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Abstract. The development of soil organic C (SOC) models
capable of producing accurate predictions for the long-term
decomposition of exogenous organic matter (EOM) in soils
is important for the effective management of organic amend-
ments. However, reliable C modeling in amended soils re-
quires specific optimization of current C models to take into
account the high variability in EOM origin and properties.
The aim of this work was to improve the prediction of C min-
eralization rates in amended soils by modifying the RothC
model to encompass a better description of EOM quality.

The standard RothC model, involving C input to the soil
only as decomposable (DPM) or resistant (RPM) organic
material, was modified by introducing additional pools of
decomposable (DEOM), resistant (REOM) and humified
(HEOM) EOM. The partitioning factors and decomposition
rates of the additional EOM pools were estimated by model
fitting to the respiratory curves of amended soils. For this
task, 30 EOMs from 8 contrasting groups (compost, anaer-
obic digestates, sewage sludge, agro-industrial waste, crop
residues, bioenergy by-products, animal residues and meat
and bone meals) were added to 10 soils and incubated under
different conditions.

The modified RothC model was fitted to C mineralization
curves in amended soils with great accuracy (mean corre-
lation coefficient 0.995). In contrast to the standard model,
the EOM-optimized RothC was able to better accommo-
date the large variability in EOM source and composition,
as indicated by the decrease in the root mean square error

of the simulations for different EOMs (from 29.9 to 3.7 %
and 20.0 to 2.5 % for soils amended with bioethanol residue
and household waste compost, respectively). The average
decomposition rates for DEOM and REOM pools were 89
and 0.4 yr−1, higher than the standard model coefficients for
DPM (10 yr−1) and RPM (0.3 yr−1).

The results indicate that the explicit treatment of EOM
heterogeneity enhances the model ability to describe amend-
ment decomposition under laboratory conditions and pro-
vides useful information to improve C modeling on the ef-
fects of different EOM on C dynamics in agricultural soils.

Future research will involve the validation of the modi-
fied model with field data and its application in the long-term
simulation of SOC patterns in amended soil at regional scales
under climate change.

1 Introduction

Exogenous organic matter (EOM) is organic material of bio-
logical origin that is applied to cultivated fields for the pur-
pose of growing crops, improving soil quality and restoring
or reclaiming land for future use (Marmo et al., 2004). Agri-
cultural utilization of EOM is considered an effective way
of restoring losses of soil organic matter (SOM) and offset-
ting soil degradation and climate change (Lal, 2004; Smith,
2004a, b). The reliable management of amendment requires
thorough knowledge of EOM mineralization patterns, as the
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rate of EOM decomposition is critical in determining its ef-
fects on soil properties, nutrient cycling and C accumulation.

The prediction of EOM transformation in soil is a very
difficult task as EOM mineralization is an extremely com-
plex process that depends on several factors, such as EOM
biochemical composition, EOM stabilization treatment, size
and activity of soil microorganisms and pedoclimatic condi-
tions (Franzluebbers, 2004). In particular, EOM composition
is extremely variable, since organic residues may have plant
or animal origins and may have undergone different stabi-
lization treatments.

Process-oriented soil organic C (SOC) modeling repre-
sents a reliable solution for the efficient management of EOM
amendment. It offers a unique means of addressing the high
variability in the properties of EOM and pedoclimatic condi-
tions and the complexity of mechanisms and factors affecting
C mineralization in the field. The effectiveness of models in
predicting long-term C changes in amended soils has been
recently supported by the findings of Karhu et al. (2012),
Noirot-Cosson et al. (2016), Peltre et al. (2012) and Plaza
et al. (2012), who found good correlations between modeled
and measured C stocks for different types and amounts of
EOM. Some examples of C models that have been utilized
to simulate SOC trends in amended soils at field scale are
reported in Table 1.

As the composition and properties of amendments are the
most important factors controlling their decomposition (Cav-
alli et al., 2014; Do Nascimento et al., 2012; Karhu et al.,
2012), several authors have highlighted the importance of a
proper characterization of EOM to decrease the uncertainty
in model predictions of SOC trends in amended soils. Re-
garding the relevance of organic matter (OM) quality in SOC
modeling, most models are based on the concept that decom-
position can be adequately simulated by assuming different
conceptual or functional pools of OM that decay according
to first-order kinetics with specific decomposition rate con-
stants (Borgen et al., 2011). Exogenous organic matter is
composed of substances with different properties and distinct
levels of accessibility to microorganisms. The rate of EOM
mineralization is mainly determined by the combination of
quality and accessibility and the response intensity to envi-
ronmental factors of substrates with diverse characteristics.
Therefore, an accurate partitioning of EOM into a number of
discrete pools and an estimation of their functional character-
istics (i.e., initial C and N contents, decomposition rate) is of
great importance to improve model predictions (Sierra et al.,
2011; Thuries et al., 2001). Generally, C models identify two
or three pools of EOM, while their decomposition rates can
be fixed or variable according to the specific EOM. However,
rigorous methods for establishing entry pools that account for
the diversity of EOM have not been developed to date (Peltre
et al., 2012). This represents one of the major problems for
a reliable C modeling of amended soil, as this separation is
challenging and no universally recognized methodology ex-
ists to perform this task. According to Petersen et al. (2005b),

the uncertainty related to the fractionation of EOM into pools
is one of the major weaknesses associated with the C model-
ing of amended soils.

Several approaches have been proposed to determine
EOM pool partitioning factors and decomposition rates; to
date, no satisfactory method for such characterization has
been found. The main approaches that have been devised so
far are based on the chemical or kinetic subdivision of EOM.
Partitioning based on the chemical properties of EOM is gen-
erally performed by stepwise chemical digestion (SCD) and
near-infrared reflectance spectroscopy (NIRS) (Borgen et al.,
2011; Peltre et al., 2011). Such methods are relatively rapid
and simple, but the main disadvantage is that these opera-
tionally defined fractions do not precisely correspond to the
model pools. An alternative to chemical analysis is to char-
acterize EOM pools by the direct fitting of simulated CO2
emissions to measured respiration curves from incubation ex-
periments (Barak et al., 1990). Fitting pool parameters in this
way provides kinetically defined parameters that reflect the
rate of C mineralization observed for each residue (Borgen
et al., 2011; Trinoustrot et al., 2000). It is appealing because
it allows for the simultaneous estimation of both pool size
and decomposition rate (Scharnagl et al., 2008) that can be
directly used in process-oriented models (Batlle-Aguilar et
al., 2011). EOM pool characterization by fitting the CO2 res-
piration from incubation was successfully achieved for NC-
SOIL (Corbeels et al., 1999; Gabrielle et al., 2004; Noirot-
Cosson et al., 2016), CANTIS (Garnier et al., 2003; Par-
naudeau, 2005) and TAO (Pansu and Thuries, 2003) models
and was also performed by several other researchers (Antil et
al., 2011; Borgen et al., 2011; Cavalli and Bechini, 2011). In
general, the results of previous work on EOM characteriza-
tion for soil C model calibration show that kinetically defined
partitioning enhances the predictions of mechanistic models
compared to operationally defined fractions (Borgen et al.,
2011; Gabrielle et al., 2005); also, the wider applicability of
EOM characterization by SCD and NIRS is obtained at the
expense of accuracy.

To date, there are no soil C models specifically devel-
oped to evaluate the C accumulation potential of amended
soils, with the exception of the TAO model (transformation
of added organic matter; Pansu and Thuries, 2003). Fur-
thermore, C models have not been extensively calibrated in
amended soils, and the quality of organic inputs is an aspect
that has not been adequately considered and needs further
investigation (Parshotam et al., 2001). An example of this
inadequacy is represented by the Rothamsted carbon model
(RothC), one of the most well-known and widely used mod-
els simulating SOC trends (Jenkinson et al., 1991; McGill,
1996) because it requires relatively few and easily available
parameters and input data. Although it has also been used
on a few occasions to make predictions following the ap-
plication of EOM (Yokozawa et al., 2010), its actual struc-
ture suggests that the model is not particularly suited for
C simulation in amended soils. Carbon inputs to the model

Biogeosciences, 14, 3253–3274, 2017 www.biogeosciences.net/14/3253/2017/



C. Mondini et al.: Modification of the RothC model 3255

Table 1. Soil C models utilized for C simulation in amended soils.

Model EOMs Yearly application Simulation Reference
rate period (yr)

RothC Chicken and dairy manure 170–670 kg N ha−1 2 Abbas and Fares (2009)
RothC Cattle and pig FYM and slurry, broiler litter 0.6–7.0 t C ha−1 14 Bhogal et al. (2010)
RothC FYM, WS, SS, sawdust, compost 6.5–30 t ha−1 11–52 Peltre et al. (2012)
RothC User defined User defined User defined Houot et al. (2012)
RothC FYM 10–15 t fw ha−1 25 Yokozawa et al. (2010)
RothC Waste garden compost 5–45 t ha−1 15 Tits et al. (2014)
C-simulator Waste garden and household waste compost 30 t ha−1 13 Tits et al. (2010)
CN-SIM FYM 2 t C ha−1 52 Petersen et al. (2005a)
DAISY Compost 5–10 t dm ha−1 50 Stöppler-Zimmer et al. (1999)
DAISY Oilseed rape straw 8 t ha−1 2 Mueller et al. (1997)
DAISY WS, maize, blue grass 6 t fw ha−1 1 Mueller et al. (1998)
DAISY FYM, WS, sawdust 6.5 t dm ha−1 35 Bruun et al. (2003)
DAISY MSW compost, SS, FYM, cattle slurry 200 kg N ha−1 50 Peltre et al. (2013)
DAISY Compost 20 t ha−1 4.5 Gerke et al. (1999)
NCSOIL MSW compost 10–25 t dm ha−1 4 Gabrielle et al. (2005)
NCSOIL FYM, urban waste compost 2 t C ha−1 13 Noirot-Cosson et al. (2016)
Cantis WS 8 t dm ha−1 1 Garnier et al. (2003)

(1.2 g C kg−1)

Yasso07 WS, FYM, green manure 2 t C ha−1 35 Karhu et al. (2012)
DNDC WS, FYM, compost 0.03–0.5 t C ha−1 6 Sleutel et al. (2006)
CENTURY WS, FYM, sawdust, green manure 2 t C ha−1 30 Paustian et al. (1992)
CQESTR WS, FYM, corn stalks 6.0–7.5 t dm ha−1 34 Plaza et al. (2012)
Three-pool model Organic compost 20–40 % w : w 5 Vidal-Beaudet et al. (2012)

EOM: exogenous organic matter; FYM: farmyard manure; WS: wheat straw; SS: sewage sludge; MSW: municipal solid waste; fw: fresh weight; dm: dry matter; w: weight.

are divided into decomposable plant material (DPM) and re-
sistant plant material (RPM) pools, each characterized by
a specific decay rate. This implies that the model does not
allow C inputs derived from crop residues to be differenti-
ated from EOM. Secondly, the quality of the OM entering
the soil is only defined by the partitioning between decom-
posable and resistant organic materials, as the decomposition
rates are fixed and constant for each pool. The insensitivity
of the actual model to the variation in the quality of inputs
was shown by Falloon (2001). In fact, RothC allows only a
specific EOM, namely farmyard manure, to be treated sep-
arately from crop residues, but its partition coefficients and
decomposition rates are fixed. This model behavior contrasts
with the large variability in the decomposition rate of differ-
ent EOMs and the evidence that model predictions can be
improved by the identification of an EOM-specific decom-
position rate, as demonstrated by Mueller et al. (2003) with
the DAISY model. Similarly to RothC, the original DAISY
model involves two pools of added EOM with decomposi-
tion rates that are constant for a wide range of added organic
materials. Mueller et al. (2003) showed that adjusting the de-
composition rates for each EOM significantly increased the
model capacity to predict C mineralization in amended soils.

The aim of this study was to devise an easy and effec-
tive procedure for the optimization of the RothC model to
improve the prediction of EOM-C mineralization as a first

step in model development for reliable SOC simulation in
amended soils. Such a procedure is based on two steps:

– modification of RothC involving the introduction of ad-
ditional entry pools of EOM;

– and the utilization of information derived from labora-
tory incubation experiments to define the size and de-
composition rates of the additional EOM pools.

2 Materials and methods

2.1 Incubation experiments

2.1.1 Soils used for incubation

The soils used for the incubation experiments were sampled
from agricultural areas in the Mediterranean, specifically in
northern Italy and southern Spain. The soils were sampled at
5–20 cm of depth with an auger, and several subsamples were
pooled together to obtain a representative sample. The loca-
tion and main physicochemical characteristics of the soils are
reported in Table 2.
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Table 2. Main physicochemical characteristics of the soils used for incubation.

Location Country Soil Soil use Sand Silt Clay pH CaCO3 SOC NTOT SOC / Cmic
code (%) (%) (%) (g kg−1) (g kg−1) (g kg−1) NTOT (µg g−1)

S. Martino Italy SM Arable 69 28 3 8.3 740 10.5 1.2 8.8 114
Gorizia Italy GO Meadow 37 48 15 7.8 46 25.4 2.4 10.6 795
Bueriis Italy BU Arable 6.0 48 46 7.0 – 32.0 4.5 7.1 269
Lodi Italy LO Meadow 67 21 12 6.7 – 22.0 2.1 10.5 205
Reana Italy PE Arable 55 28 17 6.5 – 15.9 1.2 13.3 118
Ribis Italy RI Arable 54 32 14 4.6 – 8.1 1.3 6.2 65
Codroipo Italy CO Arable 27 58 15 7.1 – 19.0 2.0 9.5 350
Jumilla Spain JU Olive orchard 52 21 27 8.0 415 10.4 1.0 10.4 119
Alquife Spain AL Disused mine 53 30 17 8.5 1.3 2.5 0.9 2.8 10
Llano de la Perdiz Spain LL Arable 32 17 51 7.0 0.5 9.2 1.1 8.4 146

SOC: soil organic C; NTOT: total N; Cmic: soil microbial biomass C.

The soils were sieved moist through a 2 mm aperture grid
and stored (5 ◦C) until the beginning of the experiments. Be-
fore the start of the trials, the soils were preconditioned by
incubation under aerobic conditions for 7 days at the same
temperature and water content adopted for the experiments.

The range of soils showed a widely different texture and
pH. Apart from Gorizia, Bueriis and Lodi, the samples were
characterized by low contents of organic C and N and a small
pool of soil microbial biomass.

2.1.2 EOMs used for incubation

In total, 30 different EOMs were utilized for the incubation
experiments. They were considerably distinct in terms of ori-
gin, chemical composition and the stabilization or transfor-
mation processes to which they were subjected. According to
the above properties, they were classified into nine different
EOM groups (Table 3); their main features and properties are
reported in Table 4. Most of them presented an alkaline pH,
while the organic waste with a pH < 5.2 included bioethanol
residue, hydrolyzed leather and two-phase olive mill waste.
The total organic C (TOC) concentration ranged between
28.2 and 53.0 %, except for green waste biochar, which had a
TOC content of 86.0 %. Total N varied between 0.3 and 17 %,
mainly depending on the EOM origin. Generally, vegetal-
derived EOM as vine shoot compost, household waste com-
post, green waste compost, crop residues, two-phase olive
mill waste and green waste biochar showed low levels of to-
tal N (0.3–2.3 %). On the other hand, EOM of animal origin
(meat and bone meals, blood meal and horn and hoof meal)
showed high values of N (8.2–17.0 %). As a consequence of
the variability in C and N content, the C /N ratio ranged be-
tween 3 (horn and hoof meal), 200 (wheat straw) and 345
(green waste biochar). The differences among EOMs were
also highlighted by the content of easily available C (WSC)
and N (WSN), varying from 0.1 to 203 g kg−1 and from 0
to 37.9 g kg−1 for WSC and WSN, respectively. The EOMs
showing the highest contents of easily degradable C and N

were bioethanol residue and blood meal. In general, high
concentrations of mineral N (NO−3 and NH+4 ) were found
for liquid digestates. Conversely, the bioenergy by-products
two-phase olive mill waste and biochar were characterized
by very low amounts of NO−3 .

2.1.3 Amended soil incubation experiments

The solid residues were ground and sieved (< 0.5 mm) to ho-
mogenize their particle size before application. The residues
were thoroughly mixed with preconditioned moist soil sam-
ples (50 g dry weight basis) at the beginning of the incuba-
tion and kept under aerobic conditions in the dark in 130 mL
plastic jars in a thermostatic chamber. In the case of liquid
residue, soil was preincubated at such a humidity that af-
ter EOM addition they were brought to the moisture con-
tent required for incubation. Unamended soils were also in-
cluded as a control. Each treatment was replicated at least
twice. The moisture levels in the jars were checked weekly
by measuring weight loss, and deionized water was added
when necessary to maintain constant moisture. Incubation
was performed for a range of temperatures (10–30 ◦C), soil
moisture (20–40 % water holding capacity, WHC), EOM rate
(0.1–0.75 %) and time (7–37 days). Details on the incubation
conditions (soil type, rate of residue, soil water content, tem-
perature and incubation time) are reported in Tables S1–S6
in the Supplement. More than 30 incubation treatments (each
involving 7 treatments) were performed, utilizing 30 differ-
ent residues and 10 soils with contrasting properties for a
total of 224 treatments.

2.1.4 Soil CO2 measurement

CO2 evolution was measured every 6 h on aliquots of moist
soil by means of an automated system for gas sampling and
measurement (Mondini et al., 2010; Fig. 1). The “apparent”
net C mineralization (C derived from the residues) was cal-
culated as the difference between the CO2-C emitted by the
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Figure 1. Diagram of the automated chromatographic system for soil CO2 sampling and measurement.

EOM-amended soil and that produced over the same period
by the unamended control soil.

2.2 RothC model modification and optimization

2.2.1 Description of the RothC model

The Rothamsted carbon model (RothC) was one of the first
multi-compartmental models to be developed (Coleman and
Jenkinson, 1996; Jenkinson and Rayner, 1977) and has been
evaluated and optimized for a variety of ecosystems, includ-
ing croplands, grasslands and forests (Coleman et al., 1997;
Falloon and Smith, 2002; Smith et al., 1997), and in vari-
ous climate regions, including Mediterranean and semiarid
environments (Farina et al., 2013; Francaviglia et al., 2012;
Skjemstad et al., 2004).

RothC describes the dynamics of SOM by split-
ting it into five compartments with different decomposi-
tion (or kinetic) rate constants (K), namely decompos-
able plant material (DPM; K = 10 yr−1), resistant plant
material (RPM; K = 0.30 yr−1), soil microbial biomass
(BIO; K = 0.66 yr−1), humified organic matter (HUM;
K = 0.02 yr−1) and inert organic matter (IOM). Each com-
partment, except IOM, follows first-order decay kinetics; i.e.,
each pool is considered well mixed and chemically homo-
geneous, and the decomposition rate is assumed to be con-
trolled by the available substrate. The proportion of organic
matter decomposed per unit of time is therefore constant and
equal to K .

The model considers two main types of C inputs to the
soil: crop residues and farmyard manure. Crop residues are
divided into the compartments DPM and RPM with parti-
tioning factors (f ) depending on the nature of the inputs.
The partitioning of FYM into pools is fixed and corresponds
to DPM 49 %, RPM 49 % and HUM 2 %. At each monthly
time step, part of each C input pool is decomposed accord-
ing to its specific decomposition rate. Part is mineralized as
CO2 and the rest is transferred to the compartments BIO and

HUM. The proportion of the decomposed pool converted to
CO2 and (BIO+HUM) is determined by the clay content of
the soil. The rate constants are modified at each period by
three multipliers depending on the temperature, the moisture
deficit of the soil and the presence or absence of vegetation.
Due to extensive previous evaluations of model performance
(e.g., Smith et al., 1997), no further validation of the current
model is presented here.

2.2.2 Modification of the RothC model

The standard model considers C input to the system by EOM
only as farmyard manure with fixed partitioning factors. In
the present study, a wide range of EOMs with different char-
acteristics was added to the soil. In agreement with the pro-
cedure adopted by Peltre et al. (2012) and Falloon (2001)
for RothC simulation in amended soils, in a first stage of
the study the fitting of the RothC model to the respiratory
curves was assessed by varying the partitioning factors of
EOM pools. To enable model fitting of the respiration data
from the incubation trials, an Excel version of the RothC
model (26.3 version) was utilized. The Excel version of the
model was tested for correctness under several RothC stan-
dard scenarios.

A total of 86 simulations were performed considering soil
amended with residues from different EOM groups. All the
simulations were run as differences from the control treat-
ment (i.e., only the CO2 derived from EOM was simulated)
utilizing a time step of 0.25 d−1. Thus the initial size of the
soil organic pools was virtually set to zero, including the size
of the inert OM pool (IOM). This was possible because in the
RothC model the C trend of each pool is described with first-
order kinetics. Hence, the fate of the total soil C is the sum of
the fate of the C from the different pools. Consequently, the
difference in CO2 evolution between soils with and without
EOM application corresponds to the CO2 derived from the
additional input of OM to the soil. It was therefore assumed
that the decomposition of humified SOM was unaffected by
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the decomposition of added residues (i.e., no priming effect
was caused by EOM application to the soil).

Model fitting to the measured values was conducted
by changing individual partition coefficients (fDPM, fRPM,
fHUM) for the EOM pools in a stepwise iteration using Ex-
cel Solver with the Newton method until maximum agree-
ment between the measured and simulated amounts of CO2
was achieved, assuming as a criteria the smallest sum of
squared residuals (SSR). A humified pool was attributed only
to residues characterized by the presence of stable OM, such
as compost, anaerobic digestates and olive mill waste. For
each EOM and incubation condition, an “individual” fitting
procedure was used to minimize the difference between the
observed and simulated values. The three parameters were
optimized simultaneously, considering the following con-
straints in order to avoid biologically unrealistic parameter
estimates:

fDPM+ fRPM+ fHUM = 1,
fHUM<0.3 for anaerobic digestates and

agro-industrial waste.

The partitioning factor for HUM was set to a maximum of 0.3
for digestates and agro-industrial waste according to the val-
ues found by Cavalli and Bechini (2011, 2012) after model
calibration for soil amended with pig slurries stored under
anaerobic conditions before use.

The capacity of the standard model to fit the C mineral-
ization curves of amended soils was assessed by calculating
the root mean square error (RMSE), i.e., the total difference
between the measured and simulated values expressed as a
percentage of the mean observed values.

As the results of the fitting procedure were not acceptable
due to the high values of RMSE (see Sect. 3.2), a modifica-
tion to the model source code was performed to improve the
model ability to describe the respiratory curves of amended
soil. The proposed modification involves the inclusion of two
additional pools of EOM (decomposable EOM, DEOM; re-
sistant EOM, REOM), each characterized by a specific and
variable rate of decomposability. For organic residues char-
acterized by the presence of stable OM (i.e., compost, anaer-
obic digestates and agro-industrial waste), a third EOM pool
is introduced (humified EOM, HEOM), which is directly in-
corporated into the soil HUM pool. EOM added to the soil
is split into the DEOM, REOM and HEOM pools accord-
ing to the partitioning factors fDEOM, fREOM and fHEOM =

1− fDEOM− fREOM. DEOM and REOM pools decompose
with specific decomposition rates (KDEOM and KREOM) that
may be different from those of plant residues. HEOM is di-
rectly incorporated into the HUM pool and decomposes with
the same decomposition rate (K = 0.02 yr−1). Decomposed
DEOM and REOM are split in CO2, BIO and HUM. The
proportion of decomposed DEOM and REOM that goes to
CO2, BIO and HUM is regulated in the same way as the entry
pools of plant residue. Below is a mathematical representa-

tion of the modified model as a set of differential equations:

dDPM/dt = fDPMP −KDPMDPM, (1)
dRPM/dt = (1− fDPM)P −KRPMRPM, (2)
dDEOM/dt = fDEOME−KDEOMDEOM, (3)
dREOM/dt = fREOME−KREOMREOM, (4)
dBIO/dt = αKDPMDPM+KRPMRPM+KDEOMDEOM
+KREOMREOM+KHUM (HUM+ (1− fDEOM

−fREOM)E)− (1−α)KBIOBIO, (5)
dHUM/dt = β (KDPMDPM+KRPMRPM
+KDEOMDEOM+KREOMREOM+KBIOBIO)
− (1−β)KHUM (HUM+ (1− fDEOM− fREOM)E), (6)

dIOM/dt = 0. (7)

DPM is decomposable plant material, RPM is resistant plant
material, HUM is humified organic matter, BIO is soil mi-
crobial biomass, DEOM is decomposable EOM, REOM is
resistant EOM and IOM is inert organic matter.
fDPM is the partitioning factor for DPM, fDEOM is the par-

titioning factor for DEOM and fREOM is the partitioning fac-
tor for REOM.
KDPM is the decomposition rate for DPM,KRPM is the de-

composition rate for RPM, KBIO is the decomposition rate
for BIO, KHUM is the decomposition rate for HUM, KDEOM
is the decomposition rate for DEOM and KREOM is the de-
composition rate for REOM.
P is plant (crop residue) input, E is EOM input, α is the

transfer coefficient to BIO pool and β is the transfer coeffi-
cient to HUM pool.

The C flow of the standard and modified model is reported
in Fig. 2.

An Excel version of the modified model was then utilized
to perform model fitting for the same 86 respiratory curves
previously simulated with the standard model. The procedure
was the same with one exception: the model fitting was con-
ducted by simultaneously changing the partitioning factors
(fDEOM, fREOM, fHEOM) and decomposition rate constants
(KDEOM, KREOM) of the different pools of EOM, consider-
ing the following constraints in order to avoid biologically
unrealistic parameter estimates:

fDEOM+ fREOM+ fHEOM = 1,
fHEOM<0.3 for anaerobic digestates and

agro-industrial waste,

KREOM>0.15yr−1,

KDEOM<230yr−1.

The criteria for setting the partitioning factor for HEOM
(fHEOM) to a maximum of 0.3 in the case of digestates and
agro-industrial waste was the same reported for the standard
model. The minimum KREOM value was set at 0.15 yr−1 ac-
cording to the RothC modification proposed by Skjemstad
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Figure 2. Structure of the standard (a) and modified (b) RothC model. DPM: decomposable plant material; RPM: resistant plant mate-
rial; EOM: exogenous organic matter; DEOM: decomposable EOM; REOM: resistant EOM; HEOM: humified EOM; BIO: soil microbial
biomass; HUM: humified soil organic matter; IOM: inert organic matter; f : partitioning factor; K: decomposition constant rate (yr−1).

et al. (2004). KDEOM was set to a maximum of 230 yr−1

in agreement with the maximum values found by Thuries
et al. (2001) utilizing a three-EOM-pool model for 14 dif-
ferent plant residues, compost and manures. This constraint
was not considered in the case of blood meal as the respi-
ration curves presented a very steep initial phase; this is an
indication of a decomposable pool characterized by a high
degree of decomposability. This is supported by the results
of Thuries et al. (2001) who found a decomposition rate con-
stant of 243 yr−1 for the labile pool of animal residues.

Generally, increasing the number of variable parameters
increases the precision of the model at the expense of its ac-
curacy and generality (Snipes and Taylor, 2014). The Akaike
information criterion (AIC) was developed as an aid to com-
pare and select among different models (Symonds and Mous-
salli, 2011). It takes into account how well the model fits the
data, but it penalizes models with greater numbers of fitted
parameters. Therefore it selects the model that has a min-
imum number of parameters while fitting the data well. In
order to select one of the two model structures, AIC was cal-
culated according to Symonds and Moussalli (2011) as

AIC= n
[

ln
(

RSS
n

)]
+ 2k, (8)

where n is the number of cases, RSS is the residual sum of
squares and k is the number of variable parameters + 1.

According to Symonds and Moussalli (2011) a modi-
fied version of the index (corrected AIC, AICc) was calcu-
lated because of the small sample size in the present work
(n/k < 40, where n is the number of cases and k is the num-
ber of fitted parameters in the most complex model):

AICc= AIC+
2k (k+ 1)
n− k− 1

. (9)

Further associated statistics to assess the relative strengths of
each candidate model were calculated as suggested by Snipes
and Taylor (2014):

1AICc= AICc(i)−AICcbest, (10)

where AICc(i) is AICc of method (i) and AICcbest is the low-
est AIC value.
1AICc is a measure of each model with respect to the best

model (model with the lowest AICc). Mazerolle (2006) indi-
cates the following interpretation of this index: 1AICc < 2
suggests substantial evidence for the model, and values be-
tween 3 and 7 indicate that the model has considerably less
support. A value > 10 indicates that the model is very un-
likely.

ER(i) = evidence ratio

= exp(−0.5×1AICcbest)/exp
(
−0.5×1AICc(i)

)
(11)
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LER(i) = Log10(ER(i)) (12)

LER provides an indication of how much better the best
model, i.e., the model with the lowest AICc, is in approxi-
mating the true data compared to another model. Snipes and
Taylor (2014) set levels of evidence for selecting the model
with the lowest AICc of “substantial”, “strong” and “deci-
sive”, corresponding to LERs between model probabilities
greater than 0.5, 1 and 2, respectively.

2.2.3 Optimization of the modified RothC model

In the following stage of the study, the modified model was
applied to the whole data set consisting of 224 cumulative
respiration curves from amended soils incubated under dif-
ferent conditions. Biochar-amended soils (n= 4) were ex-
cluded from the procedure of parameter estimation due to
very low values of CO2-C emissions resulting in statistically
non-robust respiration curves. Optimization was performed
as described in the previous sections by finding the best com-
bination of variable parameters that results in the best fitting
of the respiratory curve.

The accuracy of the model to simulate C mineralization
was assessed according to the criteria proposed by Smith et
al. (1996) utilizing the worksheet ModEval 2.0 for Windows
(Smith and Smith, 2007). The total difference between the
measured and simulated values, expressed as a percentage of
the mean observed values, was considered by calculating the
root mean square error (RMSE). The lower limit for RMSE
is zero, which denotes no difference between the measured
and simulated values. The association between the simulated
and measured values (i.e., the percentage of the total vari-
ance in the observed data that is explained by the predicted
data) was evaluated by the sample correlation coefficient (R).
The error in the simulation as a proportion of the measure-
ment was evaluated by the relative error (E) expressed as
the mean error percentage over all the measurements. The
consistent errors or bias in the model was evaluated by the
mean difference between the measured and simulated data
(M). Because M does not include a square term, simulated
values above and below the measurements cancel out, so any
inconsistent errors are ignored.

3 Results

3.1 EOM soil mineralization

As an example of the rate of CO2 mineralization from soil
amended with different EOMs, Fig. 3a shows the dynam-
ics of CO2 evolution from the Llano de la Perdiz soil. The
range and mean values of net C mineralization for the differ-
ent EOM groups, as defined in the “Materials and Methods”
section, are reported in Table 5, which summarizes the results
from all the incubation experiments performed utilizing dif-
ferent conditions and incubation carried out under standard

laboratory conditions (20 ◦C, 40 % WHC, 0.5 % application
rate and a 30-day incubation period).

Considering all the incubation experiments performed, the
extra CO2-C varied in the range of 0.01–38.6 % of the added
EOM-C (Table 5). According to the mean values of net
C mineralization obtained under standard laboratory con-
ditions, the different EOM groups can be ranked as fol-
lows (values in parentheses are the percentage of added C
emitted as CO2-C): biochars (0.02 %) < composts (3.0 %)
< anaerobic digestates (4.0 %) < sewage sludge (4.8 %)
< agro-industrial waste (6.3 %) < crop residues (10.4 %)
< bioenergy by-products (12.8 %) < animal residues (16.8 %)
< meat and bone meals (21.3 %).

For compost, EOM mineralization ranged from 0.9 to
11.1 % with a mean value of 3.7 % (Table 5). The total ex-
tra CO2-C evolving from the soils amended with meat and
bone meals ranged between 7.8 and 38.6 %, while for bioen-
ergy by-products net CO2-C production was in the range of
6.9–16.8 %. Extremely low values of C mineralization (0.01–
0.04 %) were recorded for biochar-amended soil (Table 5). A
significant relationship between the cumulative net CO2-C
of different EOM groups and chemical properties was found
only for water soluble N (r2

= 0,70; P < 0.01).

3.2 Modification of the model and optimization with
incubation data

The results of the preliminary phase of the study, in which
the possibility to fit soil respiratory curves using the stan-
dard model and vary the partition coefficients of EOM was
investigated, are shown in Table 6, which reports the mean
RMSE values for different EOM groups. In general, the fit-
ting obtained with the standard model was not satisfactory
with an average RMSE (i.e., the percentage of error between
the measured and simulated values) of 21.6 % for the 86 ex-
amined incubation treatments and a maximum of 27 % in
the case of bioenergy by-products. According to Smith and
Smith (2007), an RMSE value lower than 10 % could repre-
sent a threshold for an acceptable simulation for a particular
purpose. Consequently, the model was modified as described
in Sect. 2.2.2 and the fitting procedure was performed by
simultaneously varying the partitioning factors and decom-
position rates of EOM. The results showed a dramatic in-
crease in the precision of the model with an average RMSE
of 2.9 % (Table 6). The calculation of AIC and related statis-
tics (delta AICc, 1AICc; logarithm of evidence ratio, LER)
was performed to evaluate whether the increase in the com-
plexity of the model due to the introduction of new param-
eters was justified by the increased goodness of fit. In par-
ticular, 1AICc is a measure of each model relative to the
best model (i.e., the model with the lowest AICc value). The
results clearly show that the modified model was always the
best model (1AICc= 0) and that the standard model was un-
likely to give an effective description of respiratory curves as
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Figure 3. Rate (a) and net cumulative measured and simulated (b) CO2 emissions from Llano de la Perdiz soil amended with different quality
EOMs during a 30-day laboratory incubation. For the rate of respiration, only the first 10 days of the incubation are reported. Simulated net
cumulative respiration curves are represented as dotted lines. Respiratory curves are presented on the y axis with a different scale for better
visualization.

its 1AICc mean value far exceeds the value of 10 indicated
by Mazerolle (2006) as a threshold to support model validity.

Similarly, the evidence ratio compares the AICc of the best
model with the AICc of another model and provides a mea-
sure of how much better the best model is at approximating
the real data. In the present study, the average LER value
clearly shows that the modified model was far better (i.e.,
132 times) than the standard one, considering that a thresh-
old LER of 2 is considered a decisive level to select the best
model (Snipes and Taylor, 2014).

The fitting procedure with the modified model was hence
applied to all the data sets for incubation and the mean,
minimum and maximum values of the statistical indicators
utilized to evaluate the model goodness of fit between the
measured and simulated values are reported in Table 7. Ta-

bles S1–S6 in the Supplement present the pool parameters,
the incubation conditions, the net cumulative CO2 emis-
sions and the statistical indicators of model goodness of fit.
Biochar-amended soils were omitted from the optimization
procedure due to very low CO2 emission values resulting in
statistically non-robust respiratory curves.

As a whole, the modified model was able to fit the res-
piratory response of the amended soils very well, as re-
flected in the statistical indicators (Table 7; Tables S1–S6
in the Supplement). The only exceptions were represented
by soils amended with a low dose of anaerobic digestate
(100 kg N ha−1). The mean correlation coefficient (R) for all
incubation experiments was 0.995 and was higher than 0.945
for all but one EOM. The root mean square errors (RM-
SEs) for vine shoot compost, household waste compost and
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Table 5. Cumulative extra CO2-C emitted in amended soil (% of added C) for each exogenous organic matter (EOM) group for all incubation
treatments and incubation performed under standard conditions.

EOM group All incubation treatments Standard conditions for incubation∗

Mean Min Max n Mean Min Max n

CO2-C (%) CO2-C (%)

Biochar 0.02 0.01 0.04 4 0.02 0.01 0.04 4
Compost 3.7 0.9 11.1 34 3.0 0.9 6.6 19
Bioenergy by-products 12.9 6.9 16.8 20 12.8 6.9 16.8 10
Anaerobic digestates 3.8 0.8 7.2 27 4.0 0.8 7.1 10
Meat and bone meals 16.8 7.8 38.6 93 21.3 18.1 25.9 3
Animal residues 13.1 5.0 21.1 33 16.8 11.0 21.1 14
Crop residues 8.5 3.0 18.4 10 10.4 5.1 18.4 6
Agro-industrial waste 10.0 6.0 17.5 3 6.3 6.0 17.5 3
Sewage sludge 4.8 3.8 6.0 4 4.8 3.8 6.0 4

Total cases 228 69

∗ 20 ◦C, 40 % soil water holding capacity, 0.5 % EOM application rate and a 30-day incubation period.

Table 6. Values for the root mean square error (RMSE),1AICc and
LER (logarithm of evidence ratio) of the respiration curve fitting
performed with standard and modified RothC.

EOM group Model RMSE 1AICc LER n

(%)

Compost modified 3.0 0 0 18
standard 19 586 127

Bioenergy by-products modified 2.7 0 0 20
standard 27 619 134

Anaerobic digestate modified 1.9 0 0 13
standard 17 557 121

Meat and bone meal modified 3.0 0 0 12
standard 21 430 93

Animal residues modified 5.1 0 0 9
standard 21 411 89

Crop residues modified 3.4 0 0 8
standard 16 536 116

Agro-industrial waste modified 1.9 0 0 2
standard 19 761 165

Sludge modified 1.5 0 0 4
standard 22 1029 223

Average modified 2.9 0 0 86
standard 22 616 132

EOM: exogenous organic matter; 1AICc: AICc(i) −AICcbest; AICc: Akaike
information criterion corrected for small sample size, AICc(i), AICc of method (i),
AICcbest, lowest AICc value; n: number of cases.

bioethanol residue were 4.3, 2.5 and 3.7 %, respectively; for
all the cases the RMSE was 4.5 %. The relative error (E)
ranged between −16.4 and 3.5 % (Tables S1–S6 in the Sup-
plement). The goodness of fit was also underlined by the very
low values of M (on average, −1.2 µg CO2-C g−1; Table 7).
As an example of curve fitting, Fig. 3b depicts the measured
and simulated net cumulative CO2-C evolution for EOMs re-
ported in Fig. 3a.

Table 7. Mean, minimum and maximum values for the statistical
indicators of model goodness of fit between the measured and sim-
ulated data (n= 224).

RMSE R E M

% % µg CO2-C g−1

Mean 4.5 0.995 −1.1 −1.2
Min 0.7 0.794 −16.4 −44.8
Max 37.2 0.9999 3.5 2.9

RMSE: root mean square error; R: sample correlation coefficient; E:
relative error; M: mean difference between measured and simulated data.

The average decomposition rates for EOM and REOM
pools were 89 and 0.4 yr−1. An evaluation of pool parameters
showed large variability in the composition and decomposi-
tion rates of the studied EOMs. The ranges of different pa-
rameters were 0–0.63, 0.21–0.98 and 0.06–0.78 for fDEOM,
fREOM and fHEOM and 11–330 and 0.15–2.51 for KDEOM
and KREOM, respectively (Tables S1–S6 in the Supplement).
The coefficients of variation for the parameters consider-
ing all treatments were 83, 24, 53, 69 and 95 % for fDEOM,
fREOM, fHEOM,KDEOM andKREOM, respectively. Pool sizes
and decomposition rates were not significantly correlated.

No statistically significant relationships were found be-
tween pool parameters and the chemical properties of differ-
ent EOM groups. Partition coefficients for DEOM were sig-
nificantly correlated with cumulative net CO2-C (r2

= 0,92;
P < 0.01). The calculation of mean pool parameters and asso-
ciated percent of variation of standard error for all incubation
experiments performed with the same EOM type (Table 8) or
with the same EOM group (Table 9) always showed a relative
standard error smaller than 50 %. This is a threshold value
proposed by Robinson (1985) for a statistically acceptable
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estimation of the model parameters, with a single exception
in the case of stable compost CMC VII (Table S1 in the Sup-
plement).

4 Discussion

4.1 EOM soil mineralization

The ranking of the different EOM groups according to the
mean values of net C mineralization was in agreement with
the results of similar studies on the decomposability of
EOMs of different origin and nature (Lashermes et al., 2009;
Thuries et al., 2001). The values of net C mineralization (ex-
pressed as a percentage of added C) for compost-amended
soil were similar to those recorded by De Neve et al. (2003),
who measured CO2-C values in the range of 1.0–8.8 % for
added C for different composts. The values of mean CO2-C
respiration for meat and bone meals (16.8 %) are in agree-
ment with other previous C mineralization studies of residues
characterized by low C /N ratios; for example, 16 and 19 %
were obtained from poultry manure and pig slurry after a 20-
day incubation at 22 ◦C (Levi-Minzi et al., 1990). Regard-
ing by-products from bioenergy production, the values of C
mineralization in the present study were significantly lower
than those measured by Cayuela et al. (2010). This dissimi-
larity can be attributed to the different conditions utilized for
the incubation. Nevertheless, the organic residues showed the
same relative differences in CO2 production. The significant
correlation between EOM water soluble N and mineralized
added C is in agreement with previous studies showing that
N availability is an important factor in regulating EOM de-
composition (Trinsoutrout et al., 2000).

4.2 Model modification

The development and optimization of SOC models capable
of producing accurate and reliable predictions of EOM de-
composition in soils (Karhu et al., 2012) represents an essen-
tial prerequisite for their utilization as a tool for the effective
management of EOM amendment. RothC considers C input
into the soil in the form of EOM only as farmyard manure
with fixed partitioning factors of C pools. Falloon (2001)
showed that such a model structure was not adequate to sim-
ulate C dynamics in sludge-amended soils. To enhance the
ability of RothC to accommodate a wider range of EOMs,
some authors have proposed varying the partition coefficients
attributed by RothC to EOM pools. This change resulted in
much closer agreement between the modeled and measured
SOC trends (Falloon, 2001; Peltre et al., 2012). Therefore,
in the first stage of the study we investigated the possibil-
ity of describing the respiratory curves of amended soil uti-
lizing the same approach. However, the results of the fitting
procedure clearly showed that it was not feasible to achieve
a satisfactory fitting by only varying the proportion of the
EOM pools (mean RSME 21.6 %; n= 86; Table 6). Con-
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sequently a modification of the model was proposed based
on the hypothesis that its performance would be enhanced
by setting specific EOM decomposition rates different from
those of plant residues. This corresponds to the introduction
of two new pools of organic C entering into the soil, as de-
composable and resistant EOMs are considered to have dif-
ferent properties in terms of degradability with respect to the
corresponding plant residues pools. The results of the fitting
procedure performed with the modified model demonstrated
a remarkable improvement in the goodness of fit of the res-
piratory curves (average RMSE 2.9 %; n= 86; Table 6). The
introduction of new parameters (such as the decomposition
rate of decomposable and resistant EOM in the present study)
generally decreases the bias between the simulated and mea-
sured values, but this is obtained with an increase in the com-
plexity of the model. Too many parameters could result in a
greater variance in the output of the model due to the uncer-
tainty associated with the parameter estimation. Moreover,
a model with too many parameters holds the risk of over-
fitting, i.e., of modeling the random noise in the data rather
than the true values. This causes a decrease in the predictive
performance or generality of the model when applied to dif-
ferent data sets as an over-fitted model is too dependent on
the data utilized for its calibration. An ideal model would fit
the data well with a minimum number of parameters. Calcu-
lation of 1AICc and the evidence ratio (Table 6), which are
the statistics derived from AIC, clearly showed that the modi-
fied model was far better in comparison to the standard one in
terms of the simulation of respiration curves from amended
soil. According to the AIC-derived indexes, the benefit ob-
tained by the modified model in terms of decreased bias be-
tween the measured and simulated data overcompensates for
the increase in model complexity due to the introduction of
new parameters.

In addition to the results for RMSE and AIC, the relia-
bility of the model modification was supported by the find-
ings of previous work indicating the limitation of RothC in
amended soil and the increase in model performance ob-
tained by setting specific decomposition rates for EOM. The
standard RothC model has been shown to be insensitive to
the variation in the quality of EOM inputs and is therefore
not adequate for the simulation of soils amended with EOMs
characterized by a huge variability in chemical structure and
degradability (Tits et al., 2014). This limitation has been at-
tributed to the fact that it does not distinguish between crop
residues and EOM, despite their widely different nature; this
is highlighted by the results of Tits et al. (2014). The au-
thors simulated 30 years of compost addition, and the qual-
ity of EOM in their work was addressed by calibrating the
DPM /RPM ratio with the SOC content; however, this ratio
encompassed not only EOM quality, but also the quality of
the input materials (crop residues). Consequently, the cali-
brated DPM /RPM ratio was site specific, as this ratio de-
pended not only on compost properties, but also on the crop
type and management of the site utilized for calibration. The

fact that the same pool structure is used to represent organic
materials that widely differ in composition and decomposi-
tion pattern (e.g., crop residues vs. compost) simplifies the
model structure, but it is likely to generate less accurate re-
sults (Cavalli and Bechini, 2011).

The results of previous work also suggest that for a reli-
able simulation of C mineralization in amended soils there
is not only the need to partition EOM into a number of dis-
crete pools, but also to differentiate the quality of EOM from
that of crop residues. In particular, Cavalli et al. (2014) un-
derline the relevance of assessing different decomposition
rates for crop residues and EOM pools, as in the modified
RothC, since they found that EOM degradable and resistant
pools always decomposed more rapidly than the analogue
crop residue pools. Similarly, Borgen et al. (2011) clearly
showed that model predictions can be improved by the iden-
tification of an EOM-specific decomposition rate. Mueller et
al. (2003) demonstrated the inadequacy of the original as-
sumption in the DAISY model for two EOM pools with pre-
defined constant turnover. Henriksen and Breland (1999) and
Henriksen et al. (2007) presented a model partitioning plant
residues in three distinct pools (decomposable, structural, re-
sistant) that have distinct but fixed (i.e., equal for all plant
materials) decomposition rates. The only exception is repre-
sented by the structural pool in which the decomposition rate
varies as a function of N availability for microbial growth.
The need for individual adjustment of the decomposition rate
invalidates the fundamental assumption that the specific de-
cay rate constant of each defined pool may be set a priori
because it is uniform across litter qualities and supports the
fact that the residue-specific EOM pool decomposition rate
enhances the performance of the model. Further support for
the effectiveness of the proposed modification to the model
structure presented in this study is derived from the work of
Incerti et al. (2011) who found that a model with three EOM
pools satisfactorily described the pattern of litter decompo-
sition. In addition, the authors found an enhancement of the
predictive ability of the three-pool model by varying the de-
composition rate of the pool with intermediate degradabil-
ity as a function of the lignin content. Accordingly, Cavalli
and Bechini (2012) and Petersen et al. (2005b) have demon-
strated that C simulation in amended soils is increased by
a specific EOM parameterization. Finally, it has to be noted
that models with a similarly complex structure as in the pro-
posed modified RothC (five different pools of C input to the
soil and specific decomposition rates for decomposable and
resistant EOM) have already been proposed and successfully
validated for amended soils (NC-SOIL, Noirot-Cosson et al.,
2016; CN-SIM, Petersen et al., 2005a; Cavalli and Bechini,
2012).

4.3 Model optimization

The results of the respiration curve fitting for the whole data
set show that the modified model was able to adequately fit
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the respiratory response of amended soil, as demonstrated by
the average value of RMSE for vine shoot compost (4.3 %),
household waste compost (2.5 %), bioethanol residue (3.7 %)
and each of the 224 respiratory curves examined in this study
(4.5 %). As a comparison, Cavalli and Bechini (2011) cal-
ibrated the three EOM pools in the CNSIM model for a re-
duced range of incubation conditions (three soils and five liq-
uid dairy manures) and obtained an average RMSE of 8.7 %.
The results suggest that for a reliable simulation of C miner-
alization in amended soils under laboratory conditions there
is not only the need to partition EOM into a number of dis-
crete pools, but also to find specific decomposition rates for
such pools.

The calibration of the EOM parameters was specific to soil
and incubation conditions to enable the model to find the best
fit for the measured data. Consequently, failure to simulate
C trends can be attributed exclusively to the inadequacy of
the model structure to accurately describe soil respiration.
The results of the optimization procedure indicated that the
modified model, encompassing additional EOM pools with
specific parameters, is able to accommodate the large vari-
ability of the tested EOMs in terms of composition and prop-
erties. Such variability in EOM quality is indicated by the
extended range of values characterizing each pool parameter.
These findings support the hypothesis that explicit treatment
of EOM heterogeneity would improve the performance of the
RothC model. The lack of correlation between the chemical
properties of residues and pool parameters is in agreement
with the evidence that operationally defined fractions do not
precisely match kinetically defined pools. This is mainly due
to the fact that the distinct components of organic residues
interact with soil components and this modifies their decom-
posability along the incubation period (Trinsoutrout et al.,
2000). Kinetically defined pools take into account such in-
teractions and this represents an advantage in terms of sim-
ulation accuracy with respect to the operationally defined
pools. The significant relationship between cumulative CO2
and fDMP could be explained by the fact that most of the min-
eralized EOM-C emitted during incubation is derived from
the degradable pool.

The calculation of mean pool parameters for EOM type
and EOM group (Tables 8 and 9) indicated that the uncer-
tainty associated with the parameters was always lower than
the suggested threshold for the statistically acceptable esti-
mation of the parameter (standard error of the mean < 50 %;
Robinson, 1985). These results indicate that the parameter
values mainly reflect the EOM properties and that the model
is capable of keeping the effects of incubation conditions
(i.e., type of soil, temperature, soil water content, rate of
EOM application) to a minimum. This is in agreement with
previous work suggesting that EOM quality is the most im-
portant factor affecting organic residue decomposition in soil
(Cavalli et al., 2014; Do Nascimento et al., 2012; Karhu et al.,
2012;). Low variability associated with mean parameters for
an EOM group is an indication that this common set of pa-

rameters could be utilized to simulate SOC patterns in soil
amended with the different EOMs belonging to a specific
group with an acceptable error.

4.4 Potential limitations of the proposed model
modification and optimization

Soil organic C modeling is subject to several potential draw-
backs and limitations. Due to the aim of this work, only as-
pects specifically related to the proposed procedure for model
modification and optimization will be discussed. These are
the suitability of short-term incubation to assess EOM pool
parameters, issues of model validation in long-term field con-
ditions and problems associated with the simultaneous fitting
of multiple parameters.

4.4.1 Suitability of short-term incubations to assess
EOM pool parameters and model validation
under field conditions

One of the major concerns about the proposed optimization
method is the suitability of short-term incubations to ade-
quately characterize EOM in terms of pools of different de-
composability. It has been suggested that short-term incuba-
tions are appropriate only to estimate the mineralization of
the more decomposable pools. On the other hand, long-term
incubations, while providing a more accurate characteriza-
tion of EOM, are highly demanding in terms of laboratory
work, time and space. To date, an agreed minimum incu-
bation period to obtain reliable evaluations of EOM pools
has not been established. Sleutel et al. (2005) underlined
that such a period depends on the EOM type and the kind
of model used to fit the data. They found that for a specific
EOM, a reliable estimation was obtained within only 16 days
at 16 ◦C and that a second-order model required a minimum
incubation time of about 50 days at 16 ◦C for the estima-
tion of EOM stable organic C within less than 3 % of the
true value for all organic materials. For a parallel first-order
model, a minimum incubation period of 42 days at 16 ◦C was
necessary to obtain a reliable estimation of pig slurry and
compost pools. Such EOMs represent well-stabilized mate-
rials for which the incubation time is likely to be more im-
portant for a reliable parameter estimation with respect to
more degradable EOMs. Such minimum incubation periods
are consistent with the incubation time utilized for most of
the experiments in this study, when considering the differ-
ent incubation temperature. It is important to note that one
possible shortcut to reduce the incubation time needed for a
satisfactory fitting is the use of higher temperatures, as the
mineralization rates significantly increase. According to the
rate modifying factor for temperature utilized in RothC, an
incubation period of 30 days at 20 ◦C corresponds to a pe-
riod of 42 days at 16 ◦C to mineralize an equal amount of
CO2.
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To verify the suitability of the incubation period utilized
in this work (30 days) for a satisfactory curve fitting and test
the dependence of EOM pool parameters on the incubation
time, we have utilized an independent data set from a labora-
tory incubation performed at 15 and 25 ◦C for 300 days with
a corn- and soybean-residue-amended soil. We calibrated the
EOM pool parameters by considering the whole incubation
period (300 days) and a shorter incubation time (30 days for
incubation at 25 ◦C and 50 days for incubation at 15 ◦C). The
results showed that the standard error associated with param-
eters obtained at different incubation times was acceptable
(smaller than 50 % of the parameter value; Robinson, 1985).
To estimate the error in SOC prediction associated with a
set of parameters calibrated at different incubation times, we
performed long-term RothC simulations (100 years) involv-
ing an annual addition of 1 t ha−1 of EOM-C and utilizing
such a different set of parameters. The results showed that
the difference in the yearly rate of SOC sequestration was
always lower than 7 %. We obtained similar results utilizing
another set of independent data from a 60-day incubation of
soil amended with cow manure, pig slurry and anaerobic di-
gestates. In this case the difference in C sequestration poten-
tial utilizing sets of parameters obtained after 30 and 60 days
of incubation was lower than 5 %.

The ability to estimate reliable SOM pools utilizing short-
term incubation data also depends on the accuracy in track-
ing the cumulative respiratory curve. The high measurement
frequency of the automatic system used in this study (one
measurement every 6 h) improves the precision of the cumu-
lative curve in comparison to standard methodologies (i.e.,
alkali trapping) characterized by a limited number of sam-
pling points. A high number of measurements allows outliers
to be more easily identified and eliminated. A further source
of uncertainty is related to the fact that cumulative curves
accumulate errors associated with each sampling point. The
system used in this study is characterized by high precision;
as a percent, relative standard deviation of the mean for CO2
measurements is typically less than 0.5 % (Mondini et al.,
2010). This minimizes the weight that each sampling point
has on the total cumulative respiratory response in compari-
son to traditional measurements with alkali trapping, usually
taken at large sampling intervals. We consider the accuracy
of the measurement system utilized in this work to compen-
sate for the possible limitations associated with short incuba-
tion times in comparison to incubation performed for longer
periods, but with less accurate and frequent measurements.

The reliability of short incubation times in performing an
acceptable characterization of EOM pool parameters is also
supported by other research. Mueller et al. (2003) used an in-
cubation time of 52 days at 9 ◦C to calibrate EOM pools for
the DAISY model. It is important to note that an incubation
period of 30 days at 20 ◦C, as carried out in our work, would
correspond to an incubation period of 86 days at 9 ◦C to min-
eralize the same amount of CO2. De Neve et al. (2003) incu-
bated waste for 39 days at 21 ◦C to estimate the amount of

stable C, a parameter that can be used directly as an input in
some C sequestration simulations models. Gale et al. (2006)
showed that an incubation period of 28 days at 22 ◦C was suf-
ficient for determining decomposition rate constants to rep-
resent EOM decomposition kinetics to be used in C mod-
els. Peltre et al. (2013) calibrated EOM pool parameters of
the DAISY model utilizing respiration curves from amended
soil incubated at 15 ◦C for 56 days. Saviozzi et al. (2014)
performed an incubation of 25 days at 25 ◦C to infer the la-
bile and recalcitrant EOM-C pool parameters. Similar con-
clusions concerning the suitability of short-term incubations
to obtain reliable EOM characterization were drawn by Be-
loso et al. (1993), Pedra et al. (2007) and Garcia et al. (1992)
utilizing incubation periods of 21, 28 and 42 days, respec-
tively.

Overall, an incubation time of 30 days with measurements
performed with an accurate system could be considered a
reasonable trade-off between the accuracy of the informa-
tion obtained in terms of C mineralization and the demand
for saving costs, time and space in the laboratory.

The suitability of short-term incubations in estimating re-
liable EOM pools does not imply that the parameters derived
from short-term laboratory incubation can be automatically
transposed to field conditions to simulate the long-term C dy-
namics of amended soils. Laboratory incubations are usually
performed with sieved soil under optimal constant conditions
for microbial activity that could result in quite different EOM
mineralization rates with respect to those for structured soil
in a variable field environment. Therefore the assimilation
of laboratory data into existing models need to be carefully
evaluated against field data (Schimel et al., 2006). Neverthe-
less, several authors have demonstrated that model parame-
terization obtained in laboratory incubations can be utilized
to provide a reliable simulation of EOM mineralization under
field conditions (Gabrielle et al., 2005; Kaboré et al., 2011;
Noirot-Cosson et al., 2016; Vidal-Beaudet et al., 2012). This
could be explained by the fact that EOM composition and
properties are the main factors regulating their mineraliza-
tion in the soil (Cavalli et al., 2014; Do Nascimento et al.,
2012; Karhu et al., 2012).

The data requirements for model validation under field
conditions make this task currently unfeasible to a large de-
gree. As the main objective of the proposed model modifica-
tion is to increase the ability to capture the large variability
in EOM quality, validation at a real scale would require data
from long-term field experiments dealing with a large range
of EOM with contrasting properties. This is problematic due
to the limited amount of suitable data available. While there
are several ongoing long-term experiments dealing with ma-
nure, straw and sludge amendment, there are relatively few
experiments reporting C data for soils amended with compost
from source-separate collection and anaerobic digestates. In
the case of new EOMs, such as meat meals and bioenergy
by-products, there is a lack of field-scale experiments. There
are no long-term field experiments dealing with EOMs char-
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acterized by different degrees of stability (i.e., compost at
different stages of the composting process) that would al-
low an improved validation of important model parameters
such as pool partitioning factors (fDEOM, fREOM, fHEOM)

and KREOM.
Another opportunity for enhanced validation would be the

assessment of the model ability to discriminate the effects
of soil texture on EOM mineralization. Cavalli et al. (2014)
reported no significant differences in EOM decomposition
among soils with contrasting texture and attributed this to
the soil structure disturbance caused by sample preparation
in incubation experiments that can reduce the physical pro-
tection of the applied EOM and decrease textural effects that
might be more explicit under field conditions. Unfortunately,
experiments concerning EOM application to soils with con-
trasting texture are very few.

The establishment of field experiments dealing with EOM
characterized by contrasting properties and degrees of trans-
formation under different environmental and management
options would allow for a proper evaluation of model per-
formances in simulating long-term SOC dynamics.

4.4.2 Simultaneous fitting of multiple parameters

In RothC, as in many other SOM models, the amount of C
associated with each pool decomposes following an expo-
nential decay. In theory, these pools are of a defined size
that should not change with environmental conditions or the
procedure used to fit the model with the data. Cabrera et
al. (2005) underlined that pools and rate constants in the ex-
ponential models are inversely related, which suggests that
the same fit to available data could be obtained by increasing
one parameter while decreasing the other; this is a situation
formally called equifinality or non-identifiability. Research
has also shown that increasing the incubation time can in-
crease or decrease the size of a pool while having the oppo-
site effect on rate constants. The possibility to obtain a non-
identifiable set of parameters also increases with a decreasing
amount of incubation data. These problems with exponential
models suggest that they need to be used judiciously in trying
to identify pools of a defined and fixed size; different combi-
nations of pool size and decomposition rate with a good fit to
the respiratory curve may result in significant differences in
SOC when the model is run over a long-term period.

A possible solution to avoid this pitfall is to have indepen-
dent controls to constrain the parameter estimates (Ahrens et
al., 2014). Unfortunately, we did not have such controls for
all the incubation data. Nevertheless, we are confident that
the optimized parameters represent a univocal set of values.
First of all, a unique identification of the optimized parame-
ters was sought by maintaining a constant HEOM decompo-
sition rate and imposing constraints on partition coefficients
and decomposition rates according to scientific data in or-
der to obtain biologically meaningful pool parameters. As
for the influence of incubation time on pool estimates, we

have found a consistent set of parameters between calibra-
tions performed after 30 and 300 days of incubation. Regard-
ing the impact of few measurements points, this does not ap-
ply to our curves characterized by high-frequency measure-
ment. Even if from a theoretical point of view there is the
possibility to obtain different sets of parameters leading to
an accurate simulation, this is limited by the shape of the
cumulative curve. For example, the first part of the curve, de-
scribing the fast release of CO2 from the most degradable C,
can be adequately described only by a specific combination
of KDEOM and fDPEOM values. Finally, a significant corre-
lation between pool size and decomposition is an indication
of model over-parameterization and the likelihood of obtain-
ing accurate simulations with different combinations of pa-
rameters. In the present work, such relationships were never
significant and this suggests that the optimized parameters
are likely to reflect a unique solution. Simultaneous fitting
of several parameters is not unusual in model calibration.
As an example, Mueller et al. (2003) and Cavalli and Be-
chini (2012) simultaneously fitted five and six parameters,
respectively.

5 Conclusions

The effective management of organic amendment requires
the development of C models able to take into account the
quality of added EOM. The main innovative aspects of this
work consist of the modification of the RothC model to in-
clude additional EOM pools and their parameterization by
model fitting to the respiratory curves of amended soils. The
results of the study show that the modified and optimized
model was able to adequately describe EOM mineralization
curves obtained under laboratory conditions and support the
hypothesis that defining EOM-specific partitioning factors
and decomposition rates improves the simulation ability of
the model in amended soils.

Due to the effect of different environmental conditions be-
tween laboratory and field conditions, the validation of the
modified model with field data represents a necessary step
in the model development as a tool to evaluate SOC storage
in EOM-amended soils in the long term. However, the con-
ceptual changes to the model structure and the potential use-
fulness of the model are justified through its ability to simu-
late detailed experimental data. We consider the capacity of
the model to adequately describe the mineralization curves
of EOM under laboratory conditions to represent an essen-
tial prerequisite for a reliable C modeling of amended soils;
it demonstrates the ability of the model to resolve the large
variability in EOM composition and properties. Furthermore,
information derived from the fitting procedure could be use-
ful in identifying knowledge gaps in environmental factors
and soil processes that regulate EOM decomposition in the
soil and suggest further ways to improve the model.
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The findings of the present research indicate that labora-
tory experiments on EOM decomposition could be useful in
improving the simulation of C dynamics in amended soils.
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