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Abstract. Observations indicate that resuspension and asso-
ciated fluxes of organic material and porewater between the
seabed and overlying water can alter biogeochemical dynam-
ics in some environments, but measuring the role of sediment
processes on oxygen and nutrient dynamics is challenging.
A modeling approach offers a means of quantifying these
fluxes for a range of conditions, but models have typically
relied on simplifying assumptions regarding seabed–water-
column interactions. Thus, to evaluate the role of resus-
pension on biogeochemical dynamics, we developed a cou-
pled hydrodynamic, sediment transport, and biogeochemi-
cal model (HydroBioSed) within the Regional Ocean Mod-
eling System (ROMS). This coupled model accounts for pro-
cesses including the storage of particulate organic matter
(POM) and dissolved nutrients within the seabed; fluxes of
this material between the seabed and the water column via
erosion, deposition, and diffusion at the sediment–water in-
terface; and biogeochemical reactions within the seabed. A
one-dimensional version of HydroBioSed was then imple-
mented for the Rhône subaqueous delta in France. To isolate
the role of resuspension on biogeochemical dynamics, this
model implementation was run for a 2-month period that in-
cluded three resuspension events; also, the supply of organic
matter, oxygen, and nutrients to the model was held constant
in time. Consistent with time series observations from the

Rhône Delta, model results showed that erosion increased
the diffusive flux of oxygen into the seabed by increasing
the vertical gradient of oxygen at the seabed–water interface.
This enhanced supply of oxygen to the seabed, as well as
resuspension-induced increases in ammonium availability in
surficial sediments, allowed seabed oxygen consumption to
increase via nitrification. This increase in nitrification com-
pensated for the decrease in seabed oxygen consumption due
to aerobic remineralization that occurred as organic matter
was entrained into the water column. Additionally, entrain-
ment of POM into the water column during resuspension
events, and the associated increase in remineralization there,
also increased oxygen consumption in the region of the wa-
ter column below the pycnocline. During these resuspension
events, modeled rates of oxygen consumption increased by
factors of up to ∼ 2 and ∼ 8 in the seabed and below the
pycnocline, respectively. When averaged over 2 months, the
intermittent cycles of erosion and deposition led to a ∼ 16 %
increase of oxygen consumption in the seabed, as well as a
larger increase of ∼ 140 % below the pycnocline. These re-
sults imply that observations collected during quiescent peri-
ods, and biogeochemical models that neglect resuspension or
use typical parameterizations for resuspension, may underes-
timate net oxygen consumption at sites like the Rhône Delta.
Local resuspension likely has the most pronounced effect on
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oxygen dynamics at study sites with a high oxygen concen-
tration in bottom waters, only a thin seabed oxic layer, and
abundant labile organic matter.

1 Introduction

Understanding and quantifying the role that physical pro-
cesses play on coastal water quality remains a scientific and
management concern. Management solutions to hypoxia, the
occurrence of low oxygen concentrations, as well as other
water quality issues, have focused on reducing riverine de-
livery of nutrients and sediments (Bricker et al., 2007). Yet
temporal lags between these reductions and water quality
improvements (Kemp et al., 2009), and increased cycling
of nutrients within coastal systems (e.g., Testa and Kemp,
2012), indicate that temporary storage of nutrients in the
seabed and subsequent release to the water column via dif-
fusion and/or resuspension can affect water quality in some
coastal environments. Neglecting these processes impairs
managers’ ability to develop and evaluate strategies for im-
proving coastal water quality (e.g., Artioli et al., 2008).

Resuspension-induced fluxes of sediment, particulate or-
ganic matter (POM), and dissolved chemical species be-
tween the seabed and water column can significantly af-
fect biogeochemistry in coastal waters, including oxygen dy-
namics (Glud, 2008). Entrainment of seabed organic mat-
ter and reduced chemical species into the water column can
increase remineralization and oxidation rates, thereby de-
creasing oxygen concentrations in bottom waters in some
environments. For example, Abril et al. (1999) observed
that oxygen concentrations were inversely correlated with
tidal fluctuations of suspended particulate matter concentra-
tions in the Gironde Estuary, France. Recently, Toussaint et
al. (2014) collected high-resolution time series of microelec-
trode oxygen profiles on the Rhône River subaqueous delta
that showed resuspension may also increase oxygen con-
sumption in the seabed. This experiment revealed increases
in diffusive fluxes of oxygen from the water column to the
seabed during erosional events. Other observational stud-
ies have estimated resuspension-induced increases in oxy-
gen consumption within the seabed and bottom-waters using
measurements of turbulent oxygen fluxes (Berg and Huettel,
2008) and erodibility experiments (e.g., Sloth et al., 1996).
Yet, it remains difficult to distinguish and quantify the rel-
ative influences of different biogeochemical (e.g., reminer-
alization, oxidation) and physical (e.g., diffusion, resuspen-
sion) processes on oxygen dynamics in both the seabed and
bottom-waters.

Hydrodynamic–biogeochemical models often comple-
ment observational studies of water quality (e.g., Moll and
Radach, 2003; Aikman et al., 2014), but these simulations
usually neglect or simplify seabed–water-column fluxes. Wa-
ter quality models often assume that organic matter and nu-

trients reaching the seabed are permanently buried, instan-
taneously remineralized, resuspended without remineraliza-
tion, or a combination thereof (e.g., Cerco et al., 2013; Fen-
nel et al., 2013; Feng et al., 2015; Bruce et al., 2014; Liu et
al., 2015). Yet, numerical experiments showed that switch-
ing among relatively simple parameterization methods for
seabed–water-column fluxes can alter the estimated area of
low-oxygen regions by about −50 to +100 % in the Gulf
of Mexico (Fennel et al., 2013). This sensitivity of modeled
oxygen concentrations to the choice of parameterization, as
well as the observations of temporally variable oxygen fluxes
discussed above, motivates development of a process-based
model for seabed–water-column fluxes.

We therefore developed a modeling approach that ac-
counts for physical and biogeochemical processes at the
seabed–water interface, including resuspension of POM and
porewater, and implemented it for the dynamic Rhône Delta.
Previously, one-dimensional box models with a few vertical
levels have been used to study the role of organic matter re-
suspension on oxygen (Wainright and Hopkinson, 1997) and
contaminant levels (Chang and Sanford, 2005). Additionally,
three-dimensional circulation models have been coupled to
biogeochemical models with a single seabed layer and im-
plemented to investigate the role of POM resuspension on
Baltic Sea carbon budgets (Almroth-Rosell et al., 2011) and
Black Sea biogeochemistry (Capet et al., 2016). To the best
of our knowledge, however, no previously existing models
have sufficient vertical resolution to resolve changes in the
vertical biogeochemical profiles that drive diffusive seabed–
water-column fluxes, or the ability to account for the entrain-
ment of reduced chemical species into the water column.

This paper presents a model called HydroBioSed that can
reproduce the millimeter-scale changes in seabed profiles of
oxygen, nitrogen, and carbon, as well as the resuspension-
induced changes in seabed–water-column fluxes observed
on the Rhône River subaqueous delta, by coupling hydro-
dynamic, biogeochemical, and sediment transport modules.
This process-based numerical model was implemented for
the Rhône River subaqueous delta and used to evaluate
how episodic erosion and deposition affect millimeter-scale
seabed biogeochemistry and overall oxygen consumption in
a dynamic coastal environment. Specific research questions
for this paper include the following: (1) how do erosion and
deposition affect the timing and magnitude of seabed and
bottom-water oxygen consumption? (2) What are the rela-
tive roles of local resuspension, organic matter remineraliza-
tion, and oxidation of reduced chemical species in control-
ling oxygen consumption in the seabed and bottom waters?
(3) How sensitive is oxygen consumption to resuspension
frequency and magnitude, sedimentation rate, organic matter
lability and availability, rate of diffusion within the seabed,
and seabed nitrification rate? (4) What characteristics of the
study site lead to the dependence of oxygen dynamics on lo-
cal resuspension?
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Figure 1. (a) Red box indicates location of panel (b) in the Gulf
of Lion. (b) Dots indicate our study site (SS; blue), i.e., the
Mesurho station (Pairaud et al., 2016), and Pastor et al.’s (2014)
Site A (green) offshore of the Rhône River. Bathymetric data (black
lines) were obtained from the European Marine Observation and
Data Network. Coastline data were obtained from the US National
Oceanic and Atmospheric Administration.

2 Methods

This section describes the Rhône Delta (Sect. 2.1), and Hy-
droBioSed (Sect. 2.2), before explaining how the model was
implemented to address the research questions (Sect. 2.3).
Tables 1 and 2 list related symbols and vocabulary.

2.1 Study site

Located in the Gulf of Lion at the northwest end of the
Mediterranean Sea, the Rhône River subaqueous delta in
France is an excellent study site for these research questions,
in part because of the available observations (Fig. 1). Our
study is co-located with the site from Toussaint et al. (2014)
at the “Mesurho” station (Pairaud et al., 2016) and is only
a few kilometers away from Site A in Pastor et al. (2011a);
both locations are at ∼ 25 m water depth and are character-
ized by similar biogeochemical characteristics (e.g., Rass-
mann et al., 2016), and so data from both sites were used
for model input, validation, and evaluation. Importantly, data
from Toussaint et al. (2014) included a time series of oxy-
gen profiles with submillimeter-scale resolution within the
seabed and bottom centimeter of the water column. By re-
solving changes that occurred during resuspension events,
Toussaint et al. (2014) showed that diffusion of oxygen into
the seabed increased during resuspension events.

This site experiences frequent seabed disturbance due to
centimeters of erosion superimposed on rapid fluvial de-
position. Over timescales of decades, due to its proximity
to the Rhône River (Fig. 1), accumulation rates at this site
are ∼ 10 cm yr−1 for sediment and 657 g m−2 yr−1 of carbon
(Radakovitch et al., 1999; Pastor et al., 2011a), although de-
position varies in response to seasonal and episodic changes
in river discharge and wave energy (Pont, 1997; Miralles et

al., 2006; Ulses et al., 2008; Cathalot et al., 2010). Deposi-
tion is punctuated by erosional events, and our study period,
April–May 2012, included three instances when wave energy
resuspended 1–2 cm of material from the seabed (Toussaint
et al., 2014). At this site, erosion and deposition are the main
sources of seabed disturbance; little bioturbation has been
observed (Pastor et al., 2011b).

The delivery of organic matter to the shelf drives oxygen
consumption directly via aerobic remineralization, and indi-
rectly, as reduced chemical species produced during reminer-
alization are oxidized (Lansard et al., 2009). Organic mate-
rial comprises about 2–12 and < 1–5 % of water-column and
seabed particulate matter, respectively, and about four-fifths
of it originates from a terrestrial source, with little marine
influence at the study site (Bourgeois et al., 2011; Pastor
et al., 2011a; Lorthiois et al., 2012; Cathalot et al., 2013).
Yet, the material settling to the seabed at this site is rela-
tively labile, and has been estimated to have remineralization
rate constants of 11–33 yr−1 in the water column (Pinazo
et al., 1996) and 0.31–11 yr−1 in the seabed (Pastor et al.,
2011a). Despite the large input of organic matter to the Gulf
of Lion, oxygen concentrations remain near saturation and
hypoxia has not been reported, likely because the system is
physically dynamic (Rabouille et al., 2008), suggesting that
most organic matter is aerobically remineralized. In contrast,
∼ 85 % of seabed organic matter remineralization is anaer-
obic at our study site (Pastor et al., 2011a). This reminer-
alization produces high ammonium concentrations that dif-
fuse upwards and cause nitrification to account for an un-
usually large amount (over half) of the site’s seabed oxygen
consumption, which is about 10–30 mmol O2 m−2 d−1 in the
prodelta where our site is located (Lansard et al., 2009; Pas-
tor et al., 2011a; Toussaint et al., 2014). Yet, seabed fluxes
of oxygen, carbon, and dissolved nutrients vary during re-
suspension events, complicating efforts to quantify the im-
portance of different biogeochemical processes at this site
(Lansard et al., 2009; Toussaint et al., 2014) and motivating
this study.

2.2 Model development

The fully coupled HydroBioSed numerical model was devel-
oped within the Regional Ocean Modeling System (ROMS),
a community-based and well-utilized ocean modeling frame-
work (Haidvogel et al., 2000, 2008; Shchepetkin, 2003;
Shchepetkin and McWilliams, 2009). In addition to its core
hydrodynamic components, ROMS includes widely used
modules for sediment transport (CSTMS: Community Sed-
iment Transport Modeling System; Warner et al., 2008),
and water-column biogeochemistry (e.g., Fennel et al., 2006,
2013). We built on those previous studies by coupling the
sediment transport and water-column biogeochemistry com-
ponents (Fig. 2a), enabling the model to account for stor-
age of POM and nutrients in the seabed, and subsequent re-
suspension and redistribution of the organic matter and nu-
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Table 1. Description of symbols used in this paper. Note that concentrations are porewater or bottom-water concentrations, not bulk concen-
trations, unless otherwise noted, but units of length and area (i.e., meters, m, and meters squared, m2) refer to the dimensions of the grid cell,
and were not corrected for porosity.

Symbol Description Units

Agglab Concentration of labile aggregates mmol N m−3

Aggref Concentration of refractory aggregates mmol N m−3

Cised Concentration of sediment from class ised kg m−2

Cs_tnew Concentration of dissolved tracer in the surficial seabed layer, for the new time step mmol m−3

Cs_told Concentration of dissolved tracer in the surficial seabed layer from the old time step mmol m−3

Cw_tnew Concentration of dissolved tracer in the bottom water-column layer, for the new time step mmol m−3

Cw_told Concentration of dissolved tracer in the bottom water-column layer from the old time step mmol m−3

dO2 / dzOPD The slope of the vertical oxygen profile, averaged over the oxygen penetration depth, zOPD mmol O2 m−4 a

Di Coefficient for diffusion within the seabed for seabed constituent i m2 s−1

Dised Rate of deposition for sediment from class ised kg m−2 s−1

Ds-w Diffusion coefficient at the seabed–water interface m2 s−1

dz Grid cell thickness m
Eised Rate of erosion for sediment from class ised kg m−2 s−1

fbur Fraction of organic matter that is buried in the seabed –
fised Fraction of the surficial seabed layer composed of sediment class ised –
flab Fraction of coagulated organic matter that is labile within the water column –
fldet Fraction of labile coagulated organic matter that is large detritus within the water column –
ised Index used for different sediment classes. –
kO2 Half-saturation constant for O2 limitation of aerobic remineralization mmol O2 m−3

kO2_nit Half-saturation constant for O2 limitation of nitrification mmol O2 m−3

kO2_oduox Half-saturation constant for O2 limitation of ODU oxidation mmol O2 m−3

kNO3 Half-saturation constant for NO3 limitation of nitrate remineralization mmol N m−3

lO2 Half-saturation constant for O2 inhibition of nitrate remineralization mmol O2 m−3

lO2_anoxic Half-saturation constant for O2 inhibition of anoxic remineralization mmol O2 m−3

lNO3_anoxic Half-saturation constant for NO3 inhibition of anoxic remineralization mmol N m−3

LBO Limitation of seabed oxygen consumption due to bottom-water O2 availability –
Ldet Concentration of large detritus mmol N m−3

Ltot Sum of the limitation factors on remineralization processes –
M Erosion rate parameter representing seabed erodibility kg m−2 s−1

NO3 Nitrate concentration mmol N m−3

Nhigh-res Number of high-resolution seabed layers –
Nmed-res Number of medium-resolution seabed layers –
NH4 Ammonium concentration mmol N m−3

Ranoxic Anaerobic remineralization rate in the seabed bmmol C m−3 d−1

Raerobic Aerobic remineralization rate in the seabed mmol C m−3 d−1 b

RDNF Denitrification rate in the seabed mmol C m−3 d−1 b

Rnit Nitrification rate in the seabed mmol N m−3 d−1

Rnit,max Maximum nitrification rate in the seabed d−1

Roduox Oxidation rate of ODUs in the seabed mmol O2 m−3 d−1

Roduox,max Maximum oxidation rate of ODUs in the seabed d−1

RPOC Remineralization rate constant for particulate organic matter in the seabed d−1

Sinorganic Inorganic sedimentation rate m yr−1, or kg m−2 yr−1

Sorganic Particulate organic matter sedimentation rate gC m−2 yr−1

O2 Dissolved oxygen concentration mmol O2 m−3

O2,OPD Dissolved O2 concentration at the oxygen penetration depth; equals zero by definition mmol O2 m−3

O2,SWI Dissolved oxygen concentration at the seabed–water interface mol O2 m−3

ODU Oxygen demand unit concentration mmol O2 m−3

POC Particulate organic carbon concentration bmmol C m−3

POM Particulate organic matter concentration mmol N m−3 b
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Table 1. Continued.

Symbol Description Units

ws,ised Settling velocity of sediment from class ised m s−1

za Thickness of seabed active transport layer m
zhigh-res Thickness of high-resolution seabed layers m
zmed-res Thickness of medium-resolution seabed layers m
znewdep Thickness of new deposition m
zOPD Oxygen penetration depth into the seabed; this is negative in our coordinate system m
zSWI Depth at the seabed–water interface (SWI); equals zero in our coordinate system m
zw1 Thickness of bottom water-column grid cell m
8 Seabed porosity –
τbed Bed shear stress from waves and currents Pa
τcrit Critical shear stress, assumed to be the same for all sediment classes Pa
τcrit,ised Critical shear stress for sediment class ised Pa
z Vertical level in the water column modules, ranging from 1 (near the seabed) to 20 (near the water-air interface) –

a m−4
=m−3 (of liquid)×m−1 (bulk distance). b For this variable, m−3 indicates volume of particulates in the grid cell, not water.
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Figure 2. (a) Schematic of links between the seabed biogeochemical module and other modules, and detailed schematics of particulate
organic matter partitioning for the (b) standard model run and (c) no-repartitioning sensitivity test. The colors of the boxes and labels
indicate processes associated with sediment transport (brown), water-column biogeochemistry (green), and seabed biogeochemistry and
model coupling (black). Abbreviations for this figure represent sediment (Sed.), biogeochemistry (Biogeochem.), phytoplankton (Phyt.),
zooplankton (Zoop.), detritus (Det.), seabed organic matter (SOM), aggregates (Agg.), labile (Lab.), and refractory (Ref.).
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Table 2. Description of phrases, acronyms, and abbreviations, as used in this paper.

Name/abbreviation Description

Active transport layer Region of the seabed from which material can be entrained into the water
column; synonymous with the phrase “active layer” in sediment transport
papers (Harris and Wiberg, 1997; Warner et al., 2008). In the model, the
active transport layer is the same as the surficial seabed layer.

Anoxic remineralization Includes iron, manganese, and sulfur remineralization of organic matter, and
methanogenesis, but not denitrification.

Bottom water The region of the water column within 4 m of the seabed where suspended
sediment concentrations were high during resuspension events.

CSTMS Community Sediment Transport Modeling System.
Diagenesis Within this paper, “diagenesis” is used to refer to models that account for

organic matter remineralization and associated biogeochemical processes
within the seabed. We note, however, that diagenesis is commonly used to
refer to any physical, chemical, geological, or biological changes in sedi-
ment or sediment rock following deposition, prior to metamorphism.

Diffusion at (or across) the seabed–water interface Molecular diffusion of dissolved chemicals across the seabed–water inter-
face. In the context of HydroBioSed, this refers to exchanges between the
bottom water-column grid cell and surficial seabed layer so that they are in
equilibrium (see Appendix).

Diffusion within the seabed Molecular diffusion within the seabed; referred to as ‘biodiffusion’ in other
modeling papers when bioturbation is modeled as a diffusive process.

HydroBioSed The coupled hydrodynamic, sediment transport, water-column, and seabed
biogeochemistry model developed and implemented in this study.

Local resuspension “One-dimensional” (vertical) resuspension, i.e., neglecting horizontal trans-
port processes.

Module Refers to a “sub-model” within a model, e.g., the sediment transport module
within ROMS.

Nitrate remineralization In this paper, synonymous with denitrification.
Nutrient(s) Refers to refer to nitrogen and/or phosphorus. Does not include ODUs.
ODU Oxygen demand unit; one ODU is the number of moles of reduced chemical

species that react with 1 mole of O2 when oxidized.
OPD Oxygen penetration depth; depth in the seabed at which oxygen decreased

to zero.
POM Particulate organic matter.
Quiescent Characterized by low-energy environmental conditions; i.e., used to refer

time periods with low waves and no resuspension in this paper.
Redeposition Deposition of particulates previously resuspended from the same location.
Resuspend, resuspended (verb, adjective) Refers to the entrainment of seabed material into the water

column via erosion, or to the material that was eroded from the seabed.
Resuspension (event) (noun) Refers to cycle of erosion and deposition.
ROMS Regional Ocean Modeling System.
Seabed Region beneath the water column.
Sediment Inorganic particles
Steady state Refers to models that do not change in time, e.g., due to wave-induced re-

suspension.
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trients. As part of the coupling, we also incorporated ag-
gregation of detritus, seabed–water-column diffusion, and a
multi-layer seabed biogeochemical model based on Soetaert
et al. (1996a, b). Below, we briefly describe the sediment
transport and water-column biogeochemistry modules used,
highlighting differences from standard ROMS implementa-
tions and the addition of the seabed biogeochemistry model.

2.2.1 Sediment transport module

Suspended sediment tracers in the ROMS–CSTMS module
are transported by ocean currents, experience downward set-
tling, may be deposited and eroded from the multi-layer
seabed model, and are subject to source and sink terms such
as river discharge (Warner et al., 2008). As discussed in
Warner et al. (2008), the rates of deposition, Dised, and ero-
sion, Eised, for each sediment class ised, are calculated as
follows (parameters are defined in Table 1):

Dised =−
∂
(
ws, isedCised,z=1

)
∂zw1

, (1)

Eised =M(1−8)fised

(
τbed− τcrit,ised

τcrit,ised

)
whenτbed ≥ τcrit,ised

=0
whenτbed < τcrit,ised. (2)

Resuspension from the seabed is parameterized such that
erosion may only occur when the modeled bed stress, τbed,
exceeds the critical shear stress, τcrit,ised. Because erosion
and deposition can co-occur, “erosional” and “depositional”
time periods refer to times of net erosion, i.e., when Eised−

Dised > 0, and net deposition, i.e., when Eised−Dised < 0,
respectively. Previous CSTMS applications accounted only
for inert particulates; however, here we adapted the model
to link sediment transport and biogeochemical processes. In
HydroBioSed, POM from the water-column biogeochemical
module provides an additional source of particulates to the
seabed (Sect. 2.2.3), and POM can be deposited, eroded, and
buried along with the sediment in its seabed layer. Note that
POM comprises only ∼ 3 % of the seabed by mass on the
Rhône Delta and so it was considered negligible for calculat-
ing fluxes within the seabed layering scheme. Additionally,
the seabed layering scheme of Warner et al. (2008) was modi-
fied so that the seabed has sufficient resolution (< 1 mm) near
the seabed–water interface where vertical gradients in bio-
geochemical constituents such as dissolved oxygen can be
high (see Appendix A). Finally, while versions of CSTMS al-
ready accounted for diffusion of sediment within the seabed
(Sherwood et al., 2017), HydroBioSed uses the same meth-
ods to account for the diffusion of porewater and POM.

2.2.2 Water-column biogeochemistry module

ROMS water-column biogeochemistry modules have typi-
cally included variables for multiple nutrient, plankton, and
detrital classes and accounted for processes such as growth,
grazing, and remineralization (e.g., Fennel et al., 2006).
Here, the ROMS biogeochemical model from Fennel et
al. (2013) was modified so that HydroBioSed converts some
of the large detritus into faster-sinking aggregates in the wa-
ter column. In Fennel et al. (2013), small detritus and phyto-
plankton in the water column may coagulate to form large de-
tritus. HydroBioSed builds on the Fennel et al. (2013) frame-
work by partitioning coagulated material into three types of
particulate matter: (1) large detritus, (2) labile aggregates,
and (3) refractory aggregates (Fig. 2b). Based on estimates
that roughly half of the deposited particulate organic matter is
refractory in the Gulf of Lion (Tesi et al., 2007; Pastor et al.,
2011a), the model partitions coagulated material into 50 %
refractory aggregates and 50 % labile material (flab = 0.5),
which is divided evenly (fldet = 0.5) between labile aggre-
gates (25 %) and large detritus (25 %):

Aggref = (1− flab)×
(
Ldet+Agglab+Aggref

)
, (3)

Agglab = (flab)× (1− fldet)×
(
Ldet+Agglab+Aggref

)
,

(4)

Ldet = (flab)× (fldet)×
(
Ldet+Agglab+Aggref

)
. (5)

Aggregates, similar to phytoplankton and detritus, are as-
signed settling velocities and remineralization rate constants
(Table 3; Fennel et al., 2006), and are transported within the
water column by the hydrodynamic module. Upon sinking
to the bed, aggregates, as well as phytoplankton and detri-
tus, are added to the pool of seabed organic matter within the
seabed module, as described in the next section.

2.2.3 Seabed biogeochemistry module

A seabed biogeochemistry module (Soetaert et al., 1996a,
b) was added to ROMS to account for changes in oxygen,
dissolved nitrogen, and POM due to remineralization, oxi-
dation of reduced chemical species, and diffusion across the
seabed–water interface. This model has performed well in
many environments including areas near river deltas (Wijs-
man et al., 2002; Pastor et al., 2011a), on the continental shelf
and slope (Soetaert et al., 1998; Epping et al., 2002), and in
the deep ocean (Middelburg et al., 1996). To incorporate the
Soetaert et al. (1996a, b) model into HydroBioSed, we used
the code developed by Wilson et al. (2013), and adapted it
for the ROMS framework and the Rhône Delta. Calculations
use the first-order accurate Euler method.

This seabed biogeochemistry model specifically tracks
degradable particulate organic carbon (POC), oxygen, ni-
trate, ammonium, and oxygen demand units (ODUs), defined
as the moles of reduced chemical species that react with
1 mole of O2 when oxidized. Like Soetaert et al.’s (1996a,
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Table 3. Environmental conditions and parameters for the Standard Model implementation.

Model input/parameter Modeled value Literature source

Hydrodynamic and sediment transport parameter

Water depth 24 m Pastor et al. (2011a)
Wave height Observed time series Toussaint et al. (2014)
Wave period 10 s Ulses et al. (2008),

Palanques et al. (2006),
Guillen et al. (2006)

Bottom-water temperature 15 ◦C Millot et al. (1990)
Surface water temperature 20 ◦C Millot et al. (1990)
Bottom-water salinity 35 psu Panlanques et al. (2006),

Cruzado and Velasquez (1990)
Surface water salinity 33 psu Panlanques et al. (2006),

Cruzado and Velasquez (1990)
Inorganic sedimentation rate Sinorganic = 10 cm yr−1

= 14 kg m−2 yr−1
Pastor et al. (2011a)

Fraction of sediment that is muddy flocs 80 % Roussiez et al. (2006),
Ferre et al. (2005),
Radkovitch et al. (1999)

Fraction of sediment that is sand 20 % Roussiez et al. (2006),
Ferre et al. (2005),
Radkovitch et al. (1999)

Settling velocity of muddy flocs 0.19 mm s−1 Curran et al. (2007)
Settling velocity of sand 30 mm s−1 Curran et al. (2007)
Critical bed shear stress τcrit = 0.3 Pa Toussaint et al. (2014)a

Erosion rate parameter M = 0.01 kg m−2 s−1 Toussaint et al. (2014)a

Porosity 8= 0.9 Unpublished data
Sediment density of muddy flocs 1048 kg m−3 b Curran et al. (2007)
Sediment density of sand 2650 kg m−3 b Curran et al. (2007)

Water-column biogeochemical parameters

Oxygen concentration 253 mmol O2 m−3 Toussaint et al. (2014),
Pastor et al. (2011a)

Nitrate concentration 0.5 mmol N m−3 Pastor et al. (2011a)
Ammonium concentration 5.8 mmol N m−3 Pastor et al. (2011a)
ODU concentration 0 mmol O2 m−3 Pastor et al. (2011a)
Phytoplankton concentration 0.03 mmol N m−3 Pastor et al. (2011a)c

Zooplankton concentration 1.17 mmol N m−3 Pastor et al. (2011a)c

Small detritus concentrations 0.03 mmol N m−3 Pastor et al. (2011a)c

Maximum nitrification rate 0.7 d−1 Pinazo et al. (1996)
Coagulation rate of phytoplankton and small detritus 182 d−1 Pastor et al. (2011a)c

Detritus & aggregate remineralization rate constant 11 yr−1 Pinazo et al. (1996)
Settling (sinking) velocity of phytoplankton 0.1 m d−1 Fennel et al. (2006)d

Settling (sinking) velocity of large detritus 1.0 m d−1 Fennel et al. (2006)d

Settling (sinking) velocity of small detritus 0.1 m d−1 Fennel et al. (2006)d

Settling (sinking) velocity of labile aggregates 16.416 m d−1 Curran et al. (2007)
Settling (sinking) velocity of refractory aggregates 16.416 m d−1 Curran et al. (2007)
Nudging parameter for large detritus, aggregates, sediment 0 d−1 None
Nudging parameter for NO3, phytoplankton, small detritus 0.02 d−1 None
Nudging parameter for NH4, oxygen, ODU, zooplankton 0.2 d−1 None
POM sedimentation rate Sorganic = 657 g C m−2 yr−1 Pastor et al. (2011a)
Partitioning of refractory vs. labile organic matter flab = 0.5 Pastor et al. (2011a),

Tesi et al. (2007)
Partitioning of labile aggregates vs. large detritus fldet = 0.5 Pastor et al. (2011a),

Tesi et al. (2007)
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Table 3. Continued.

Model input/parameter Modeled value Literature source

Seabed biogeochemical parameters

Labile organic matter remineralization rate constant 11 yr−1 Pastor et al. (2011a)
Refractory organic matter remineralization rate constant 0.31 yr−1 Pastor et al. (2011a)
Ratio of mol C : mol N in labile organic matter 7.10 Pastor et al. (2011a)
Ratio of mol C : mol N in refractory organic matter 14.3 Pastor et al. (2011a)
Half-saturation constant for O2 limitation of
aerobic remineralization

kO2 = 1 mmol O2 m−3 Pastor et al. (2011a)

Half-saturation constant for NO3 limitation of
nitrate remineralization (denitrification)

kNO3 = 20 mmol N m−3 Pastor et al. (2011a)

Half-saturation constant for O2 limitation of nitrification kO2_nit = 10 mmol O2 m−3 Pastor et al. (2011a)
Half-saturation constant for O2 limitation in ODU oxidation kO2_oduox = 1 mmol O2 m−3 Pastor et al. (2011a)
Half-saturation constant for O2 inhibition of
nitrate remineralization (denitrification)

lO2 = 1 mmol O2 m−3 Pastor et al. (2011a)

Half-saturation constant for O2 inhibition of
anoxic remineralization

lO2_anoxic = 1 mmol O2 m−3 Pastor et al. (2011a)

Half-saturation constant for NO3 inhibition of anoxic reminer-
alization

lNO3_anoxic = 10 mmol NO3 m−3 Pastor et al. (2011a)

Maximum nitrification rate Rnit,max = 100 d−1 Pastor et al. (2011a)
Maximum oxidation rate of ODUs Roduox,max = 20 d−1 Pastor et al. (2011a)
Fraction of ODUs produced that are solid and inert 99.5 % Pastor et al. (2011a)
Diffusion coefficient for across seabed–water interface Ds-w = 1.08× 10−9 m2 s−1 Toussaint et al. (2014)
Coefficients for diffusion within the seabed Dparticulates = 2.55× 10−10 m2 s−1

DO2 = 11.99× 10−10 m2 s−1

DNO3 = 9.80× 10−10 m2 s−1

DNH4 = 10.04× 10−10 m2 s−1

DODU = 4.01× 10−10 m2 s−1

Pastor et al. (2011a)e

a Chosen based on time series of seabed elevation in Toussaint et al. (2014). b Units are cubic meter (m3) of sediment, not cubic meter of water. c Chosen based on organic
sedimentation rate. d No local data. e Derived from the molecular diffusion rates, but adjusted for the porosity and tortuosity of the seabed as described in Pastor et al. (2011a).

b) early diagenetic model, HydroBioSed uses ODUs to rep-
resent a combination of reduced chemical species that are
produced during anoxic remineralization, including iron and
manganese ions, sulfide, and methane. Modeled POC in-
cludes both labile and refractory (or semi-labile) classes. For
a full model description, see Soetaert et al. (1996a, b), but
here we present the rate equations for oxic remineraliza-
tion (Eq. 6), denitrification (Eq. 7), anoxic remineralization
(Eq. 8), nitrification (Eq. 9), and oxidation of ODUs (Eq. 10)
to provide context for the Results and Discussion sections
(see Table 1 for parameter definitions):

Raerobic =POC×RPOC

(
O2

O2+ kO2

1
Ltot

)
, (6)

RDNF =POC×RPOC

(
lO2

O2+ lO2

NO3

NO3+ kNO3

1
Ltot

)
, (7)

Ranoxic =POC×RPOC

(
lO2_anoxic

O2+ lO2_anoxic

lNO3_anoxic

NO3+ lNO3_anoxic

1
Ltot

)
, (8)

Rnit =NH4×Rnit,max

(
O2

O2+ kO2_nit

)
, (9)

Roduox =ODU×Rodu,max

(
O2

O2+ kO2_oduox

)
. (10)

Ltot, the non-dimensional sum of the limitation factors on
remineralization processes, is as follows:

Ltot =

(
O2

O2+ kO2

)
+

(
lO2

O2+ lO2

NO3

NO3+ kNO3

)
+

(
lO2_anoxic

O2+ lO2_anoxic

lNO3_anoxic

NO3+ lNO3_anoxic

)
. (11)

Adaptations to the Soetaert et al. (1996a, b) early diagene-
sis model, which were made to merge it with the CSTMS
and Fennel modules, include neglecting seabed consolidation
and temperature-induced changes to biogeochemical rates.
Specifically, HydroBioSed neglects changes in porosity with
depth in the sediment bed because this study focused on the
frequently resuspended surficial centimeter of the seabed and
seabed–water-column interactions. Also, we neglected the
effect of temperature on remineralization and diffusion be-
cause temperature was held constant for this implementation
of HydroBioSed (see Sect. 2.3).
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Merging the Soetaert et al. (1996a, b) seabed biogeochem-
ical model with the sediment transport and water-column
biogeochemistry modules allows HydroBioSed to account
for exchanges of biogeochemical tracers across the seabed–
water interface due to deposition, erosion, and diffusion
(Fig. 2b). Upon settling to the seabed, phytoplankton, detri-
tus, and labile aggregates are incorporated into labile seabed
organic matter in the surficial seabed layer. Refractory ag-
gregates are added to the pool of refractory seabed organic
matter in that layer. Porewater in newly deposited sediments
is assumed to initially have concentrations of dissolved nu-
trients and oxygen equal to those in the overlying water col-
umn. This material may be reentrained into the water column
when bed shear stress exceeds the critical shear stress of the
seabed. Specifically, any POM or dissolved chemical species
in the porewater within an eroded layer(s) of sediment is also
entrained into the bottom water-column layer. The flux of
sediment entrained into the water column is determined by
the CSTMS module (see Sect. 2.2.1). In addition to erosion
and deposition, dissolved oxygen and nutrients may be trans-
ported across the seabed–water interface by diffusion, as de-
scribed in Appendix A.1.

During erosional periods, resuspended labile and refrac-
tory seabed organic matter is incorporated into the pools
of labile or refractory aggregates suspended in the water
column, respectively. Like other coagulated material in the
water column, this material may be repartitioned based on
Eqs. (3–5). Usually, the seabed organic matter is enriched
in refractory material compared to the water column. Thus,
this repartitioning reclassifies a fraction of the resuspended
refractory organic matter, i.e., refractory aggregates, into the
labile organic matter classes, i.e., large detritus and labile ag-
gregates. This modeling approach is supported by laboratory
experiments by Stahlberg et al. (2006) indicating that organic
matter remineralization rates increased during and in the days
following resuspension events, and that changes in reminer-
alization rates were not only due to changes in oxygen avail-
ability. Due to the limited availability of pertinent research,
we also considered literature related to the effect of redox os-
cillations on organic matter remineralization (e.g., Gilbert et
al., 2016; Sun et al., 2003; Caradec et al., 2004; Aller, 1994;
Wakeham and Canuel, 2006; Arzayus and Canuel, 2004).
Yet, because guidance from this literature was inconclusive,
we chose the simple approach described above for the parti-
tioning of organic matter that mimics the changes in rem-
ineralization described in Stahlberg et al. (2006). We also
tested an alternative, “no-repartitioning” approach that did
not repartition resuspended organic matter, but this approach
caused decreases in oxygen gradients across the seabed–
water interface during depositional periods, inconsistent with
observations from Toussaint et al. (2014) (Fig. 2c).

Overall, HydroBioSed represents POM in the seabed un-
til it is resuspended, remineralized, or buried. Similarly,
dissolved chemical species in the porewater may undergo
biogeochemical transformations, diffuse into or out of the

seabed, or be exchanged with the water column during pe-
riods of erosion and deposition. Thus, unlike Soetaert et
al. (1996a, b) and other classical seabed biogeochemistry
models (e.g., Berner, 1980; Boudreau, 1997; Soetaert et al.,
2000; DiToro, 2001), HydroBioSed can quantify the effect of
resuspension on biogeochemical dynamics (Fig. 2).

2.3 Model implementation and sensitivity tests

To evaluate the coupled model and explore the role of local
resuspension on oxygen dynamics, we implemented a one-
dimensional version of HydroBioSed for the Rhône Delta.
This section describes the standard model run and sensitivity
tests, and summarizes our methods for model evaluation and
analysis. See Table 3 for a list of model input and parameters.

“Standard” Model Run: A one-dimensional (vertical) ver-
sion of HydroBioSed was implemented for a 24 m deep site
on the Rhône subaqueous delta (Fig. 1) for April–May 2012.
This time period coincided with Toussaint et al.’s (2014) ob-
servational study and included three resuspension events as
well as quiescent periods characterized by low bed stress. To
implement a quasi one-dimensional model within the ROMS
framework, a 5-cell× 6-cell model grid with spatially uni-
form forcing and periodic open boundary conditions was
used. Vertical stratification in the model was maintained by
strongly nudging temperature and salinity to climatological
values; a pycnocline at 4 m above the seabed separated the
colder saltier bottom waters from the warmer fresher up-
per water column. Wave- and current-induced bed stresses
were estimated using the Sherwood, Signell, and Warner
(SSW) bottom boundary layer parameterization based on
Madsen (1994) and described in Warner et al. (2008).

To isolate the effect of resuspension on seabed–water-
column fluxes, water-column concentrations of oxygen, ni-
trogen, and ODU, as well as the supply of POM (excluding
that from resuspension) were strongly nudged to temporally
constant values. Hourly to daily oxygen observations from
the bottom boundary layer (Toussaint et al., 2014), were used
to constrain modeled concentrations in the water column.
These observations indicated that oxygen concentrations 1 m
above the bed varied between 216 and 269 mmol O2 m−3,
but that resuspension events did not appear to impact near-
bed O2 fluctuations. A constant value of 253 mmol O2 m−3

was therefore used for water-column O2 concentrations (Pas-
tor et al., 2011a). Values for water-column nitrate, ammo-
nium, and ODU concentrations were chosen based on Pas-
tor et al.’s (2011a) Site A data because no observations were
available from our study site (Fig. 1). Additionally, small de-
tritus concentrations were strongly nudged to provide a con-
stant supply of degradable POM to the water-column equiv-
alent to 657 g C m−2 yr−1, based on Pastor et al.’s (2011a)
estimate for organic sedimentation rate, Sorganic. Nudging the
small detritus concentrations did not affect those of the large
detritus and aggregates that were resuspended from and de-
posited onto the seabed.
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Model forcing and parameters were chosen based on a
combination of observed values (wave height, bottom-water
oxygen concentrations), climatology (inorganic sedimenta-
tion rate, salinity, temperature), and values used in previ-
ously implemented models (fraction of labile material, ni-
trification rate, rates of diffusion within the seabed). See Ta-
ble 3 for more details. A few parameters, i.e., critical shear
stress for erosion and erosion rate parameter, were tuned
to reproduce the 1–2 cm of observed erosion. For initializa-
tion, the model was run without resuspension until it reached
steady state. As the biogeochemical profiles reached a state
of quasi-equilibrium within days following perturbations, us-
ing alternative initialization techniques primarily affected es-
timates for the first resuspension event and did not have
a large effect on our results. The model used a 30 s time
step, the MPDATA advection scheme (Smolarkiewicz and
Margolin, 1998), the generic length scale turbulence clo-
sure (Umlauf and Burchard, 2009), and a piecewise parabolic
method (Colella and Woodward, 1984) with a weighted es-
sentially non-oscillatory scheme (Liu et al., 1994) to estimate
particle settling. It saved output in 3 h increments, and took
∼ 6 h to run on a single processor for a 2-month simulation.

Sensitivity Tests: In addition to the standard model run,
seven sets of sensitivity tests examined the response of oxy-
gen consumption to different parameters and processes (Ta-
ble 4). These tests modified parameters related to resuspen-
sion and seabed processes, including the critical shear stress
for erosion (τcrit), erosion rate parameter (M), inorganic and
organic sedimentation rates (Sinorganic and Sorganic), lability
of aggregated organic matter (flab) and the partitioning of or-
ganic matter (see Fig. 2b), rate of diffusion within the seabed
(Di), and nitrification rate in the seabed (Rnit,max). Addi-
tional tests modifying the ODU oxidation rate and the param-
eterization scheme for seabed–water-column diffusion had a
negligible effect on model results and so are not presented
here.

Additionally, “no-resuspension” model runs were com-
pleted to evaluate the role of cycles of erosion and deposition
on biogeochemical dynamics. Specifically, for each sensitiv-
ity test and the standard model run, a corresponding simula-
tion was conducted that was identical to the original, except
that erosion was prevented by increasing the critical shear
stress to τcrit = 10 Pa and decreasing the erosion rate param-
eter to M = 0 kg m−2 s−1. For conciseness, however, refer-
ences to the “no-resuspension” model run refer to the no-
resuspension version of the standard model, unless otherwise
noted.

Model Analysis: We focused on seabed and bottom-water
oxygen consumption and on fluxes of oxygen at the seabed–
water interface. Bottom water was defined as the region of
the water column within 4 m of the seabed, i.e., below the
pycnocline, where suspended sediment concentrations were
high during resuspension events. Concentrations and rates
for analyses were saved in the model output. The fraction of
oxygen consumption due to resuspension was calculated by

dividing the difference between each sensitivity test and its
no-resuspension model run by the value from the sensitivity
test. Additionally, note that all POM estimates presented in
this paper are for degradable organic matter. Although some
studies add concentrations of inert POM to model estimates
of degradable POM for comparison to observations, we plot
only degradable POM for simplicity. Finally, depths of ero-
sion into the seabed, which depend on both the duration of
the event and bed stresses, were calculated by comparing the
thickness of the seabed before versus during a time period of
net erosion.

3 Results

This section evaluates the skill of the standard model run by
comparing it to observations (Sect. 3.1), analyzes the effect
of resuspension on oxygen dynamics (Sect. 3.2), and evalu-
ates the results’ sensitivity to model parameters (Sect. 3.3).

3.1 Model evaluation

Comparison of the standard version of HydroBioSed to Tou-
ssaint et al.’s (2014) time series of oxygen profiles showed
that model results were consistent with measured concentra-
tions, and changed during resuspension events in a manner
similar to the observations (Fig. 3). During quiescent condi-
tions when bed shear stress was low, modeled and observed
oxygen concentrations decreased with depth into the seabed,
falling from about 250 mmol O2 m−3 in the bottom water
column to 0 mmol O2 m−3 within 1–2 mm below the seabed
surface. Similarly, both the modeled and observed oxygen
penetration depths decreased to about < 1 mm in the seabed
during times of erosion, before returning to a quasi-steady-
state within hours of bed stresses returning to background
values.

To quantify the changes in seabed oxygen profiles, the
oxygen gradient near the seabed–water interface was calcu-
lated from both the observed and modeled profiles (Table 5).
Specifically, the slope of the oxygen profile was averaged
over the oxygen penetration depth (OPD; variables are de-
fined in Table 1):

dO2

dzOPD
=−

O2,SWI+O2,OPD

zSWI+ zOPD
. (12)

Overall, dO2 / dzOPD increased during erosional periods
(Fig. 3). During times when the seabed was not mobilized,
dO2 / dzOPD maintained a baseline of ∼ 100 mol O2 m−4, in
both the modeled results and the observed values. In con-
trast, resuspension decreased the oxygen penetration depth,
increasing dO2 / dzOPD to about 500 mol O2 m−4 (observed
by Toussaint et al., 2014) and 900 mol O2 m−4 (modeled).

Differences in the modeled and observed oxygen profiles
derive at least partially from differences in estimating seabed
elevation (i.e., erosion and deposition). As a one-dimensional
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Table 4. List of sensitivity tests. Additionally, for each simulation listed here, an identical model run was completed that neglected resuspen-
sion (i.e., with M = 0 kg m−2 s−1; τcrit = 10 Pa).

Sensitivity test Sensitivity test name Changed parameters and/or parameterizations
abbreviation relative to the standard model run

R1 Low erosion rate parameter M = 0.005 kg m−2 s−1

R2 High erosion rate parameter M = 0.02 kg m−2 s−1

T1 Low critical shear stress τcrit = 0.15 Pa
T2 High critical shear stress τcrit = 0.6 Pa
S1 Low inorganic sedimentation Sinorganic = 0.05 m yr−1

= 7 kg m−2 yr−1

S2 High inorganic sedimentation Sinorganic = 0.20 m yr−1
= 28 kg m−2 yr−1

P1 Low particulate organic sedimentation Sorganic = 328.5 g C m−2 yr−1

P2 High particulate organic sedimentation Sinorganic = 1314 g C m−2 yr−1

L1 Low lability flab = 0.20
L2 High lability flab = 0.80
B1 Low seabed diffusion Di = original values∗ 0.5
B2 High seabed diffusion Di = original values∗ 2.0
N1 Low nitrification rate Rnit,max = 50 d−1

N2 High nitrification rate Rnit,max = 200 d−1

C1 No-repartitioning See Fig. 2c; Sect. 2.2.3

Table 5. Statistics for model–observation comparison, including the root mean square difference (RMSD) and the correlation coefficient (R).
The mean and standard deviation of estimates from both the model and observations are also shown.

RMSD R Mean±SD

Model Observations

Seabed height 1.39 cm 0.21 −0.52± 0.82 cm −1.1± 1.2 cm
O2 Gradient 105 mol O2 m−4 0.48 180± 118 mol O2 m−4 173± 76 mol O2 m−4

vertical model, HydroBioSed assumed uniform conditions
in the horizontal, and so all resuspended material was rede-
posited in the same location within a few days following an
event. Yet, at the actual study site, it is likely that some ma-
terial was carried out of the area and that deposition follow-
ing the erosional periods was more gradual than estimated
in the model (e.g., see the late April and early May event
in Fig. 3c). Also, the model provided higher temporal res-
olution than possible with the sampling gear, and may cap-
ture peaks in dO2 / dzOPD that are missed by the sampling
frequency (Fig. 3d). Yet, in spite of these differences, Hy-
droBioSed reproduced the general behavior of oxygen pro-
files as observed on the Rhône subaqueous delta (Fig. 3e,
f, g). In contrast to previous models that could not account
for resuspension-induced temporal variations (Pastor et al.,
2011a), both observed and modeled dO2 / dzOPD increased
by factors of approximately 4–9 during erosional periods.

3.2 Response of oxygen dynamics to resuspension

Overall, the combined seabed–bottom-water oxygen con-
sumption increased from∼ 40 to over 200 mmol O2 m−2 d−1

during resuspension events (Fig. 4b, c). Averaged over
2 months, resuspension roughly doubled the combined

seabed–bottom-water oxygen consumption to > 70 mmol
O2 m−2 d−1. Although the seabed and bottom waters con-
tributed about equally to oxygen consumption during quies-
cent periods, the large increase in combined seabed–bottom-
water oxygen consumption during resuspension events was
primarily driven by remineralization of POM in bottom wa-
ters (Table 6). For both the seabed and bottom waters, resus-
pension added variability to oxygen dynamics, so that about
one half of the total oxygen consumption occurred within the
30 % of the 2-month study period that included the resuspen-
sion events.

The cycles of erosion and deposition that affected bio-
geochemical cycles are illustrated by time series of seabed
profiles (Fig. 5). Before resuspension events, the porewa-
ter in surface sediments was typically equilibrated with the
overlying water column, with oxygen penetrating ∼ 1–2 mm
into the seabed (Fig. 5a). As energetic waves increased bed
stresses, however, particulate matter from the seabed was
eroded into overlying water, with typical erosion depths of
∼ 5–20 mm. This erosion of the surficial seabed exposed
low-oxygen, high-ammonium, high-ODU porewater to the
sediment–water interface. This exposure changed profiles by,
for example, sharpening the oxygen and ammonium gradi-
ents at the seabed–water interface and resuspending POM
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Table 6. O2 Consumption (mmol O2 m−2 d−1) in the seabed, bottom water, and combined seabed-bottom water due to various processes
over the 2-month model run, and during periods of deposition and erosion. Abbreviations include: POM rem. (particulate organic matter
remineralization); ODU ox. (oxidation of ODUs); Nit. (nitrification); and “Seabed+BW” (the combined seabed–bottom-water region).

Seabed Bottom waters Seabed
+BW

Total POM Nit. ODU Total POM Nit. ODU Total
rem. ox. rem. ox.

2-month average 19 5.0 14 0.20 56 31 24 0.30 74
Minimum values over 2 months 12 0.56 3.7 0.01 23 0.08 22 0 39
Maximum values over 2 months 35 18 33 0.64 200 170 34 10. 220
Average during depositional periods 18 5.5 12 0.18 47 23 24 0.18 65
Average during erosional periods 21 3.3 18 0.26 90. 63 26 0.78 110

(Fig. 5b, h, k). As wave energy subsided and bed stresses
decreased hours to a few days later, previously resuspended
sediment and POM was redeposited on the seabed (Fig. 5l).
This redeposited organic matter was particularly enriched
in labile organic matter compared to the material that had
remained on the seabed, due to repartitioning in the water
column (Fig. 2b). As new seabed layers formed from rede-
posited sediments, dissolved constituents from the overly-
ing water were incorporated into the porewater of these new
layer(s). This altered profiles by, for example, briefly increas-
ing the thickness of the oxic layer up to ∼ 5 mm during de-
positional periods.

The next two sections provide a more detailed and quanti-
tative analysis of how these exchanges of porewater and par-
ticulate matter between the seabed and the overlying water
increased oxygen consumption and affected related biogeo-
chemical processes within the seabed (Sect. 3.2.1) and bot-
tom waters (Sect. 3.2.2).

3.2.1 Seabed oxygen consumption

Resuspension directly altered the supply of oxygen to the
seabed. In this environment, where oxygen penetration was
limited to the top few millimeters of the seabed, resuspen-
sion events typically removed the entire seabed oxic layer;
the oxygen that had been in the porewater was entrained into
the water column. Similarly, during deposition, incorporation
of oxygen within the porewater of newly deposited sediment
provided a source of oxygen to the seabed, accounting for up
to a quarter of oxygen input to the seabed on a timescale of
hours to days. Overall, this “pumping” of oxygen into and
out of the seabed when sediments were deposited or eroded
provided a small net source of oxygen to the seabed during
a typical resuspension cycle; based on time-integrated fluxes
of oxygen across the seabed–water interface for the 2-month
period (Fig. 6a), these exchanges accounted for 4 % of the
net oxygen supply to the seabed.

The remaining supply of oxygen (96 %) was delivered to
the seabed via diffusion across the seabed–water interface.

Although these diffusive fluxes of oxygen were always di-
rected into the seabed, erosion and deposition caused fluctu-
ations in the rate of diffusion. During periods of resuspen-
sion, erosion of the oxic layer sharpened the oxygen gradi-
ent at the seabed–water interface, thus increasing diffusion of
oxygen into the seabed by about 77 % (Fig. 6a). In contrast,
during periods of deposition, incorporation of oxygen-rich
porewater into newly deposited surficial seabed layers re-
duced the oxygen gradient at the seabed–water interface, de-
creasing diffusion of oxygen into the seabed by about 71 %.
However, “erosional oxygen profiles” with thin oxygen pen-
etration depths persisted longer and induced larger changes
in the rate of diffusion, compared to “depositional oxygen
profiles” with thick oxygen penetration depths. This imbal-
ance occurred because the additional oxygen available in the
seabed during periods of redeposition (i.e., oxygen available
due to the incorporation of oxic water into the porewater of
newly deposited sediments) was rapidly consumed by aero-
bic organic matter remineralization and nitrification, and so
oxygen profiles returned to their quasi-steady state condition
within hours to ∼ 1 day after a resuspension event. In con-
trast, during erosional periods, steep oxygen gradients and
increased rates of diffusion into the seabed persisted for∼ 2–
5 days because of high nitrification rates (Fig. 6). Overall,
averaged over 2 months, these resuspension-induced varia-
tions increased the rate of oxygen diffusion into the seabed
by 12 %.

In addition to impacting the supply of oxygen to the
seabed, resuspension altered the magnitude of various bio-
geochemical oxygen sinks within the seabed (Table 6,
Fig. 6b). For example, erosion of organic matter, and labile
organic matter in particular, decreased rates of oxic rem-
ineralization in the seabed from about 5 to < 1 mmol O2
m−2 d−1 (e.g., compare the mid-April quiescent period to the
late April resuspension event). This decrease was offset by
nitrification, which increased from ∼ 10–15 to ∼ 30 mmol
O2 m−2 d−1 during resuspension events. Nitrification rates
increased because of the greater supply of oxygen to the
seabed from erosion-enhanced diffusion. Nitrification also
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Figure 3. Time series of modeled (blue lines and x’s) and observed
(red dots; Toussaint et al., 2014) bed stress, near-bed suspended
sediment concentrations (SSC), seabed height, and vertical oxygen
gradient averaged over the oxic layer of the seabed (top 4 panels),
and three examples of oxygen profiles before (6 April 2012), during
(9 April 2012), and after (12 April 2012) an erosional event in early
April (bottom panels). The dashed black lines in the bottom panels
indicate the seabed–water interface. Shading in the top panels indi-
cates resuspension events, i.e., cycles of erosion and redeposition,
including 6–13 April, 23 April–3 May, and 18–25 May 2012.

increased due to the larger ammonium concentrations in
surficial sediments that occurred as erosion exposed rela-
tively ammonium-rich seabed layers and due to the erosion-
induced increase in the rate of diffusion of ammonium from
deeper regions of the seabed towards the seabed–water inter-
face. Overall, these changes increased the fraction of oxygen
consumed via nitrification from about 60–70 % during quies-
cent periods to∼ 85 % during erosional periods. At the same
time, the fraction of oxygen consumed via aerobic remineral-
ization decreased from about 30–40 % during quiescent peri-
ods to 15 % during erosion. In contrast, following resuspen-
sion events, remineralization of redeposited organic matter,
especially labile organic matter, briefly increased oxic rem-
ineralization rates. Also, low ammonium concentrations in
newly deposited sediments limited nitrification during depo-

sitional periods. Together, these changes briefly altered the
fraction of oxygen consumed via nitrification versus rem-
ineralization to about 17 and 83 %, respectively, during pe-
riods of redeposition. Averaged over 2 months, however,
resuspension-induced changes in the availability of oxygen,
organic matter, and nutrients had little effect on the fraction
of oxygen consumption due to nitrification (74 %) and rem-
ineralization (26 %).

3.2.2 Bottom-water oxygen consumption

Resuspension primarily affected oxygen dynamics within the
water column by entraining POM into the layer of water
below the pycnocline, i.e., bottom waters, which increased
remineralization rates there (Table 6). Turbulence entrained
this material as high as ∼ 3–4 m above the seabed during
resuspension events, with near-bed concentrations of POM
reaching up to 5× 104 mmol C m−3 in the model. Aerobic
remineralization of resuspended material consumed up to
170 mmol O2 m−2 d−1, although the average rate during ero-
sional periods was 63 mmol O2 m−2 d−1.

In addition to entraining POM into the water column,
resuspension increased fluxes of reduced chemical species
from the seabed into bottom waters, further increasing oxy-
gen consumption in the water column (Table 6). During qui-
escent periods, oxidation of ammonium (nitrification) re-
sulted in a background level of oxygen consumption of
∼ 23 mmol O2 m−2 d−1 in bottom waters. During erosion,
the steepening of gradients at the seabed–water interface in-
creased the diffusive flux of ammonium from the seabed to
bottom waters from near 0 up to about 25 mmol m−2 d−1 of
NH4. Direct entrainment of ammonium into the water col-
umn provided an additional ∼ 5–10 mmol m−2 d−1 of NH4.
The greater supply of NH4 increased bottom-water nitrifica-
tion rates to up to ∼ 34 mmol O2 m−2 d−1 during resuspen-
sion events, with an average of 26 mmol O2 m−2 d−1 dur-
ing erosional periods. Comparing this oxygen demand with
the estimates of remineralization-related demand calculated
above, nitrification accounted for ∼ 30 % of oxygen con-
sumption in bottom waters during erosional periods. The re-
maining ∼ 70 % percent came from the remineralization of
organic matter.

3.3 Sensitivity tests

Like the standard model run, results from every sensitivity
test showed that resuspension increased bottom-water oxy-
gen consumption during both individual resuspension events
and when estimates were averaged over 2 months (Fig. 7d).
All sensitivity tests except one showed that resuspension also
increased seabed oxygen consumption (Fig. 7b). In all model
runs, oxygen consumption in bottom waters was larger than
that in the seabed for every sensitivity test by at least a factor
of∼ 5 during resuspension events and∼ 2 when results were
averaged over 2 months. However, altering various parame-

Biogeosciences, 14, 1919–1946, 2017 www.biogeosciences.net/14/1919/2017/



J. M. Moriarty et al.: The roles of resuspension, diffusion and biogeochemical processes 1933

Figure 4. Time series of bed stress and oxygen consumption in the seabed and bottom water (BW) for both the standard (blue solid line) and
no-resuspension model runs (pink line). Shading indicates resuspension events, i.e., cycles of erosion and redeposition, as listed in Fig. 3.
The red dashed line indicates the critical shear stress for erosion, and the black dashed lines indicate the times at which profiles in Fig. 5
were estimated.

ters affected the model estimates of oxygen consumption in
both the seabed and bottom waters, as explored below. This
analysis focuses on the 2-month average of oxygen consump-
tion rate and the maximum rate of oxygen consumption from
erosional periods (Fig. 7a, c). For both of these quantities we
also computed the fraction of oxygen consumption induced
by resuspension (Fig. 7b, d).

3.3.1 Seabed oxygen consumption: sensitivity tests

Over timescales ranging from hours to 2 months, seabed
oxygen consumption was more sensitive to changes in the
rate of diffusion within the seabed (Di , Cases B1 and B2;
Fig. 7a) than any other parameter considered in the sensitiv-
ity tests (Table 4). Halving and doubling the diffusion co-
efficients changed the seabed oxygen consumption by −28
and 39 %, respectively, when integrated over the 2-month
model run, and by −22 and 24 % during individual resus-
pension events. These changes occurred because faster dif-
fusion rates within the seabed more quickly transported oxy-
gen deeper into the seabed, reducing oxygen levels in sur-
face sediments, and thereby increasing the diffusion of oxy-
gen through the seabed–water interface. Additionally, faster
diffusion rates within the seabed transported ammonium up-
wards, toward the seabed–water interface. IncreasingDi thus
increased the amount of oxygen and ammonium at the oxic-
anoxic interface within the seabed, allowing for more seabed
oxygen consumption via nitrification. In contrast, lower dif-
fusion rates within the seabed lowered the supply of oxygen
and ammonium to this region of the seabed, reducing seabed
oxygen consumption.

Within the standard model run and most sensitivity tests,
resuspension accounted for about 14 % of the cumulative
seabed oxygen consumption when integrated over 2 months.
The role of resuspension, however, was especially sensitive
to the partitioning and delivery of organic matter because
POM entrained into the water column was subject to repar-
titioning (see Sect. 2.2.3; Fig. 2b) and so resuspension in-
creased the amount of labile material available to redeposit
on the seabed. This additional source of seabed labile or-
ganic matter increased seabed oxygen consumption directly,
due to oxic remineralization, and indirectly, as ammonium
produced during this process was oxidized via nitrification.
Overall, altering the partitioning of organic matter between
labile and refractory classes changed the effect of resuspen-
sion on seabed oxygen consumption by up to 60 % over
2 months (Cases L1 and L2; Fig. 7b). Specifically, decreas-
ing (increasing) the fraction of organic matter that is labile,
flab, by 30 % decreased (increased) the resuspension-induced
fraction of the seabed oxygen consumption to 5 % (22 %),
compared to 14 % in the standard model run. Furthermore,
the sensitivity test without repartitioning of POM in the wa-
ter column was the only sensitivity test for which resus-
pension caused a marginal (negative) effect on seabed oxy-
gen consumption when results were averaged over 2 months
(Case C1; Figs. 2c, 7b). In this case, resuspension-induced
increases in the supply of oxygen and seabed nitrification
were about equal to the decrease in oxic remineralization that
occurred when POM was entrained into the water column.
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Figure 5. Seabed profiles of oxygen (top row; mmol O2 m−3),
nitrate (second row; mmol N m−3), ammonium (third row; mmol
N m−3), and degradable particulate organic carbon (POC; bottom
row; dry weight (%)) from the standard model run for times imme-
diately preceding the mid-April resuspension event (6 April 2012,
left column), during the erosional period (10 April 2012, center col-
umn), and during the depositional period (13 April 2012, right col-
umn). Figure 4 shows the times at which the profiles were estimated.
Tick marks on the blue lines indicate the location of each seabed
layer. The black dashed lines indicate the seabed–water interface,
and all seabed depths are given relative to this interface. The “x”s
indicate near-bed values for the water column.

3.3.2 Bottom-water oxygen consumption: sensitivity
tests

Oxygen consumption in bottom waters averaged over
2 months was more sensitive to changes in the critical shear
stress for erosion, τcrit, than other parameters (Fig. 7c; Cases
T1 and T2). Halving and doubling the critical shear stress
changed time-averaged bottom-water oxygen consumption
by 50 and −35 %, respectively. During individual resuspen-
sion events, the effect of halving and doubling this parameter
was more moderate and resulted in 7 and−20 % changes, re-
spectively. These changes in oxygen consumption occurred
because halving and doubling the critical stress for erosion
changed the frequency of resuspension, i.e., the amount of
time that τbed > τcrit , from 36 % of the time in the standard
model run to 53 and 15 %, respectively. Thus, decreasing
the critical shear stress prolonged resuspension events, which
caused more seabed organic matter and porewater to be en-
trained into the water column, increasing oxygen consump-
tion in bottom waters. In contrast, a larger critical shear stress

shortened resuspension events, decreasing oxygen consump-
tion there.

Within the standard model run and most sensitivity tests,
resuspension accounted for about 57 % of bottom-water oxy-
gen consumption when averaged over 2 months (Fig. 7d).
Similar to the above analysis, the extent to which resus-
pension affected oxygen consumption was especially sensi-
tive to the critical shear stress (Cases T1, T2). Over the 2-
month model run, halving (doubling) the critical shear stress
changed the fraction of bottom-water oxygen consumption
that occurred due to resuspension to 34 % (71 %).

4 Discussion

This discussion focuses on the importance of resuspension-
induced changes in oxygen budgets in different environments
(Sect. 4.1), compares our approach to other modeling tech-
niques (Sect. 4.2), and suggests future research (Sect. 4.3).

4.1 Resuspension-induced increases in oxygen
consumption

Resuspension-induced oxygen consumption that occurred
during short time periods (hours to days) increased model
estimates of oxygen consumption integrated over longer
timescales of weeks to months for all model runs (Figs. 7, 8).
In other words, erosion and deposition did not just add vari-
ability to the time series of oxygen consumption; resuspen-
sion impacted the oxygen budget of the Rhône subaqueous
delta. This section discusses the environmental conditions
that caused this effect and the extent to which we expect re-
suspension to increase oxygen consumption in other coastal
systems (Sect. 4.1.1); and the importance of these changes
relative to seasonal variability (Sect. 4.1.2).

4.1.1 Why does resuspension change oxygen
consumption on the Rhône Delta?

Several characteristics of the Rhône subaqueous delta fa-
vor the increased rates of oxygen consumption due to lo-
cal resuspension. First, frequent resuspension, e.g., three
events in 2 months (Fig, 3c), ensures that the entrainment
of seabed organic matter into the water column and ero-
sional seabed profiles occur often, increasing resuspension-
induced oxygen consumption in both bottom waters and the
seabed. Second, oxygen concentrations in bottom waters and
near the seabed–water interface are relatively high, i.e., over
200 mmol O2 m−3 (Fig. 3e, f, g), ensuring that oxygen is
available to be consumed. Third, the seabed at this site on
the Rhône Delta experiences little biological mixing (Pastor
et al., 2011a). This encourages the formation of a relatively
thin oxic layer that can be completely resuspended, allowing
erosional seabed profiles that increase seabed oxygen con-
sumption to form frequently. Fourth, organic matter and/or
reduced chemical species concentrations are high in surfi-

Biogeosciences, 14, 1919–1946, 2017 www.biogeosciences.net/14/1919/2017/



J. M. Moriarty et al.: The roles of resuspension, diffusion and biogeochemical processes 1935

Figure 6. Physical (top) and biogeochemical (bottom) sources and sinks of oxygen within the seabed for the standard model run. Sources and
sinks of oxygen to the seabed are positive and negative, respectively. Small biogeochemical sinks < 1 mmol O2 m−2 d−1 (ODU oxidation
and remineralization of refractory POM) are not shown. Shading indicates resuspension events, i.e., cycles of erosion & deposition, including
6–13 April, 23 April–3 May, and 18–25 May 2012.

cial sediments relative to the water column (e.g., Pastor et
al., 2011a, b; Cathalot et al., 2010). This ensures that erosion
provides a significant supply of organic matter to the water
column for remineralization, increasing oxygen consumption
in bottom waters during resuspension. Also, the large amount
of labile organic matter and reduced chemical species in the
seabed facilitates resuspension-induced seabed oxygen con-
sumption by quickly consuming oxygen via remineralization
or oxidation during resuspension events. The speed of oxy-
gen consumption is important for the maintenance of ero-
sional seabed profiles and destruction of depositional pro-
files throughout the entire resuspension event. Fifth, rem-
ineralization rates in bottom waters are fast compared to the
residence time of suspended particles in the water column,
ensuring oxygen can be consumed in bottom waters before
organic matter settles back to the seabed. The rates used in
the model imply that as much as 170 mmol O2 m−2 d−1 is
consumed via organic matter remineralization during resus-
pension events, which often last for days on the Rhône Delta
(Table 6, Fig. 4). Finally, resuspension can increase rates of
organic matter remineralization during and following resus-
pension events due to changes in redox conditions and other
processes, increasing oxygen consumption (e.g., Stahlberg
et al., 2006). Such changes can increase aerobic remineral-
ization rates, and were particularly important for enhancing
time-averaged seabed oxygen consumption.

We expect that the effect of local resuspension on oxygen
dynamics in other systems that share characteristics of the
Rhône subaqueous delta would be similar to our results. For
seabed oxygen dynamics, this implies that the importance of
local resuspension increases in energetic, oxic, and coastal

areas with high organic matter input but relatively little bio-
turbation, including other river deltas (Aller, 1998; Aller et
al., 1996, e.g., Amazon Delta, Brazil). For water-column
oxygen dynamics, the above criteria suggest that local re-
suspension is most important in similar coastal areas with
organic-rich, muddy seabeds, but relatively low background
concentrations of organic matter in the water column. These
characteristics may be found in regions with historically high
nutrient loading and where organic matter has accumulated
in the seabed (e.g., Gulf of Finland, Almroth et al., 2009). In
sites that meet some, but not all of the above criteria, local
resuspension may have a reduced effect on oxygen dynamics
compared to the Rhône subaqueous delta.

4.1.2 How does resuspension-induced O2 consumption
compare to seasonal variability?

The model estimated that resuspension increased seabed and
bottom-water oxygen consumption by about 16 and 140 %,
respectively, when integrated over April–May 2012 (Fig. 7);
however, seasonal variations in environmental conditions
such as temperature may change the importance of resus-
pension for oxygen dynamics. The 2-month model run pre-
sented here assumed a constant bottom-water temperature of
15 ◦C, but observed values vary from ∼ 12 to 20 ◦C over
the course of a year on the Rhône Delta (Millot, 1990;
Fuchs and Pairaud, 2014; C. Rabouille, personal communica-
tion, 2016). A common method for estimating temperature-
induced changes in biogeochemical processes is the “Q10
rule” (van’t Hoff, 1898), which predicts that oxygen con-
sumption increases by a factor of ∼ 2–3 for each tempera-
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Figure 7. Rate of oxygen consumption in the (a) seabed and (c) bottom waters for each sensitivity test listed in Table 4. Fraction of (b) seabed
and (d) bottom-water oxygen consumption induced by resuspension, calculated by dividing the difference between each sensitivity test and
its no-resuspension model run by the value from the sensitivity test. In both panels, bars represent averages over 2 months. Dots indicate
the maximum values during this 2-month period (which occurred during resuspension events). The dashed lines represent values from the
standard model run, with the color of the line consistent with the type of data it represents (i.e., 2-month average or maximum value).

ture increase of 10 ◦C in coastal areas (e.g., Thamdrup et al.,
1998; Dedieu et al., 2007; Cardoso et al., 2014). Based on the
16± 4 ◦C temperature range expected at this site over a year,
this suggests that resuspension-induced changes in oxygen
consumption are as important as the factor of 2 change esti-
mated due to temperature-induced variability. Thus, although
temperature effects have been widely studied, resuspension
can cause similar variations in oxygen consumption.

Seasonal variations in resuspension frequency and mag-
nitude may have a similarly large effect on oxygen con-
sumption. During the winter when easterly storms are more
frequent (Guillén et al., 2006; Palanques et al., 2006),

resuspension-induced oxygen consumption could be more
important than was estimated for the April–May period in
this study. At the 32 m deep “Sète” site in the central coastal
region of the Gulf of Lion, significant wave heights ex-
ceeding 2 m were observed an average of 3.5, 1, and 2
times per month in November–December 2003, January-
February 2004, and March–April 2004, respectively (Ulses
et al., 2008). Approximately doubling the resuspension fre-
quency during the winter storm season could roughly dou-
ble resuspension-induced oxygen consumption, counteract-
ing reductions in wintertime oxygen consumption due to
colder temperatures. Overall, accounting for the effect of ero-
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Figure 8. Box and whisker plot indicating the 0th, 25th, 50th, 75th,
and 100th percentiles of combined seabed–bottom-water (BW) oxy-
gen consumption averaged over different timescales for the stan-
dard model run. The pink lines indicate estimates from the no-
resuspension model run.

sional and depositional cycles on oxygen consumption may
vary in importance throughout the year on the Rhône sub-
aqueous delta, but it is likely more important during Fall
compared to the Springtime period that was analyzed for this
study.

Finally, oxygen dynamics may vary in response to sea-
sonal or episodic variations in organic matter availability and
lability. Following a flood in 2008, seabed oxygen consump-
tion on the Rhône Delta decreased by one-third to one-half
when riverine inputs of relatively refractory organic matter
lowered remineralization rates in surficial seabed sediments,
reducing seabed oxygen consumption (Cathalot et al., 2010).
This result is consistent with results from our L1 sensitiv-
ity test, indicating that reducing the ratio of labile to re-
fractory organic matter lowered seabed oxygen consumption
(Fig. 7a). Thus, although variability in the amount and qual-
ity of organic matter delivered to the delta could be episodic,
it may also substantially affect estimates of seabed oxygen
consumption oxygen, similar to temperature and resuspen-
sion.

4.2 Modeling resuspension-induced changes in oxygen
dynamics

HydroBioSed differs from other models by accounting for
resuspension-induced changes in millimeter-scale biogeo-
chemistry, a feature that was necessary to reproduce Tous-
saint et al.’s (2014) observed temporal variations in seabed
oxygen consumption on the Rhône subaqueous delta. In con-
trast, other models neglect resuspension-induced changes in
biogeochemical dynamics or assume that increases in water-
column oxygen consumption due to remineralization of re-
suspended organic matter during erosion are at least partially
offset by decreases in remineralization and associated oxy-

gen consumption in the seabed (e.g., Feng et al., 2015; Capet
et al., 2016). Results from these model parameterizations
therefore conflict with our HydroBioSed results that show
that both water-column and seabed oxygen consumption in-
crease during resuspension events (Figs. 4, 6), consistent
with observations for the Rhône subaqueous delta (Figs. 4,
6; Toussaint et al., 2014). This implies that the parameteriza-
tions from other models such as those cited above underesti-
mate oxygen consumption during resuspension events when
applied to environments with similar characteristics to the
Rhône Delta, as described in Sect. 4.1.1. The remainder of
this section explores which sediment processes were most
critical for modeling the effect of resuspension on Rhône
Delta oxygen dynamics.

First, resuspension increased the importance of bottom
waters relative to the seabed for oxygen consumption. Dur-
ing quiescent conditions, bottom waters and the seabed each
accounted for similar rates of oxygen consumption. How-
ever, when POM and porewater were entrained into the water
column via resuspension, bottom-water oxygen consumption
increased by a factor of 8, while seabed oxygen consump-
tion only doubled. This disproportionate increase of oxygen
consumption within bottom waters affirmed the importance
of observing and modeling oxygen dynamics within bottom
waters during resuspension events. Also, only accounting
for quiescent time periods would underestimate the role of
bottom waters, which accounted for 75 % of the total oxy-
gen consumption over the 2-month model run for the Rhône
Delta site, but only accounted for about 50 % when resuspen-
sion was neglected.

Second, diffusion of oxygen across the sediment–water in-
terface dominated the supply of oxygen to the seabed in the
model, regardless of the timescale or time period considered.
The other transport mechanism, the “pumping” of oxygen
into and out of the seabed as layers of sediment were de-
posited or eroded, provided at most a third of the instanta-
neous flux to the seabed (during depositional time periods;
Fig. 5). Also, pumping contributed much less to seabed oxy-
gen supply over time, primarily because the entrainment of
porewater from the seabed into the water column during ero-
sional periods partially offset the depositional flux of oxy-
gen (Fig. 5). Over the 2-month simulation, diffusion across
the seabed–water interface accounted for 96 % of the seabed
oxygen supply, whereas pumping via erosion and deposi-
tion accounted for only 4 % of seabed oxygen fluxes. Thus,
for environments like the Rhône Delta, future observational
and modeling efforts should include resuspension-induced
changes to diffusive fluxes across the seabed–water interface
(Jørgensen and Revsbech, 1985).

Although resuspension can affect oxygen dynamics in
coastal environments, the large spatial or temporal scale
of some biogeochemistry models may make incorporating
a full sediment model undesirable. For environments sim-
ilar to the Rhône Delta, we suggest parameterizations for
bottom-water and seabed oxygen consumption that focus on
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the role of resuspended organic matter and seabed–water-
column diffusion. For example, various approaches have
been used to parameterize the effect of resuspension on par-
ticulate organic matter fluxes (e.g., Cerco et al., 2013; Feng
et al., 2015). Approaches accounting for temporal lags be-
tween deposition and reentrainment of organic matter into
the water column seem especially promising for model-
ing oxygen dynamics in episodically energetic environments
like the Rhône Delta (e.g., Almroth-Rosell, 2011; Capet et
al., 2016). In addition, future parameterizations for seabed–
water-column fluxes should focus on diffusion of oxygen
across the seabed–water interface as well as the supply of
organic matter and reduced chemical species (e.g., Find-
lay and Watling, 1997; De Gaetano et al., 2008; Hetland
and DiMarco, 2008; Murrell and Lehrter, 2011; Testa et al.,
2013; Laurent et al., 2016). Methods combining parameter-
izations for seabed–water-column fluxes and seabed resus-
pension may be particularly helpful for environments similar
to the Rhône Delta where erosion and deposition may affect
these processes.

4.3 Implications of model development and future
work

This study focused on oxygen dynamics while holding the
supply of organic matter and sediment, water-column con-
centrations of nutrients and oxygen, and temperature con-
stant in time based on conditions observed on the Rhône sub-
aqueous delta. Future work should therefore include analysis
of the role of resuspension on oxygen dynamics for a vari-
ety of environmental conditions and investigation into how
temporal variability in environmental conditions affects the
relative importance of resuspension for oxygen dynamics.
Additionally, applying HydroBioSed for a three-dimensional
system would further facilitate its application to additional
scientific and water quality concerns. For example, trans-
port of organic matter from regions near the Mississippi and
Atchafalaya river mouths, shallow autotrophic waters, and
wetlands to “Dead Zones” has been speculated to encourage
the depletion of oxygen in bottom waters there (Bianchi et
al., 2010). However, the importance of organic matter trans-
port within a single season of hypoxia, and on interannual
timescales, is difficult to quantify with observations and has
been debated on the northern shelf of the Gulf of Mexico
(Rowe and Chapman, 2002; Boesch, 2003; Turner et al.,
2008; Forrest et al., 2012; Eldridge and Morse, 2008) and
other locations (Kemp et al., 2009 and references therein).
Modeling efforts that account for resuspension of organic
matter, as well as oxygen and nutrients, can help quantify
the extent to which organic matter supply, resuspension, and
transport affect biogeochemistry in these dynamic coastal en-
vironments (e.g., Almroth-Rosell et al., 2011; Capet et al.,
2016).

Our analysis focused on oxygen, but resuspension also
affected model estimates of nitrogen dynamics. For exam-

ple, during quiescent periods, nitrification roughly balanced
production of ammonium from remineralization of organic
matter in the seabed, consistent with Pastor et al. (2011a).
Yet, during erosional periods, the exposure of ammonium-
rich porewater to oxygen increased seabed nitrification, en-
hancing fluxes of nitrate out of the seabed, consistent with
observations from other systems (e.g., Fanning et al., 1982;
Sloth et al., 1996; Tengberg et al., 2003). Overall, resuspen-
sion roughly doubled nitrate fluxes out of the seabed during
resuspension, which led to about a 10 % increase overall for
the 2-month model run.

HydroBioSed did not represent all processes that occur
near the seabed–water-column interface. For example, fu-
ture work could include accounting for turbulence-induced
changes in diffusion, advective fluxes through the seabed,
and variations in seabed porosity, as well as improving the
model’s representation of organic matter. Within Hydro-
BioSed, for example, the steepening of the oxygen gradient
at the seabed–water interface occurred because of changes
in oxygen concentrations within the seabed and bottom wa-
ters (Fig. 3). HydroBioSed did not account for the thin-
ning of the viscous layer at the seabed–water interface in re-
sponse to wave-induced turbulence, which would act to fur-
ther increase the oxygen gradient during erosional time peri-
ods (Gundersen and Jorgensen, 1990; Chatelain and Guizien,
2010; Wang et al., 2013). This implies that our current model
estimates of oxygen diffusion into the seabed during re-
suspension events are conservative. Additionally, the model
could be adapted for locations where waves and currents
drive flows of water through non-cohesive seabeds, stimu-
lating biogeochemical reactions (Huettel et al., 2014), or to
account for vertical gradients in seabed porosity (Soetaert et
al., 1996a, b). Finally, the uncertainty about both how to par-
tition organic matter into classes for numerical modeling ef-
forts and the effect of resuspension on remineralization rates,
as noted in Sect. 2.2.3, has a large effect on model estimates
(Fig. 7, Cases L1, L2, C1) and deserves attention from both
the modeling and observational research communities.

Finally, this modeling effort incorporated time-dependent
reactions into the ROMS sediment transport module and
could be adapted for other research applications for which
both resuspension and time-dependent tracers are impor-
tant. For example, the model has been adapted to account
for short-lived radioisotopes (Birchler, 2014) and could be
adapted to include time-dependent particulate tracers such
as the following: (1) particle-reactive nutrients and contami-
nants (Wiberg and Harris, 2002; Chang and Sanford, 2005);
(2) other “particulates” such as cysts of harmful algal bloom
species, (Beaulieu et al., 2005; Giannakourou et al., 2005;
Butman et al., 2014; Kidwell, 2015), or fecal pellets (Gard-
ner et al., 1985; Walsh et al., 1988); and (3) temporal vari-
ability in organic matter lability, oxygen exposure time, and
carbon budgets (Aller, 1998; Hartnett et al., 1998; Burdige,
2007).
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5 Summary and conclusions

A model called HydroBioSed was developed that couples hy-
drodynamics, sediment transport, and both water-column and
seabed biogeochemistry. A one-dimensional (vertical) ver-
sion of the model was then implemented for the Rhône River
subaqueous delta. This work expanded on the commonly
used ROMS framework by accounting for non-conservative
tracers, the resuspension of organic matter and entrainment
of porewater into the water column, diffusion of dissolved
tracers across the seabed–water interface, and feedbacks be-
tween resuspension and diffusion across the seabed–water in-
terface. Including these processes created a new model capa-
ble of reproducing previously observed changes in seabed
profiles that occurred during resuspension events on the
Rhône River subaqueous delta.

Resuspension increased model estimates of oxygen con-
sumption over the range of timescales considered (hours
to 2 months). In the seabed, resuspension increased the
exposure of anoxic, ammonium-rich sediment to oxic,
ammonium-poor bottom waters, thus stimulating seabed
oxygen consumption via nitrification during erosional peri-
ods. This oxygen consumption compensated for or exceeded
the decrease in oxic remineralization rates that occurred as
organic matter was resuspended into the water column. Ad-
ditionally, entrainment of seabed organic matter and reduced
chemical species from the porewater into the bottom portion
of the water column, i.e., below the pycnocline, increased
oxygen consumption there. Overall, resuspension increased
peak oxygen consumption rates more in bottom waters (fac-
tor of 8) than in the seabed (factor of 2). When averaged over
a 2-month period that included intermittent periods of ero-
sion and deposition, accounting for resuspension increased
oxygen consumption by ∼ 16 % in the seabed and ∼ 140 %
in bottom waters. Overall, the combined seabed and bottom-
water oxygen consumption increased by a factor of ∼ 5 dur-
ing wave resuspension events and roughly doubled the 2-
month average.

These results imply that observations collected during qui-
escent periods, and models based on steady-state assump-
tions, may underestimate net oxygen consumption. This find-
ing is consistent with results from laboratory erodibility ex-
periments (e.g., .Sloth et al., 1996), observations using eddy
correlation techniques (Berg and Huettel, 2008), and micro-
electrode profiles (Toussaint et al., 2014). While all of these
studies showed increased oxygen consumption during resus-
pension events, they each had limitations; i.e., erodibility ex-
periments are limited to low levels of erosion and timescales
of hours, eddy-correlation methods can only be used for
time periods without abrupt shifts in hydrodynamic and oxy-
gen conditions (Lorrai et al., 2010), and microelectrodes can
only be deployed in soft muddy seabeds. Thus, models like
HydroBioSed, which resolve both biogeochemical processes
and resuspension, may help observational studies quantify

oxygen dynamics over longer time periods, during storms,
and in a variety of environments.

Certain characteristics of the Rhône subaqueous delta
study site, including its oxic water column, shallow oxy-
gen penetration into the seabed compared to the thickness of
eroded layers, fast rates of oxygen consumption, and the high
concentrations of labile seabed organic matter, enhance the
effect of resuspension on oxygen dynamics. Together, these
characteristics ensure the following: (1) oxygen consumption
in bottom waters is limited by the supply of organic matter
and reduced chemical species, as opposed to oxygen avail-
ability; (2) resuspended material is rich in organic matter and
reduced chemical species that increase oxygen demand in the
water column – oxygen consumption in the seabed is depen-
dent on the supply of oxygen, as opposed to the rate of con-
sumption; (3) oxygen is available to be supplied to the seabed
during resuspension; and (4) erosion exposes anoxic regions
of the seabed to oxic regions of the water column. The de-
pendence of oxygen dynamics on those environmental con-
ditions caused modeled estimates of oxygen consumption to
be particularly sensitive to the supply and lability of organic
carbon, rates of diffusion within the seabed, nitrification rate,
and the frequency of resuspension. Our results imply that lo-
cal resuspension may affect oxygen dynamics in other envi-
ronments with similar characteristics.

Data availability. Model datasets (Moriarty et al., 2017) are pub-
licly available through the College of William & Mary’s Digital
Archive at http://publish.wm.edu/data/39/.
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Appendix A:

This study modified the seabed layering scheme from Warner
et al. (2008) to include biogeochemical tracers and diffusion
of dissolved tracers between the seabed and water column
(Sect. A.1), and to resolve millimeter-scale processes in surfi-
cial sediments while maintaining centimeter-scale resolution
deeper in the seabed (Sect. A.2).

A1 Inclusion of biogeochemical tracers and
seabed–water-column diffusion

To couple the sediment transport and biogeochemical mod-
ules, we incorporated tracers representing particulate organic
carbon and dissolved chemical species including oxygen and
nutrients into the seabed module. To elaborate on the infor-
mation presented in the Methods section (Sect. 2.2), this sec-
tion details how the sediment transport module was adapted
from Warner et al. (2008) to account for them. The inclusion
of particulate organic carbon was relatively straightforward
because the model treats it similarly to sediment classes, ex-
cept that it decays in time. Inclusion of dissolved oxygen,
nitrogen and ODU in the model, however, necessitated ac-
counting for the formation of porewater within newly de-
posited layers and the entrainment of porewater into the wa-
ter column during erosion, as described in Sect. 2.2.3, as
well as diffusion of dissolved chemical constituents across
the seabed–water interface, which is described below.

Our model parameterizes diffusion across the seabed–
water interface by assuming that concentrations of dissolved
tracers in the bottom water column and surficial seabed layer
are equal. At each step, dissolved tracers move into or out of
the seabed so that concentrations in the surficial seabed layer
match those in the bottom water-column cell, while conserv-
ing tracer concentrations (symbols defined in Table 1):

Cw_tnew =
zw1

zw1+ za × 8

×
(
Cw_told × zw1+Cs_told × za × 8

)
, (A1)

Cs_tnew =

(
1−

zw1

zw1+ za × 8

)
×

(
Cw_told × zw1+Cs_told × 8

)
. (A2)

Note that we also tested a second approach relying on
a Fickian diffusion law with a diffusion coefficient of
1.09× 109 m2 s−1 based on Boudreau (1997) and Toussaint
et al. (2014) to more directly account for diffusion across the
seabed–water interface. Yet, both approaches yielded nearly
identical results at the Rhône study site, and so we kept the
simpler approach.

A2 Seabed resolution

Our seabed layering scheme is based on Warner et al. (2008),
whose model includes a single, thin, active transport layer
with thickness za, which represents the region of the seabed

just below the sediment–water interface from which ma-
terial can be entrained into the water column (Harris and
Wiberg, 1997). This active transport layer, also called the sur-
ficial seabed layer, typically overlies a user-specified num-
ber of layers of uniform thickness, as well as a thick bottom
layer that acts as a sediment repository. This scheme, how-
ever, can not resolve submillimeter-scale changes in biogeo-
chemical profiles near the seabed–water interface as well as
centimeter-scale changes deeper in the seabed (e.g., Fig. 5),
unless many seabed layers are used. Modifications to Warner
et al.’s (2008) scheme therefore include incorporating both
high-resolution and medium-resolution layers in the middle
of the seabed.

Specifically, the layering scheme includes Nhigh-res high-
resolution layers with thickness zhigh-res immediately be-
low the active transport layer, and then Nmed-resmedium-
resolution layers with thickness of zmed-res in the middle
of the seabed. After some experimentation, this study used
60 seabed layers, and za, zhigh-res, zmed-res, Nhigh-res, and
Nmed-reswere set equal to 0.1 mm, 0.5 mm, 1 cm, 19 lay-
ers, and 39 layers, respectively (Table A1). As in Warner et
al. (2008), the bed layering scheme required that the num-
ber of layers remains constant; for this study, the number
of “high” and “medium-resolution” layers also remains con-
stant, although their thicknesses may change slightly with
erosion and deposition.

Incorporating multiple types of layers within the seabed
and maintaining high resolution near the sediment–water
interface affects how the layering scheme handles erosion
and deposition. During depositional periods, new sediment
is incorporated into surficial seabed layer(s), as described in
Warner et al. (2008). When deposition increases the thick-
ness of the surficial layer so that it exceeds ∼ 2× za, the sur-
ficial layer is split into two, forming a thinner active trans-
port layer and a new high-resolution layer, so that the surface
layer remains thin. Similarly, if a high-resolution layer be-
comes thicker than zhigh-res, this layer is also split into two
layers. To maintain a constant number of layers, the bot-
tommost high-resolution layer is then absorbed into the top-
most medium-resolution layer. If adding material to the top-
most medium-resolution layer causes it to exceed zmed-res in
thickness, the material from two medium-thick layers that
are thinner than zmed-res are combined or the bottommost
medium-resolution layer is absorbed into the seabed repos-
itory. In contrast, during erosion, removal of high-resolution
surface layers causes new high-resolution layers to split off
from the topmost medium-resolution layer(s). When the top-
most medium-resolution layer(s) is depleted, a new medium-
resolution layer(s) is shaved off of the deep repository.
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Table A1. Parameters for new seabed layering scheme, as implemented for the Rhône study site. Dashed lines indicate that no symbol was
assigned to that parameter.

Type of layer Symbol for Number of layers Symbol for Thickness of each
number of for Rhône model thickness of layer for Rhône model
layers implementation each layer implementation (mm)

Active transport layer – 1 za 0.1
(i.e., the surficial layer)
High-resolution layers Nhigh-res 19 zhigh-res 0.5
Medium-resolution layers Nmed-res 39 zmed-res 10
Repository – 1 Varies; 333 m at

initialization

Additionally, the method of calculating the thickness of
the surficial seabed layer, za, was changed to facilitate
the representation of diffusive exchange across the seabed–
water-column interface and to maintain high vertical reso-
lution in the seabed. The CSTMS assumes that za thick-
ens with increasing bed shear stress, allowing sediment from
deeper regions of the seabed to be entrained into the water
column during energetic time periods (Harris and Wiberg,
1997; Warner et al., 2008). During a resuspension event with
bed shear stress of 2 Pa, this default parameterization would
have thickened the surficial seabed layer to ∼ 1.3 cm. Alter-
natively, some studies have constrained the active transport
layer to smaller constant values, including 1 mm in the west-
ern Gulf of Lion (Law et al., 2008). For this biogeochemical-
sediment transport model, it is important that the surface
layer remains thin in order to represent the high gradients
of oxygen observed at the seabed–water interface, and so za
is set equal to 0.1 mm to get reasonable oxygen penetration
into the seabed. Overall, these adaptations from Warner et
al. (2008) allow the seabed module to resolve millimeter-
scale changes in seabed properties near the surface, while
maintaining centimeter-scale resolution deeper in the seabed.
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