC tower. In 2013, when there was
substantial refoliation around the EC tower, raw NDVI stays
around 0.6 during June, but it increases to pre-outbreak levels
in early July, when refoliation occurs. In 2004 the raw NDVI
values has a pattern similar to that in 2013 with low values
(around 0.6) until early August, when refoliation results in
a later season peak in NDVI. This seasonal development of
raw NDVI agrees well with GPP for the limited period with
available EC data in the outbreak year 2004. NDVIDL does
not capture this trajectory, with sharply increasing NDVI val-
ues that level off and start increasing again later in the season.
However, even though the actual timing of the defoliation
is not captured during years with refoliation the total grow-
ing season GPP is well modelled. A new version of TIME-
SAT, currently developed and tested, will also capture more
detailed seasonal trajectories with smooth fitting of curves.
These new curve-fitting methods have a potential to improve
the performance of the LUE model.

We applied two methods to quantify the impacts on GPP to
study which methods performed better for refoliating birch
forests. The assumption was that Method 2 would be more
adaptive and adjust for differences in defoliation intensities
between MODIS pixels. Since the level of defoliation, as
well as understorey responses to the defoliation, is likely to
influence NDVIDL, which in turn will influence fAPAR, it
was anticipated that a method based on a LUE model to de-
rive GPP during defoliation events would capture variabil-
ity in defoliation levels and understorey responses between
MODIS pixels. Method 1, on the other hand, with a common
reduction factor, does not account for local differences be-
tween pixels and is similar to upscaling the local conditions
at the EC tower, even though the method has the advantage
that annual GPP for each pixel is derived with a LUE model,
and hence should be more accurate than assuming that GPP
for all MODIS pixels is identical to GPP at the EC tower. For
the years 2004 and 2012, the two methods resulted in simi-
lar estimates of the GPP loss with slightly larger decrease in
GPP for Method 2. In 2013, the difference between the meth-
ods was larger with the highest decrease in annual GPP for
Method 1. One possible explanation for the smaller decrease
in annual GPP according to Method 2 for the year 2013 is
that the growing season seems to have been shorter and that
refoliation started earlier and was stronger in 2013 compared
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to 2004; this is indicated by the seasonal developments of
NDVI. It should also be noted that higher NDVI might be
due to increasing growth of understorey grasses favoured by
the changed light conditions due to defoliation (Karlsen et
al., 2013) rather than recovering birch.

The impact of insect outbreaks on the carbon balance has
been quantified in earlier studies: Heliasz et al. (2011) stud-
ied the impact on NEE of the autumnal moth and winter moth
outbreak in Abisko in 2004, but these measurements started
on 2 July, which was around 10 days after the larvae reached
peak densities, which most likely resulted in an underesti-
mated reduction in NEE. To facilitate a comparison between
the outbreak years 2004 and 2012, we computed GPP for the
period 2 July to 30 September for all years with EC data. This
indicated that the two outbreak years had a similar impact on
the carbon balance during the period studied with a GPP loss
of 210 g C m−2 yr−1 in 2004 and 200 g C m−2 yr−1 in 2012
compared to years without disturbance. Furthermore, the loss
of 200 g C m−2 yr−1 in the year 2012 and for the same time
period as studied in the year 2004, compared to the GPP loss
of 260 g C m−2 yr−1 for the entire growing season in 2012,
suggests that the impact on NEE was underestimated by He-
liasz et al. (2011). Clark et al. (2010) found the highest dif-
ference in NEE between undisturbed years and years with
severe defoliation by the gypsy moth in New Jersey, USA,
to be 266–480 g C m−2 yr−1, and Clark et al. (2014) found
that midday NEE during complete defoliation was 14 % of
pre-defoliation rates. Allard et al. (2008) noted that cumu-
lative NEE was lower during a year with insect defoliation
compared to years without disturbances; however, the low
NEE value might to a large extent have been caused by a
dry spring. Brown et al. (2010) found that a mountain pine
beetle outbreak turned a forest into a carbon source; no pre-
outbreak EC data were available to quantify the impact on
NEP, but recovery after the outbreak was faster than antici-
pated (Brown et al., 2012). It should be noted that the moun-
tain pine beetle feeds within the phloem and directly kills
trees, while the moth species discussed above are defolia-
tors that usually only kill trees in cases of severe and re-
peated outbreaks (Hicke et al., 2012). Modelling studies have
also found that forests have changed from sinks into sources
of carbon, in some cases for extended periods (Kurz et al.,
2008a; Dymond et al., 2010; Schäfer et al., 2010; Medvigy et
al., 2012). However, to our knowledge, this is the first study
that has utilized remote sensing data and developed a LUE
model calibrated with EC data to both quantify and map the
spatial extent of the impact of defoliating insects’ outbreaks
on GPP.

The results of this study could help to reduce uncertain-
ties in the impact of insect outbreaks on primary productivity
as well as to improve carbon budgets by including insect-
induced defoliation. For the mountain birch forests in this
study the estimated reduction in annual GPP, compared to
years without disturbances, was 50 % when there was lim-
ited refoliation in the study area. For years with widespread

refoliation, the annual GPP losses were about one-third of
GPP for years without disturbances. In addition, the spatial
and temporal mapping of insect defoliation provided by re-
mote sensing is important for accurate simulation of the car-
bon dynamics. Furthermore, the outbreak area included in
this study is only a fraction of the 10 000 km2 estimated to
have been severely defoliated in northern Fennoscandia dur-
ing the period 2000–2008 (Jepsen et al., 2009). Assuming
that the conditions were similar over northern Fennoscan-
dia, the insect defoliation over these vast areas would result
in a potential total regional GPP loss for the time period of
the magnitude 2–3 Tg C. Models not accounting for such re-
curring disturbance events would seriously overestimate the
ability of these forests to absorb atmospheric CO2.

5 Conclusions

This study showed, with the aid of MODIS NDVI and
eddy covariance data, a substantial loss in regional GPP
due to insect-induced defoliation in subarctic deciduous
forests in northern Fennoscandia. The estimated mean an-
nual decrease in regional GPP for a year with insect out-
break was 15± 5 Gg C yr−1

± in the study area of 100 km2.
This should be compared with the average annual GPP of
41± 12 Gg C yr−1 for years without disturbances. In the
most severe outbreak year (2012), 76 % of the birch forests
were defoliated and annual GPP was merely 50 % of GPP for
years without disturbances.

The study also demonstrated the use of remote sensing
data both to monitor the spatial extent of the defoliation and
to estimate the impact on the primary productivity of these
defoliation events. The insect disturbance is shown to have
major impacts on the primary production of the subarctic for-
est; consequently, the derived methods, based on combining
remote sensing and eddy covariance measurements, are of
major importance to support carbon balance estimates over
large areas.
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