Supplement of Biogeosciences, 14, 241–255, 2017 http://www.biogeosciences.net/14/241/2017/doi:10.5194/bg-14-241-2017-supplement © Author(s) 2017. CC Attribution 3.0 License.

Supplement of

Contributions of microbial activity and ash deposition to post-fire nitrogen availability in a pine savanna

Cari D. Ficken and Justin P. Wright

Correspondence to: Cari D. Ficken (cari.ficken@duke.edu)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

	Burned Sites		
	B1	B2	В3
Minimum shift	8	3	11
Empirical shift	316	8	-108

Supplementary Table S1. The mass of N needed to be deposited at each site in order to achieve a shift in soil $\delta^{15}N$ of the minimum external precision, and the observed empirical shift in soil $\delta^{15}N$. These values were calculated from mixing models with fresh leaf $\delta^{15}N$ as one end member. Across 1,827 samples from 67 plant species, the mean $\delta^{15}N$ was -2.9% (±0.1; J. Wright, unpublished data). Units are in g N m⁻². Minimum external precision is 0.1% $\delta^{15}N$ at 1 standard deviation.