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Abstract. Mesocosm experiments on phytoplankton dynam-
ics under high CO2 concentrations mimic the response of
marine primary producers to future ocean acidification. How-
ever, potential acidification effects can be hindered by the
high standard deviation typically found in the replicates of
the same CO2 treatment level. In experiments with multiple
unresolved factors and a sub-optimal number of replicates,
post-processing statistical inference tools might fail to de-
tect an effect that is present. We propose that in such cases,
data-based model analyses might be suitable tools to unearth
potential responses to the treatment and identify the uncer-
tainties that could produce the observed variability. As test
cases, we used data from two independent mesocosm ex-
periments. Both experiments showed high standard devia-
tions and, according to statistical inference tools, biomass ap-
peared insensitive to changing CO2 conditions. Conversely,
our simulations showed earlier and more intense phytoplank-
ton blooms in modeled replicates at high CO2 concentrations
and suggested that uncertainties in average cell size, phyto-
plankton biomass losses, and initial nutrient concentration
potentially outweigh acidification effects by triggering strong
variability during the bloom phase. We also estimated the
thresholds below which uncertainties do not escalate to high
variability. This information might help in designing future
mesocosm experiments and interpreting controversial results
on the effect of acidification or other pressures on ecosystem
functions.

1 Introduction

Oceans are a sink for about 30% of the excess atmospheric
CO2 generated by human activities (Sabine et al., 2004). In-
creasing carbon dioxide concentration in aquatic environ-
ments alters the balance of chemical reactions and thereby
produces acidity, which is known as ocean acidification (OA)
(Caldeira and Wickett, 2003). Interestingly, the sensitivity
of photoautotrophic production of particulate organic carbon
(POC) to OA is less pronounced than previously thought.
Several studies on CO2 enrichment revealed an overall in-
crease in POC (e.g., Schluter et al., 2014; Eggers et al., 2014;
Zondervan et al., 2001; Riebesell et al., 2000), but other stud-
ies did not detect CO2 effects on POC concentration (e.g.,
Jones et al., 2014; Engel et al., 2014) or primary produc-
tion (Nagelkerken and Connell, 2015). General compilation
studies that document controversial results are, e.g., Riebe-
sell and Tortell (2011) and Gao et al. (2012).

In some experiments, the different treatment levels, i.e.,
different CO2 concentrations, have been applied in parallel
repetitions, also known as replicates or sample units. This
was the case in several CO2 perturbation experiments with
mesocosms (Riebesell et al., 2008). Often, high variances are
found in measurements among replicates of similar CO2 lev-
els (Paul et al., 2015; Schulz et al., 2008; Engel et al., 2008;
Kim et al., 2006; Engel et al., 2005). It is this variance in data
that reflects system variability, thereby introducing a severe
reduction in the ratio between a true acidification response
signal and the variability in observations. Ultimately, the ex-
perimental data exhibit a low signal-to-noise ratio.

Mesocosms typically enclose natural plankton communi-
ties, which is a more realistic experimental setup compared to
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batch or chemostat experiments with monocultures (Riebe-
sell et al., 2008). Along with this, mesocosms allow for a
larger number of possible planktonic interactions that pro-
vide opportunities for the spread of uncontrolled heterogene-
ity. Moreover, physiological states vary for different phyto-
plankton cells and environmental conditions. For this reason,
independent experimental studies at similar but not identi-
cal conditions might yield divergent results. The variabil-
ity in data of mesocosm experiments is thus generated by
variations of ecological details, i.e., small differences among
replicates of the same sample, such as in species abundance,
nutrient concentration, and metabolic states of the algae at
the initial setup of the experiments. Differences of these fac-
tors often remain unresolved and might therefore be treated
as uncertainties in a probabilistic approach.

To account for all possible factors that determine all differ-
ences in plankton dynamics is practically infeasible, which
also impedes a retrospective statistical analysis of the ex-
perimental data. However, since unresolved ecological de-
tails might propagate over the course of the experiment, it is
meaningful to consider a dynamical model approach to up-
grade the data analysis. From a modeling perspective, some
important unresolved factors translate into (i) uncertainties in
specifying initial conditions (of the state variables), and (ii)
uncertainties in identifying model parameter values. Here,
we apply a dynamical model to estimate the effects of eco-
physiological uncertainties on the variability in POC concen-
tration of two mesocosm experiments. Our model describes
plankton growth in conjunction with a dependency between
CO2 utilization and mean logarithmic cell size (Wirtz, 2011).
The structure of our model is kept simple, thereby reducing
the possibility of overparameterizing the mesocosms dynam-
ics. The model is applied to examine how uncertainties in
individual factors, namely initial conditions and parameters,
can produce the standard deviation of the distribution of ob-
served replicate data. Our main working hypotheses on the
origins of variability in mesocosm experiments are the fol-
lowing:

– Differences among replicates of the same sample can
be interpreted as unresolved random variations (named
uncertainties hereafter).

– Uncertainties can amplify during the experiment and
generate considerable variability in the response to a
given treatment level.

– Which uncertainties are more relevant can be estimated
by the decomposition of the variability in the experi-
mental data.

For our data-supported model analysis of variability de-
composition we consider the propagation of distributions
(JCGM, 2008b) to seek potential treatment responses that
are masked by the variability in observations of two indepen-
dent OA mesocosm experiments, namely, the Pelagic Enrich-
ment CO2 Experiment (PeECE II and III). The central idea

is to produce ensembles of model simulations, starting from
a range of values for selected factors. The range of values
for these selected factors is determined so as the variability
in model outputs does not exceed variability in observations
over the course of the experiment. The margins of the varia-
tional range of each factor were thus confined by the ability
of the dynamical model to reproduce the magnitude of the
variability observed in POC. These confidence intervals de-
scribe the tolerance thresholds below which uncertainties do
not escalate to high variability in the modeled replicates, and
can serve as an estimator of the tolerance of experimental
replicates to such uncertainties. This information can be im-
portant to ensure reproducibility, allowing for a comparison
between the results of different independent experiments and
increasing confidence regarding the effects of OA on phyto-
plankton (Broadgate et al., 2013).

2 Method

Potential sources of variability are estimated following a pro-
cedure already applied in system dynamics, experimental
physics, and engineering (JCGM, 2008b). The basic princi-
ples of uncertainty propagation are summarized here using
a six-step method (see Fig. 1). Steps 1 and 2 are described
in Sect. 2.1 and comprise a classical model calibration (us-
ing experimental data of biomass and nutrients) to obtain the
reference run representing the mean dynamics of each treat-
ment level. In this way we found the reference value for the
model factors, i.e., parameters and initial conditions. Steps 3
and 4, described in Sect. 2.2, include the tracked propagation
of uncertainties by systematically creating model trajectories
for POC, each one with a slightly different value of a model
factor. In steps 5 and 6, we estimated the thresholds of the
model-generated variability and the effect of the uncertainty
propagation (also explained in Sect. 2.2).

2.1 Model setup, data integration, and description of
the reference run

In this section, we describe the biological state that was used
as reference dynamics. Our model resolves a minimal set of
state variables insofar monitored during experiments that are
assumed to be key agents of the biological dynamics. Model
equations are shown in Table 1. Reference values of the pa-
rameters are shown in Table 2. An exhaustive model docu-
mentation is given in Appendix A. The model simulates ex-
perimental data from the Pelagic Enrichment CO2 Experi-
ment (PeECE), a set of nine outdoor mesocosms placed in
coastal waters close to Bergen (Norway) during the spring
seasons of 2003 (PeECE II) and 2005 (PeECE III). In both
the experiments, blooms of the natural phytoplankton com-
munity were induced and treated in three replicates for the
future, present, and past CO2 conditions (Engel et al., 2008;
Schulz et al., 2008; Riebesell et al., 2007, 2008). Experimen-
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Table 1. States variables and their dynamics.

State variable Dynamical equation Ini. cond. Units

Phytoplankton carbon dPhyC
dt = (P −R−L) ·PhyC 2.5 µmol-CL−1

Phytoplankton nitrogen dPhyN
dt = V ·PhyC−L ·PhyN 0.4 µmol-NL−1

Nutrient concentration dDIN
dt = r ·DHN−V ·PhyC 8± 0.5∗ µmol-NL−1

14± 2∗∗ µmol-NL−1

Detritus and heterotrophs C dDHC
dt = L ·PhyC− (s ·DHC+ r) ·DHC 0.1 µmol-CL−1

Detritus and heterotrophs N dDHN
dt = L ·PhyN− (s ·DHN+ r) ·DHN 0.01 µmol-NL−1

∗ PeECE II, ∗∗ PeECE III

Table 2. Parameter values used for the reference run, 〈φi〉. All values are common to both PeECE II and III experiments, only the mean
temperature (determined by environmental forcing) and the averaged cell size in the community are different since different species compo-
sition succeeded in the experiments (Emiliania huxleyi was the major contributor to POC in PeECE II (Engel et al., 2008) but also diatoms
significantly bloomed during PeECE III (Schulz et al., 2008).

Parameter Value Units Variable Reference

aCO2 carbon acquisition 0.15 (µmol-C)−1 L PhyC this study
aPAR light absorption 0.7 µmolphot−1 m2 PhyC this study
a∗ carboxylation depletion 0.15 µm−1 PhyC this study
Pmax max. photosyn. rate 12 d−1 PhyC this study
Q∗subs subsist. quota offset 0.33 mol-N (mol-C)−1 PhyC this study
αQ Qsubs allometry 0.4 – PhyC this study
ζ costs of N assimil. 2 mol-C (mol-N)−1 PhyC Raven (1980)
` mean size Ln(ESD/1 µm) 1.6 – PhyC, PhyN, DIN PeECE II data

1.8 – PeECE III data
fp fraction of protein in 0.4 – PhyC, PhyN, DIN this study

photosyn. machinery
V ∗max max. nutrients uptake 0.5 mol-N (mol-Cd)−1 PhyC, PhyN, DIN this study
Aff nutrient affinity 0.2 (µmol-Cd)−1L PhyC, PhyN, DIN this study
αV Vmax allometry 0.45 – PhyC, PhyN, DIN Edwards et al. (2012)
L∗ photosyn. losses coeff. 11× 10−3 (µmol-Cd)−1 PhyC, PhyN and this study

DHC, DHN
r∗ DIN remin. & excret. 1.5 d−1 DHC, DHN this study
s DH sinking 10 L(µmol-Cd)−1 DHC, DHN this study
Tref reference temperature 8.3 Celsius PhyC, PhyN and PeECE II data

10.1 Celsius DIN, DHC, DHN PeECE III data

tal data are available via the data portal Pangaea (PeECE II
team, 2003; PeECE III team, 2005).

Field data of aquatic CO2 concentration, temperature, and
light were used as direct model inputs (see Appendix B).
Measurements of POC, particulate organic nitrogen (PON),
and dissolved inorganic nitrogen (DIN) were used for model
calibration. Although both the experiments differ in their
species composition, environmental conditions, and nutri-
ent supply, the same parameter set was used to fit PON,
POC, and DIN from PeECE II and III (i.e., a total of 54
series of repeated measures over more than two weeks), a
feature indicating the model skills. In addition, the model

was validated with another 36 series of biomass and nutri-
ents data from an independent mesocosm experiment ((Paul
et al., 2014), data not shown). The experimental POC and
PON data were redefined for a direct comparison with model
results (see Appendix C), since some contributions (e.g.,
polysaccharides and transparent exopolymer particles) re-
main unresolved by our dynamical equations. State variables
of our model comprise carbon and nitrogen contents of phy-
toplankton, PhyC and PhyN, and DIN, as representative for
all nutrients. The dynamics of non-phytoplanktonic compo-
nents, i.e., detritus and heterotrophs (DH), are distinguished
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Figure 1. Variability decomposition method based on uncertainty
propagation (summary of the basic principles given in Sect. 5.1.1
and 5.6.2. and Annex B in JCGM, 2008b).

by DHC and DHN. Thus, in our study, POC= PhyC+DHC
and PON= PhyN+DHN.

The mean cell size in the community, represented as the
logarithm of the mean equivalent spherical diameter (ESD),
was used as a model parameter. It determines specific eco-
physiological features by using allometric relations that are
relevant for the computation of subsistence quota, as well as
nutrient and carbon uptake rates. Regarding the latter, to re-
solve sensitivities to different DIC conditions, we used a rela-
tively accurate description of carbon acquisition as a function
of DIC and size. It has been suggested by previous observa-
tions and models that ambient DIC concentration increases
primary production (e.g., Schluter et al., 2014; Rost et al.,
2003; Zondervan et al., 2001; Riebesell et al., 2000; Chen,
1994; Riebesell et al., 1993; Riebesell and Tortell, 2011) and
mean cell size in the community (Sommer et al., 2015; Eg-
gers et al., 2014; Tortell et al., 2008). While state-of-the-art
models such as Artioli et al. (2014) used empirical biomass
increase to describe OA effects, we adopted and simplified
a biophysically explicit description for carbon uptake from
Wirtz (2011), where the efficiency of intracellular DIC trans-
port has been derived as a function of the mean cell size
`= ln(ESD/1µm) and CO2 concentration. For very large

cells, the formulation converges to the surface to volume
ratio, which in our notation reads e−`. In contrast, the de-
pendence of primary production on CO2 vanishes for (does
not apply to) picophytoplankton; the rate limitation by sub-
optimal carboxylation then reads

fCO2 =

(
1− e−aCO2 ·CO2

1+ a∗ · e(`−aCO2 ·CO2)

)
. (1)

The specific carbon absorption coefficient aCO2 reflects size-
independent features of the DIC acquisition machinery (for
instance, the carbon concentration mechanisms, Raven and
Beardall, 2003). The coefficient a∗ represents carboxylation
depletion.

2.2 Uncertainty propagation

We considered that uncertainties were only present in the
initial setup of the system; this allowed us to perform a
deterministic non-intrusive forward propagation of uncer-
tainty, which neglects the possible coupling between uncer-
tainties and temporal dynamics unlike in intrusive methods
(Chantrasmi and Iaccarino, 2012) involving stochastic dy-
namical equations with time-varying uncertainties (Toral and
Colet, 2014; de Castro, 2017. Forward refers to the fact that
unresolved differences among replicates simulated as vari-
ations of the model control factors are propagated through
the model to project the overall variability in the system re-
sponse, in contrast to backward methods of parameter esti-
mation where the likelihood of input values is conditioned
by the prior knowledge of the output distribution (as, for in-
stance, in Larssen et al., 2006).

Our approach is based on a Monte Carlo method for the
propagation of distributions. It is based on the repeated sam-
pling from the distribution for possible inputs and the evalu-
ation of the model output in each case (JCGM, 2008b). Next,
the overall simulated POC variability is compared with that
in POC experimental data (i.e., the mean trends of the treat-
ment levels as well as the standard deviations are compared,
the former for the calculation of the reference run and the lat-
ter for the uncertainty propagation). Among the available ex-
perimental data, we favored POC over PON and DIN in the
uncertainty propagation analysis since it is usually the tar-
get variable of OA effects and shows the highest variability.
A variability decomposition with more than one dependent
variable (equivalent to a multivariate ANOVA design, for in-
stance) is beyond of the scope of the study. The comparison
between simulated and experimental variability in POC helps
in the identification of the changes in physiological state and
community structure that are the main potential contributors
to the variability.

We considered model factors, φi , with i = 1, . . .,N = 19,
consisting of 14 process parameters and 5 initial conditions
for the state variables. Their reference values, 〈φi〉, were
adjusted to yield model solutions reproducing the mean of
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each treatment level (steps 1 and 2, Tables 1 and 2). To
test our first hypothesis, factor variations representing poten-
tial uncertainties are introduced as random values distributed
around 〈φi〉 with standard deviation 4φi . To calculate 4φi ,
we first generate 104 simulations, each one with a different
factor value, φi (steps 3 and 4). The ensemble of model so-
lutions for each factor and treatment level simulates the po-
tential experimental outcomes, hereafter referred to as “vir-
tual replicates”, (see Appendix D). The factor value for each
POC trajectory is randomly drawn from a normal distribu-
tion around the factor reference value 〈φi〉 (same distribution
is assumed by popular parametric statistical inference tools
such as regressions and ANOVA, Field et al., 2008). For ev-
ery treatment level and at every time step, we calculated the
ensemble average of the virtual replicates, 〈POCmod

i 〉, and the
standard deviation, 4POCmod

i . Thus, 4φi is the standard de-
viation of the distribution of factor values, such as4POCmod

i ,
which do not exceed the standard deviation of the experimen-
tal POC data,4POCexp, for any mesocosm at any given time
(step 5). The effect of variations of φi on the variability (step
6) is given as follows:

εi =
4POCmod

i

4φi
. (2)

This ratio expresses the maximum variability a factor can
generate, 4POCmod

i , relative to the associated range of that
factor variations, 4φi , to ensure that 4POCmod

i is the closest
to 4POCexp at any time. In general, εi defines how much of
the uncertainty of a dependent variable Y (here Y = POC)
is explained by and the uncertainty of the input factors φi ,
a proxy of which is known as the sensitivity coefficient
ci =

∂Y
∂φi

in the widespread formula to calculate error prop-
agation (Ellison and Williams, 2012), also known as law of
propagation of uncertainty (JCGM, 2008a)

(4Y )2 =

N∑
i=1

c2
i · (4φi)

2. (3)

This expression is based on the assumption that changes
in Y in response to variations in one factor φi are inde-
pendent from those owing to changes in another factor φj ,
and that all changes are small (thus cross-terms and higher-
order derivatives are neglected). Where no reliable mathe-
matical description of the relationship Y (φi) exists (in our
case, only an expression for the rate equation dPOC/dt is
known (see Table 1) but not its analytical solution, i.e., POC),
ci can be evaluated experimentally (Ellison and Williams,
2012; JCGM, 2008a). As mentioned in the Introduction and
Appendix A, such high-dimensional multi-factorial measure-
ments are costly in mesocosm experiments. Therefore, we
obtained equivalent information by numerically calculating
εi . Such approximations to sensitivity coefficients calculated
by our Monte Carlo method of uncertainty propagation cor-
respond to taking all higher-order terms in the Taylor se-
ries expansion into account since no linearization is required

(see Sect. 5.10 and 5.11 and Annex B in JCGM, 2008b). A
straightforward extension including the cross-terms showing
synergistic uncertainties effects, as in an experimental multi-
way ANOVA design, requires the assumption of joint distri-
butions for the uncertainty of factors and the calculation of
covariance matrices, a considerable effort that is beyond of
the scope of this paper.

Hereafter, the standard deviation of any given factor, i.e.,
factor uncertainty, will be given as percentage of the refer-
ence values and will be called 48i . The actual factor range
is given as4φi =

48i ·φi
100 . Strong irregularities in the standard

deviations of experimental POC data (for instance, small
4POCexp at day 8 in Fig. 2p), translates to remarkably en-
hanced or reduced sensitivity coefficients if the model–data
comparison would be performed at a daily basis. Therefore,
we considered the temporal mean of the standard deviation
per phase, i.e., prebloom, bloom, and postbloom. We inferred
phases for PeECE II from Engel et al. (2008) and for PeECE
III from Schulz et al. (2008) and Tanaka et al. (2008).

To numerically calculate the ensemble of 104 POC tra-
jectories per factor (i.e., the virtual replicates; see Fig. 8),
we applied the Heun integration method with a time step of
4× 10−4, (about 35 s of experimental time). The number of
simulated POC time series is chosen such as a higher num-
ber of model realizations, i.e., a higher number of virtual
replicates will produce the same results (see Adaptive Monte
Carlo procedure, Sect. 7.9. in JCGM, 2008b). We dismissed
the negative values that randomly appeared when drawing
104 values from the normal distribution of factor values; this
reduction in the number of trajectories did not affect the re-
sults.

Environmental data showed low variability among simi-
lar treatment replicates, (see Fig. 9), suggesting a non-direct
relation between variations in environmental factors among
replicates and the observed biomass variability. Therefore,
we focused on uncertainties in ecophysiology and commu-
nity composition and used environmental data as forcing.
Perturbations of the similarity among replicates produced
by strong changes in environmental conditions (storms, dys-
functional devices, etc.) or by errors in manipulation or sam-
pling procedures are not within the scope of this work. Af-
ter a few decades, the current state-of-the-art of experimental
techniques for running plankton mesocosms is advanced. We
believe such differences are of low impact or well understood
in terms of their consequences for final outcomes (Riebesell
et al., 2010; Cornwall and Hurd, 2015).

Notably, our analysis suggested sufficient (but not neces-
sary; Brennan, 2012) causes of uncertainties in mesocosm
experiments. Variations in model characterization including
structural variability (Adamson and Morozov, 2014; Fuss-
mann and Blasius, 2005) or uncertainties in model parame-
terization (Kennedy and O’Hagan, 2001) or comparisons to
different uncertainty propagation methods (de Castro, 2017)
require further extensive analyses, which is beyond the scope
of this study. However, we performed a series of preceding
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Figure 2. Solid lines show reference runs for POC, PON, and DIN simulating the mean of the replicates per treatment level, with different
colors for the three experimental CO2 setups. Dots are replicated data from the Pelagic Enrichment CO2 Experiment (PeECE II) for newly
produced POC and PON, i.e., starting values at day 2 were subtracted from subsequent measurements as in Riebesell et al. (2007).

model analyses (including uncertainty propagation) by using
slightly different model formulations (data not shown). From
these preceding analyses, we found that different model for-
mulations can lead to quantitatively different confidence in-
tervals, but leave the final results qualitatively unchanged.

3 Results

3.1 CO2 effect on POC dynamics

Our model reproduces the means of PON, POC, and DIN
experimental data per treatment level, i.e., for the future,
present, and past CO2 conditions, in two independent PeECE
experiments (Figs. 2 and 3). For PeECE II, PON is moder-
ately overestimated and postbloom POC is slightly underes-
timated. Nonetheless, the model represents the experimental
data with similar precision than the means of experimental
replicates (see Appendix E). The means of the same treat-
ment replicates and their associated standard deviations are
typically used to represent experimental data (see Fig. 1b in
Engel et al., 2008 for PeECE II or Fig. 8a in Schulz et al.,
2008 for PeECE III). The means are in the foundations of
the statistical inference tools that did not detect acidification
responses for PeECE II and III. However, with our mechanis-
tic model-based analysis, phytoplankton growth in the future
CO2 conditions showed an earlier and elevated bloom with
respect to past CO2 conditions. The future and past reference
trajectories limit the range of the CO2 enrichment effect, as

shown by the dark gray area in Fig. 4. POC variability owing
to variations in model factors simulating experimental uncer-
tainties is plotted as the light gray area in the figure. Our re-
sults suggest that avoiding high POC standard deviations that
potentially mask OA effects in experimental data requires the
reduction of the factor variations triggering variability during
the bloom.

3.2 CO2 effect on uncertainty propagation

The estimation of the tolerance thresholds of the dynamics
to uncertainty propagation for the two test-case experiments,
per acidification levels and per factor uncertainty, are listed
in Table 3. We investigated the potential interaction of the
treatment and the uncertainty effects on the tolerance by a
linear mixed-effects model with φi as the random factor (R
Core Team, 2016). The synergistic effect between the factor
uncertainty and the treatment levels was found to be non-
significant (F = 2.9 with p = 0.06). Therefore, the thresh-
olds do not appear to statistically depend on the treatment
level, even when the standard deviation of the measured POC
data, 4POCexp, for the future and past acidification condi-
tions were, on average, about 70% larger than the standard
deviation of the present conditions (POC experimental data
in Figs. 2 and 3 are more spread in the future and past concen-
trations than in the present concentration). Despite the low
statistical power of this test (only data from two indepen-
dent samples, the two PeECE experiments, were available),
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Table 3. Tolerance of mesocosms experiments to differences among replicates, given as a percentage of the reference factor value listed
in Tables 1 and 2. According to our model projections, above these thresholds the simulated variability, 4POCmod

i
, exceeds the observed

variability, 4POCexp. Main contributors to the simulated variability during the bloom are highlighted in bold (see Sect. 3).

Factor φi 48i (%) Averaged
PeECE II PeECE III tolerance

Future Present Past Future Present Past (%)

PhyC(0) initial phyto C biomass 68 49 46 78 60 100 67± 6
PhyN(0) initial phyto N biomass 26 19 22 21 16 29 22± 4
DIN(0) initial DIN 20 28 29 17 11 18 20±6
aCO2 carbon acquisition 89 46 23 86 63 46 59± 23
aPAR light absorption >100 >100 98 >100 >100 92 > 100
Pmax maximum photosyn. rate 27 18 16 22 16 28 21± 5
Q∗subs subsistence quota offset 6 5 6 5 4 9 6± 1
αQ Qsubs allometry 9 7 8 7 5 10 8± 2
` size Ln(ESD/1µm) 25 20 29 19 14 22 22±5
fp fraction of protein in 92 75 44 36 17 38 50± 25

photosyn. machinery
V ∗max maximum nutrient uptake 13 11 14 10 8 14 12± 2
Aff nutrients affinity 39 31 42 38 36 55 40± 7
αV Vmax allometry 14 11 15 10 8 14 12± 2
L ∗ phytoplankton losses 22 30 28 12 10 15 20±8
r∗ DIN remineralization 73 99 98 128 37 52 81± 31
s DH sinking > 100 > 100 96 > 100 61 79 >100
Tref reference temperature 17 12 14 9 7 14 12± 3

0

6

12

PON (µmol−N L
−1

)

(j)

0

20

40

POC (µmol−C L
−1

)

(k)

0

5

10

15

20

DIN (µmol−N kg
−1

)

 

 

(l) future CO
2
(aq)

0

6

12

(m)

0

20

40
(n)

0

5

10

15

20

 

 

(o) present CO
2
(aq)

2 5 8 11 14 17
0

6

12

Day

(p)

2 5 8 11 14 17
0

20

40

Day

(q)

2 5 8 11 14 17

0

5

10

15

20

Day

 

 

(r) past CO
2
(aq)

Figure 3. As in Fig. 2 for PeECE III.
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Figure 4. Reference simulations of POC for high CO2 (red) and low
CO2 (blue) conditions bind the range of acidification effect (dark
gray) according to our model projections. Light gray area shows the
limits of the overall simulated POC variability, 4POCmod. Inlay
graph display the signal-to-noise ration (black solid lines), i.e., the
ratio between the variance of the acidification effect and the vari-
ance of the overall variability.

we still considered the potential lack of CO2 effect on the
uncertainty propagation as sufficient justification to simplify
further analysis on variability decomposition by averaging
the thresholds and the sensitivity coefficients over treatment
levels (see last column in Table 3 and Fig. 7).

3.3 Variability decomposition

Our method allows for decomposition of POC variability in
factor-specific components 4POCmod

i . The effect of factor
variations simulating experimental differences among repli-
cates is classified depending on its nature, intensity, and tim-
ing (Figs. 5, 6, and 7).

POC variability during the prebloom phase can be ex-
plained mainly by the differences of factors related to sub-
sistence quota, i.e., Q∗subs and αQ, in both PeECE II and III
experiments (left column in Figs. 5 and 6). This suggests that
the differences in subsistence quota first intensify the diver-
gence of POC trajectories and then weaken a few days later
because of the system dynamics. These subsistence param-
eters only need to vary about 6 and 8% among replicates
(see Table 3) to maximize their contribution to the4POCexp;
thus, their sensitivity coefficients are the highest (see Fig. 7).

Differences in the initial nutrient concentration, DIN(0),
mean cell size, `, and phytoplankton biomass loss coeffi-
cient, L∗, generate the modeled variability mainly during the
bloom (with just about 20% differences among replicates;
see Table 3 and second column in Fig. 5) showing high val-
ues of the sensitivity coefficient (highlighted in Fig. 7).

Amplified variability in the postbloom phase (third col-
umn in Figs. 5 and 6) can be attributed to the uncertainties

in the reference temperature Tref for the Arrhenius equation,
Eq. (A4), in sinking loss or export flux, s, and in remineral-
ization and excretion, r∗. The sensitivity coefficient of Tref
is high, with just about 12% variation. Therefore, even if
differences in ambient temperature among replicates of the
same sample are negligible (see the low standard deviations
in the temperature, Fig. 9), differences in the metabolic de-
pendence on that ambient temperature seems to be relevant in
the decay phase. Interestingly, variations among replicates in
the physiological dependence on other environmental factors
do not show the same relevance (the sensitivity coefficient
εi is low for carbon acquisition aCO2 and light absorption
aPAR). Generating high divergence during the postbloom re-
quires a strong perturbation of parameters for the description
of the non-phytoplanktonic biomass (about 81% of the ref-
erence value for sinking and 96% for remineralization and
excretion, see Table 3), which translates to a relatively low
sensitivity coefficient.

Perturbations of the initial detritus concentration, DHC(0)
and DHN(0) have no impact on the dynamics provided that
they remain within reasonable ranges (48i < 100). In fact,
more than 10-fold difference among replicates in such non-
relevant factors were necessary to achieve a perceptible vari-
ability 4POCmod

i .
POC variability throughout the bloom phases (right col-

umn in Figs. 5 and 6) can be attributed to the varying car-
bon and nitrogen initial conditions, PhyC and PhyN, nutrient
uptake-related factors, V ∗max, αV , and Aff, and protein allo-
cation for photosynthetic machinery, fp. With regard to the
latter, high standard deviations of the tolerance (see Table 3)
suggest non-conclusive results.

4 Discussion

We used the uncertainty quantification method to decom-
pose POC variability by using a low-complexity model that
describes the major features of phytoplankton growth dy-
namics. The model fits the mean of mesocosm experimental
PeECE II and III data with high accuracy for all CO2 treat-
ment levels. We confirmed the working hypotheses (Figs. 5–
7); in particular, we showed that small differences in ini-
tial nutrient concentration, mean cell size, and phytoplankton
biomass losses are sufficient to generate the experimentally
observed bloom variability 4POCexp that potentially mask
acidification effects, as discussed in the following subsec-
tions.

The results of our analyses are conditioned by the dynami-
cal model equations imposed. Deliberately, the model’s com-
plexity is kept low, mainly to limit the generation of struc-
tural errors with respect to model design. At the same time,
the level of complexity resolved by the model suffices to
explain POC measurements of two independent mesocosm
experiments with identical parameter values (see Table 2),
which highlights model skill. The used equations comply
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i
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simulated POC time series (see Sect. 2), around the mean trajectory of the ensemble (solid line). The timing of the amplification of the
variability determines four separated kinds of behavior: factor uncertainties generating variability during the prebloom, bloom, postbloom,
or at irregular phase (see Sect. 3).

with theories of phytoplankton growth (e.g., Droop, 1973;
Aksnes and Egge, 1991; Pahlow, 2005; Edwards et al., 2012;
Litchman et al., 2007; Wirtz, 2011). The uncertainty propa-
gation employed here can be applied to any model. As long
as the model features a similar structural complexity and is
also able to reproduce POC with sufficient accuracy, we ex-
pect similar qualitative findings with respect to the factors
(8i) and similar identification of the major contributors to
the variability. However, we would not expect other models
to reveal exactly similar values in the ratio εi , which would
likely depend on the equations used to resolve some of the
ecophysiological details.

4.1 Nutrient concentration

Differences among replicates in the initial nutrient concen-
tration substantially contribute to POC variability, a sensi-
tivity that is, interestingly, not well expressed when varying
the initial cellular carbon or nitrogen content of the algae,
PhyC(0) and PhyN(0). The relevance of accuracy for the ini-
tial nutrient concentration in replicated mesocosms has al-
ready been pointed out in Riebesell et al. (2008). Under a
constant growth rate, DIN(0) determines the timing of nu-

trient depletion; therefore, differences in the initial nutrient
concentration might also translate into temporal variations in
the succession of species. We showed that such dependence
is noted even in more general dynamics, and that our method
can also estimate the variational range for differences in the
initial DIN concentration for experiments with a low number
of replicates. The standard deviation of DIN(0) in the exper-
imental setup for PeECE III was 50% of the mean, which is
significantly above our tolerance threshold (see Table 3 for
initial DIN concentration). Following Riebesell et al. (2007),
we considered day 2 as the initial condition, when the mea-
sured DIN was 14±2 µmol-CL−1, as shown in Table 1. Since
2 µmol-CL−1 is approximately 14% of 14 µmol-CL−1, the
variability of replicates at day 2 was about 14%. Therefore,
experimental differences in the initial nutrient concentration
were similar to the tolerance threshold for the initial DIN es-
tablished to avoid high variability ((20± 6)% in Table 3),
which represents an explanation for the high divergence ob-
served in POC measurements.

For PeECE II, experimentally measured DIN concentra-
tion at day 0 was 10.7± 0.8 µmol-CL−1, suggesting a 7.5%
difference among replicates, which was below our projected
tolerance level (7.5 is out of the range [14,26]). The same
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Figure 7. Sensitivity coefficients (εi ; Eq. 2) of factors φi listed in
Tables 1 and 2 for different bloom phases in two OA-independent
mesocosm experiments. Factors whose uncertainties potentially
mask acidification effects (Fig. 4) by triggering variability during
the bloom (Figs. 5 and 6) are highlighted.

was noted for day 2, with DIN concentration equal to 8±
0.5 µmol-CL−1 (Table 1). Our approach showed that dif-
ferences in initial nutrient concentration in PeECE II were
not sufficiently high to trigger the experimentally observed
POC variability. Incidentally, phosphate re-addition on day
8 of the experiment established new initial nutrient concen-

tration for the subsequent days. When the dynamics in one
replicate significantly diverges from the mean dynamics of
the treatment, even if the re-addition occurs at the same time
and at the same concentration in all the replicates, the meso-
cosm with the outlier trajectory will not respond as the oth-
ers do, and with the addition of a new nutrient condition, the
divergence might be further amplified. In this case, nutrient
re-addition has the same impact on the systems as variations
in the initial conditions of nutrient concentration. Also for
PeECE II, variability in POC is about 30% higher than that
for PON, as shown in Fig. 2. We attribute the temporal de-
coupling between C and N dynamics to the break of symme-
try among replicates by the nutrient re-addition, owing to the
strong sensitivity of the system to initial nutrient concentra-
tions and a concomitant change in subsistence N : C quota,
which is a sensitive parameter, especially during the pre-
bloom phase (Figs. 5, 6, and 7). Increase of POC : PON ratios
under nitrogen deficiency has been observed frequently dur-
ing experimental studies (e.g., Antia et al., 1963; Biddanda
and Benner, 1997) and has been attributed to preferential
PON degradation and to intracellular decrease of the N : C
ratio (Schartau et al., 2007). Hence, we confirmed that nutri-
ent re-addition during the course of the experiments results
in a significant disturbance, as has been previously reported
(Riebesell et al., 2008), although a complete analysis would
require a model that explicitly accounts for other nutrients.
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4.2 Mean cell size as a proxy for community structure

We found a limited tolerance to variations in the mean cell
size of the community, `, which has a threshold of about 22%
variation (see Table 3). If we consider the averaged mean
cell size of PeECE II, 〈`〉 = 1.6, and III, 〈`〉 = 1.8, from Ta-
ble 2, we obtain 〈`〉 = 1.7. Then the absolute standard de-
viation is 4`= 22 · 1.7

100 ∼ 0.4. Therefore, our methodology
shows that variations within the range limited by 〈`〉±4`,
i.e., [1.3,2.1], are sufficient to reproduce the observed ex-
perimental POC variability during the bloom. Since ` is in
the log scale, the corresponding ESD increment is within the
variational range 〈ESD〉±4ESD, that is, [3.7,8.1]µm (or
[25,285]µm3 in volume). These values are easily reached in
the course of species succession. This supports studies show-
ing that community composition outweighs ocean acidifica-
tion (Eggers et al., 2014; Kroeker et al., 2013; Kim et al.,
2006).

4.3 Phytoplankton loss

Another major contributor to POC variability during the
bloom phase is phytoplankton biomass loss, L∗. With a stan-
dard deviation of about 20% (Table 3), uncertainties in L∗

generate variability larger than the model response to OA, in
particular at the end of the growth phase and the beginning

of the decay phase. Unresolved details in phytoplankton loss
rate include, among others, replicate differences in cell ag-
gregation or damage by collisions, mortality by virus, par-
asites, and morphologic malformations, or grazing by non-
filtered mixotrotophs or micro-zooplankton.

4.4 Inference from summary statistics on mesocosm
data with low number of replicates

To test the hypotheses outlined in the Introduction entails
two important aspects. First, heuristic exploration of vari-
ability would require experiments designed to quantify the
sensitivity of mesocosms to variations in potentially rele-
vant factors that specify uncertainties in environmental con-
ditions, cell physiology, and community structure. However,
this would require high-dimensional multi-factorial setups
(see Appendix D), which would be difficult to handle, if at
all, even for low number of replicates. Second, standard sta-
tistical inference tools might come to their limitations in esti-
mating treatment effects. Repeated measures of relevant eco-
physiological data (e.g., POC) are collected from mesocosm
experiments that span a few weeks. If the differences among
treatment levels are smaller than those among replicates of
the same treatment level, post-processing statistical analy-
ses might conclude that there are no detectable effects (Field
et al., 2008).

In many cases, the mean and the variance of the sample
are taken as a fair statistical representation of the effect of the
treatment level and its variability. However, summary statis-
tics such as the mean and the variance might fail to describe
distributions that do not cluster around a central value, i.e.,
when the data are not normally distributed in the sample.
This is because a feature of normally distributed ensembles
is that the mean represents the most typical value and de-
viations from that main trend (caused by unresolved factors
not directly related to the treatment) might cancel out in the
calculation of the ensemble average. Actually, this cancel-
lation is the reason for using replicates (Ruxton and Cole-
grave, 2006), but many circumstances can remarkably lower
the likelihood for cancellation, for instance, (i) effects that
are sensitive to initial conditions (thus, small initial differ-
ences in the replicates of a given sample might become am-
plified and produce departures that enlarge over the course
of the experiment), (ii) non-symmetrically distributed initial
conditions in the sample (that might lead to non-symmetrical
distribution of the results), and (iii) a low number of repli-
cates, i.e., a sample size not adapted to the intensity of the
treatment effect, the sensitivity of all effects to initial condi-
tions, and the intended accuracy of the experiment. Each inci-
dent decreases the statistical power and therefore misleading
conclusions might be inferred (Miller, 1988; Cohen, 1988;
Peterman, 1990; Cottingham et al., 2005).
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Figure 9. Environmental data from PeECE II and III are taken as model inputs. Error bars denote the standard deviation of the same treatment
replicates.

4.5 Consequences for the design of mesocosm
experiments

In our simulations, the CO2 level affected the intensity and
timing of the bloom (Fig. 4). Thus, the slope of the growth
phase can be regarded as a suitable target variable to de-
tect OA effects. Moreover, our model analysis revealed a low
signal-to-noise ratio. The ability to distinguish the treatment
effect from noise depends on the experimental design, the
strength of the treatment, and the variability that it is not
explained by the treatment. When the signal-to-noise ratio
is as low as it is shown by our simulations, a large exper-
imental sample size is needed to avoid incurring a type II
error (Field et al., 2008). In particular, we can assume a two
sample two-sided balanced t test with two treatment levels
as in Fig. 4, i.e., the maximum difference between means
equal to approximately 5 µmol-CL−1 (see, i.e., PeECE III at
day 10) and the variability4POCmod approximately equal to
4 µmol-CL−1. If we aim for a statistical power of 0.8, i.e.,
a 80% chance of observing a statistically significant result
with that experimental design, the required number of repli-
cates per treatment level would be 11 (R Core Team, 2016),
which is unpractical in mesocosm experiments. With n= 3
replicates, the chance declines to only 20%.

We provided an estimation for the uncertainty thresh-
olds that can be used for improving future sampling strate-
gies with a low number of replicates, i.e., n= 3. Tolerances
shown in Table 3 can be used to quantify how much repli-
cates similarity can be compromised before the variability of
the outcomes outweighs potential acidification effects. Some

tolerances indicate maximal variations in observable quanti-
ties, such as nutrient concentration and community compo-
sition. These model results suggest that a better control of
such dissimilarities among replicates can help maintain the
variability below the range of the acidification effect, espe-
cially during the bloom.

Strategies to reduce 4POCmod should similarly apply to
lower 4POCexp. For example, model results turned out to
be very sensitive to variations in mean logarithmic cell size.
Variations of this factor during the initial filling of the meso-
cosms may already generate divergent responses in POC so
that a potential CO2 signal becomes difficult to detect, if at
all. To determine spectra of cell sizes (or mean of logarithmic
cell size) of the initial plankton community prior to CO2 per-
turbation would be a possibility to countervail this difficulty.
The decision of which mesocosm to select for which kind
(i.e., intensity) of perturbation may then be adjusted accord-
ing to similarities in initial plankton community structure.
For example, we may consider some number of available
mesocosms that should become subject to two different CO2
perturbation levels. We may first select two mesocosms that
reveal the greatest similarity with respect to their initial size
spectra and assign them to the two different CO2 treatment
levels. Likewise, from the remaining mesocosms we again
chose those two mesocosms that show the closest similarity
between their size spectra. Those two are chosen to become
subject to the two different CO2 perturbations. The selection
procedure could be repeated until all mesocosms have been
assigned to either of the two CO2 treatments. Thus, meso-
cosms with similar initial conditions are assured to become
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subjected to different CO2 perturbations. This reduces a mix-
ture of random effects due to variations in experiment initial-
ization and CO2 effect and it will likely facilitate data anal-
ysis in experimental setups with low number of replicates,
where sample randomization (Ruxton and Colegrave, 2006)
might not be effective; see Sect. 4.4. Mesocosms may then
be first analyzed pairwise (similar initial setup) with respect
to differences in CO2 response.

In addition, our analysis results help interpreting non-
conclusive results and provide plausible explanations for the
negative results for the detection of potential acidification
effects (Paul et al., 2015; Schulz et al., 2008; Engel et al.,
2008; Kim et al., 2006; Engel et al., 2005). Thus, our study
also suggests the limitation of the statistical inference tools
commonly used to assess the statistical significance of effect
detectability.

Finally, we found the same main contributors to POC vari-
ability for all the treatment levels, even if experimental vari-
ability is about 70 % higher in the mesocosms where the
carbon chemistry was manipulated. In particular, the hetero-
geneity of variance measured in future levels is larger than
under the other acidification conditions (see fluctuations of
the standard deviations of CO2 concentrations, Fig. 9). These
differences in biomass variability among treatment levels are
not explained by uncertainties in our model factors. They
might have been originated by the irregularities in the CO2
aeration (Riebesell et al., 2008; Cornwall and Hurd, 2015);
however, further analyses need to be conducted to determine
potential sources of differences in variability.

5 Conclusions

Our model projections indicated that phytoplankton re-
sponses to OA were mainly expected to occur during the
bloom phase, presenting a higher and earlier bloom under
acidification conditions. Moreover, we found that amplified
POC variability during the bloom that potentially reduces the
low signal-to-noise ratio can be explained by small variations
in the initial DIN concentration, mean cell size, and phyto-
plankton loss rate.

The results of the model-based analysis can be used for
refinements of experimental design and sampling strategies.
We identified specific ecophysiologial factors that need to be
confined in order to ensure that acidification responses do not
become masked by variability in POC.

With our approach we reverse the question of how experi-
mental data can constrain model parameter estimates and in-
stead determine the range of variability in experimental data
that can be explained by modeling with variational ranges
bounding uncertainties of specific control factors. We tested
the hypothesis of whether small differences among replicates
have the potential to generate higher variability in biomass
time series than the response that can be attributed to the ef-
fect of CO2. Therefore, we conclude that modeling studies
that integrate data from acidification experiments should re-
solve physiological regulation capacities at cellular and com-
munity levels. In fact, modeling the propagation of uncertain-
ties revealed cell size to be a major contributor to phytoplank-
ton biomass variability. This suggests the use of adaptive
size-trait-based dynamics since such approaches allow for
the resolution of ecophysiologial trait shifts in non-stationary
scenarios (Wirtz, 2013). The role of intracellular protein al-
location can also be clarified by using a trait-based approach,
since our results about the impact of its variations were non-
conclusive.

In this study, we established a foundation for further
model-based analysis for uncertainty propagation that can be
generalized to any kind of experiments in biogeosciences.
Extensions comprising time-varying uncertainties by intro-
ducing a new random value for parameters at every time step
or including covariance matrices, showing the simultaneous
interaction of variations in two factors, can be straightfor-
ward implemented (de Castro, 2017). Finally, we believe that
an explicit description of uncertainty quantification is essen-
tial for the interpretation and generalization of experimental
results.

Data availability. Experimental data are available via the data por-
tal Pangaea (PeECE II team, 2003; PeECE III team, 2005; Paul
et al., 2014).
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Appendix A: Definition of relative growth rate

Relative growth rate µ is calculated from the primary pro-
duction rate by subtracting respiration and mortality losses
as follows: µ= P −R−L.

A1 Primary production

Primary production rate reflects the limiting effects of light,
dissolved inorganic carbon (DIC), temperature, and nutrient
internal quota as follows:

P = Pmax · fPAR · fCO2 · fT · fQ · fp. (A1)

Pmax is the maximum primary production rate, (Table 2).
Specific light limitation fPAR depends on light and CO2. For
the attenuation coefficient az, we consider that in coastal re-
gions light intensity is typically reduced to 1% of its surface
value at 5 m (Denman and Gargett, 1983) and we obtained
az = 0.75m−1. Next, PAR experienced by cells at mixed
layer depth (MLD= 4.5 m, Engel et al., 2008), was calcu-
lated from the level of radiation at the water surface, PAR0
(see Appendix B), following an exponential decay described
by the Lambert–Beer law

PAR= PAR0

MLD∫
0

e−az·zdz. (A2)

The relationship between photosynthesis and irradiance can
be formulated by referring to a cumulative one-hit Pois-
son distribution (Ley and Mauzerall, 1982; Dubinsky et al.,
1986). With the temperature and carbon acquisition depen-
dence, it yields

fPAR =

(
1− e

−
aPAR·PAR

Pmax·fCO2
·fT

)
, (A3)

where aPAR is the effective absorption related to the chloro-
plast cross section and saturation response time for receptors
(Geider et al., 1998a; Wirtz and Pahlow, 2010); the carbon
acquisition term fCO2 is described in Sect. 2.1, Eq. ().
fT is the temperature dependence. We considered that all

metabolic rates depend on protein folding that increases with
rising temperature following the Arrhenius equation (Scalley
and Baker, 1997) as described in Geider et al. (1998b) or
Schartau et al. (2007)

fT = e
−Ea·

(
1
T
−

1
Tref

)
, (A4)

with activation energyEa =
T 2

ref
10 ·log(Q10) as in Wirtz (2013),

where we usedQ10 = 1.88 for phytoplankton (Eppley, 1972;
Brush et al., 2002) and Tref was the mean measured temper-
ature (see Appendix B).

The allometric factor αQ quantifies the scaling relation of
subsistence quota and cell size. We used the Droop depen-
dency on nutrient N : C ratio (Droop, 1973), which has been
recently mechanistically derived (Wirtz and Pahlow, 2010;
Pahlow and Oschlies, 2013)

fQ =

(
1−

Qsubs

Q

)
, (A5)

where Q= PhyN
PhyC

. Its lower reference, the subsistence quota

Qsubs =Q
∗

subs · e
−αQ·`, is considered size-dependent and re-

flects a lower protein demand for uptake mechanisms in large
cells (Litchman et al., 2007).

The last term in Eq. (A1) accounts for an energy alloca-
tion trade-off in phytoplankton cells: protein allocation for
photosynthetic compounds such as RuBisCo and pigments,
fp, versus allocation for nutrient uptake, fv, expressed by
fp+ fv = 1 (Wirtz and Pahlow, 2010; Pahlow and Oschlies,
2013). We simplified the detailed partition models by setting
the trait fractions as constant.

A2 Respiratory cost and nutrient uptake rates

Efforts related to nutrient uptake V are represented by a res-
piration term. Other expenses such as biosynthetic costs are
neglected (Pahlow, 2005). The respiration rate is then cal-
culated as R = ζ ·V , where ζ expresses the specific respira-
tory cost of nitrogen assimilation (Raven, 1980; Aksnes and
Egge, 1991; Pahlow, 2005). For simplicity, our model merges
the set of potentially limiting nutrients (e.g., P, Si and N) to a
single resource only, i.e., DIN. We follow Aksnes and Egge
(1991) as described in Pahlow (2005) for the maximum up-
take rate

Vmax =
1

1
V ∗max·fT

+
1

Aff·DIN

, (A6)

comprising the maximum uptake coefficient V ∗max and nu-
trient affinity Aff. In addition to a temperature dependence
of nutrient uptake as reported by Schartau et al. (2007), we
assumed that respiratory costs decrease with increasing cell
size (Edwards et al., 2012), which leads to an allometric scal-
ing in nutrient uptake (Wirtz, 2013) with exponent αV . We
also accounted for the static proteins allocation trade-offs
between photosynthetic machinery, fp, and nutrients uptake,
fv = 1− fp. Thus, the nutrient uptake term yields

V = (1− fp) ·Vmax · e
−αV ·`. (A7)

A3 Loss rates

To describe the loss rate of phytoplankton biomass, we used
a density-dependent term

L= L∗ · (PhyC+DHC). (A8)

The resulting matter flux increases the biomass of detritus
and heterotrophs (DH), and a fraction of it becomes a part of

Biogeosciences, 14, 1883–1901, 2017 www.biogeosciences.net/14/1883/2017/



M. Moreno de Castro et al.: Potential sources of variability in mesocosm experiments 1897

the remineralizable pool. A temperature-dependent reminer-
alization term (Schartau et al., 2007)

r = r∗ · fT (A9)

describes any kind of DIN production, such as hydrolysis
and remineralization of organic matter, excretion of ammo-
nia directly by zooplankton, and rapid remineralization of
fecal pellets produced also by the zooplankton. The other
fraction of the non-phytoplanktonic biomass is removed by
settling with a rate related to the sinking coefficient, s,
shown in Tables 1 and 2. Our model was calibrated with ex-
perimental data from enclosed mesocosms where aquarium
pumps ensured mixing. Therefore, we assumed that suffi-
ciently wealthy organisms could achieve neutral buoyancy
(Boyd and Gradmann, 2002), and thus sinking might not
have directly affected the phytoplankton biomass.

Appendix B: Forcings

We used measured aquatic CO2 and temperature per meso-
cosm and ambient PAR, as model inputs (see Fig. 9). For
the two PeECE experiments, the photon flux density was
measured by the Geophysical Institute of the University of
Bergen. To calculate the surface radiation inside the meso-
cosms, PAR0, we followed (Schulz et al., 2008) and consid-
ered that 80% of incident PAR passed through the gas tight
tents, of which up to 15% penetrated to approximately 2.5 m
depth, the center of the mixed surface layer in PeECE III. The
daily carbon dioxide data were interpolated and PAR signal
was filtered by singular spectrum analysis to avoid sudden
changes that could be detrimental to the performance of the
numerical calculation, since the Heun method requires dif-
ferentiable functions.

Appendix C: Definition of POC

The applied model equations attribute phytoplankton, detri-
tus, and herbivorous heterotrophs to particulate organic mat-
ter. Measurements of particulate organic carbon also include
some fractions of large bacterioplankton, carnivorous zoo-
plankton, as well as extracellular gel particles such as trans-
parent exopolymer particles. These additional organic con-
tributions to POC measurements are not explicitly resolved
in our model. Therefore, for comparisons between simula-
tion results and observations, we redefine the raw data from
PANGAEA, named POC′ hereafter (dots in Figs. 2, 3, and
5 represent the already modified POC data). We used data
of transparent exopolymer particles, TEP, from Egge et al.
(2009) for PeECE III, such as here POC = POC′ − TEP.
For PeECE II, TEP data were not available. We used POC =
POC′ − POC′′, where POC′′ is the difference between parti-
cle abundance, PA, of the Coulter counter measurements and
the flow cytometry data in Engel et al. (2008):

POC′′ = β · (PA Coulter counter−PA flow cytometry). (C1)

The scaling parameter β = 0.000065 µmol-CL−1 was tuned
to provide reductions between 40 and 50% from total POC,
in agreement with the adjustments of PeECE III.

Appendix D: Model representation of replicates

Heuristic exploration of the potential origins of the observed
variability uses statistical inference tools, such as a multi-
way repeated measures ANOVA, exploring which indepen-
dent factors are contributing the most to the standard devia-
tions. Such approaches have the advantage of accounting for
interacting effects between combinations of factors (and not
only for the synergistic effects of each factor and acidifica-
tion, as in our model-based approach; see Sect. 3). However,
the realization through an experimental setup would make a
high-dimensional multi-factorial experiment extremely dif-
ficult to perform (Fig. 8). For three acidification levels, the
minimum number of factor levels (i.e., high and low), mini-
mum number of sample units (i.e., duplicates), and the same
number of factors we analyze here, (i.e., N = 19), the total
number of mesocosms would be 3× 2× 2× 19= 228. The
possibility of simulating a high number of replicates is one of
the unique strengths of modeling. For each factor, we simu-
late possible realizations of the same acidification level with
slight variations of the factor reference value (simulating dif-
ferences in physiological states and community structure).
We generated model solutions for 104 normally distributed
factor values, i.e., in total, 3 acidification levels × 19 factors
× 104 virtual replicates for PeECE II and III experiments.
Examples of 50 virtual replicates with uncertainty in initial
nutrient concentration are shown in Fig. 8 and examples of 10
virtual replicates with uncertainty in phytoplankton biomass
losses are shown in Fig. 1, both numerically calculated for
low CO2 conditions in PeECE III.

Appendix E: Residuals of the model–data fit

For the model–data fit shown in Figs. 2 and 3, we calculated
the cumulative residuals E and M (Table E1) with respect to
the mean of experimental replicates per treatment, time, and
mesocosm. For experimental data, residuals E were calcu-
lated as follows:

E =
∑

treat,rep,day
|Y

exp
treat,rep,day−〈Y

exp
treat,day〉|/η (E1)

and for model results, residuals M were calculated as fol-
lows:

M =
∑

treat,rep,day
|Ymod

treat,rep,day−〈Y
exp
treat,day〉|/η (E2)
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with η = 9 being the total number of mesocosms. High resid-
uals entail high deviation from the trend. In the case of E,
this is the deviation from the mean of the treatment (typi-
cally used in statistical inference tools), and in the case of
M , the deviation from the model reference run. When both
E andM values are comparable, we can infer that the quality
of both representations is similar (see Table E1). Thus, con-
clusions inferred from both approaches are based on equally
valid assumptions.

Table E1. Cumulative residuals for PeECE III.

Y E M units

POC 35.1 37.4 µmol-CL−1

PON 6.0 9.1 µmol-NL−1

DIN 6.7 9.2 µmol-NL−1
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