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Abstract. The global carbon cycle is an important compo-
nent of the Earth system and it interacts with the hydrology,
energy and nutrient cycles as well as ecosystem dynamics.
A better understanding of the global carbon cycle is required
for improved projections of climate change including corre-
sponding changes in water and food resources and for the
verification of measures to reduce anthropogenic greenhouse
gas emissions. An improved understanding of the carbon cy-
cle can be achieved by data assimilation systems, which in-
tegrate observations relevant to the carbon cycle into cou-
pled carbon, water, energy and nutrient models. Hence, the
ingredients for such systems are a carbon cycle model, an
algorithm for the assimilation and systematic and well error-
characterised observations relevant to the carbon cycle. Rel-
evant observations for assimilation include various in situ
measurements in the atmosphere (e.g. concentrations of CO,
and other gases) and on land (e.g. fluxes of carbon water and
energy, carbon stocks) as well as remote sensing observa-
tions (e.g. atmospheric composition, vegetation and surface
properties).

We briefly review the different existing data assimilation
techniques and contrast them to model benchmarking and
evaluation efforts (which also rely on observations). A com-
mon requirement for all assimilation techniques is a full de-
scription of the observational data properties. Uncertainty es-
timates of the observations are as important as the observa-

tions themselves because they similarly determine the out-
come of such assimilation systems. Hence, this article re-
views the requirements of data assimilation systems on ob-
servations and provides a non-exhaustive overview of cur-
rent observations and their uncertainties for use in terrestrial
carbon cycle data assimilation. We report on progress since
the review of model-data synthesis in terrestrial carbon ob-
servations by Raupach et al. (2005), emphasising the rapid
advance in relevant space-based observations.

1 Introduction

The anthropogenic perturbation of the global carbon cycle
has led to a global mean increase of 43 % in atmospheric CO,
(from 280 to 398 ppm) in 2014 compared to pre-industrial
(before 1750) levels (WMO, 2015) and is the main driver of
climate change. The main causes for the increase in CO, are
burning of fossil fuels and land use change, which amount
to emissions of 9.8 & 0.5 GtC in 2014. However, only about
44 % of these emissions stay in the atmosphere; the remain-
der is currently taken up by the land biosphere (=30 %)
and the surface ocean (26 %; Le Quéré et al., 2015). Pos-
itive climate-carbon cycle feedbacks, predominantly acting
on land processes, may reduce this sink capacity and thus

Published by Copernicus Publications on behalf of the European Geosciences Union.



3402

accelerate global warming (Matthews et al., 2007). Also, the
sink strength of the terrestrial biosphere is more variable than
that of the ocean (Ciais et al., 2013) and its quantification by
process-based terrestrial carbon cycle models exhibit large
uncertainties (Le Quéré et al., 2015).

A common way to reduce uncertainties from process-
based modelling is by confronting these models with ob-
servational data. Raupach et al. (2005) pointed out that the
systematic combination of observational data with process
modelling, which is commonly referred to as “model-data fu-
sion”, is an effective strategy for observing the Earth system.
The term model-data fusion is sometimes understood in a
more general way, which is that observational data is blended
with (pre-computed) model output, whereas the term “data
assimilation” refers to a robust mathematical framework for
improving model predictions with observational data. Data
assimilation is motivated by several benefits to make the
best use of observations and models (Mathieu and O’Neill,
2008). These benefits include, among others, (1) forecast-
ing and initialisation (forward predictions in time based on
past observations), (2) model and data quality control (reg-
ular and systematic confrontation of model output with ob-
servations within their uncertainty statistics), (3) a combi-
nation of various data streams (combined constraints of in-
dependent observations can be stronger than the sum of the
individual constraints), (4) filling in regions with sparse ob-
servations (consistent propagation of information from data-
rich regions to data-poor regions), (5) estimating unobserv-
able quantities (through process-based relations in the model
observations constrain modelled quantities which are not di-
rectly measured) and (6) observing system design (what is
the delta of a new type of observation).

Systematic observations are a key ingredient for data as-
similation studies. Here, we focus on the carbon cycle and the
land—atmosphere system. The land—atmosphere components
of the carbon cycle are an important part of an integrated
Earth observation system because of the close interactions
on land between the carbon cycle and the water and energy
cycles and hence its importance for climate projections and
climate change mitigation strategies through the monitoring
and management of terrestrial greenhouse gas sources and
sinks.

Raupach et al. (2005) provide an analysis of the various el-
ements of a Terrestrial Carbon Observation System (TCOS).
The need for, design and steps to be taken towards a TCOS
were already outlined by others before (Cihlar et al., 2002;
Global Carbon Project, 2003) but Raupach et al. (2005) sys-
tematically reviewed two major components of a TCOS: the
data assimilation methods and the observational data and
data uncertainty characteristics for some selected, main kinds
of relevant data. The requirements for a policy-relevant car-
bon observing system have been outlined by Ciais et al.
(2014). They review the current systematic carbon cycle ob-
servations and illustrate the implementation of such a policy-
relevant carbon observing system.
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In this paper we provide an update of the observational
data and data uncertainty characteristics as assessed by Rau-
pach et al. (2005) with a focus on existing but also new and
upcoming, relevant space-based observations, in the follow-
ing referred to as Earth observation (EO) data. In contrast to
(Ciais et al., 2014), who focus on carbon cycle observations,
we focus here on relevant observational data to be (poten-
tially) assimilated in a terrestrial carbon cycle data assimila-
tion system (CCDAS).

In a CCDAS non-carbon observations can be exploited to
constrain the simulated carbon cycle indirectly through the
relations implemented in the process model. Such observa-
tional constraints act by ruling out combinations of the un-
knowns in a CCDAS (typically a combination of process pa-
rameters, initial- or boundary conditions), which are incon-
sistent with the observations and thereby reduce uncertain-
ties in the simulated output. In that sense we are somewhat
broader in terms of observed variables because the “non-
carbon” observations (such as soil moisture or land surface
temperature) are also able to constrain the carbon cycle in-
directly through process information embedded in the under-
lying models. At the same time, the focus of our review is
narrower than that of Ciais et al. (2014), who also addressed
ocean and anthropogenic components.

The paper is organised as follows: in the next section we
contrast data assimilation with recently established bench-
marking activities and give a brief overview of commonly
used data assimilation approaches and their applications in
terrestrial carbon cycling. We continue with a short overview
on data characteristics including an update on progress for
some of the observations discussed in Raupach et al. (2005).
Since there has been much developments in the provision of
remotely sensed observations, we focus here on the charac-
teristics of the most relevant EO data streams.

2 Data assimilation
2.1 Data assimilation versus benchmarking

In the recent past the international land surface and terres-
trial ecosystem modelling communities have recognised the
importance of model benchmarking and evaluation (e.g. Luo
etal., 2012; Foley et al., 2013). One of the reasons for this de-
velopment is the huge range of model results from different
models in key diagnostics of the land—atmosphere interface
such as gross primary productivity (GPP) and latent heat flux
(Prentice et al., 2015).

In general “benchmarking” is understood as the quantifi-
cation of performance against a reference using some pre-
defined metrics. The reference can either be output from
some previous model simulations, other (ensembles of) mod-
els or reference data sets based on observations if the model
simulates the analogue quantity. Luo et al. (2012) suggest a
theoretical framework for benchmarking land models based
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on standardised references and metrics to measure model
performance skills. A large variety of such metrics and their
characteristics is introduced by Foley et al. (2013). Some ex-
amples of benchmarking terrestrial carbon cycle models (ei-
ther stand-alone or coupled to climate models) are given, for
example, by Randerson et al. (2009), Cadule et al. (2010) and
Kelley et al. (2013).

The commonality between benchmarking/evaluation and
data assimilation lies in the quantitative assessment of model
output. In benchmarking the quantitative assessment is per-
formed by calculating some metrics against either observa-
tions or other references, while in data assimilation this is
achieved by defining a cost function, which quantifies the
mismatch of some simulated model quantity against observa-
tions weighted by the inverse of their uncertainties (including
a model uncertainty). However, data assimilation goes be-
yond benchmarking as it minimises the quantified mismatch
to improve model performance directly by adjusting initial
and boundary conditions, state variables and/or model pro-
cess parameters.

As pointed out by Prentice et al. (2015) there is a need for
both model benchmarking and data assimilation: benchmark-
ing may be used as a routine application to improve confi-
dence and evaluate the performance (over time) in terrestrial
carbon cycle modelling. However, if a benchmark test for a
given model fails, this could simply imply that the model
parameter values have not been specified correctly and op-
timised against observations. In contrast, data assimilation,
in particular when used for parameter optimisation, poten-
tially identifies structural model and/or data deficiencies if
the model-data mismatch (or the benchmark test) is still inad-
equate after optimisation (see also Fig. 1). On the other hand,
a better fit between the posterior maximum likelihood simu-
lation (i.e. using the optimised parameters) and the observa-
tions is not necessarily an indication for correct parameters
and/or model structure as has been pointed out by MacBean
etal. (2016).

2.2 Data assimilation methods

The general problem of data assimilation can be formulated
(following the notation of Rayner et al., 2016) as follows:
given a model M, a set of observations y of some observ-
ables 0 = H (z), with z being the state variables of the model,
H the observation operator and prior information on some
target variables x, produce an updated description of x. x
may include elements of z and p (parameters; quantities
not changed by the model, i.e. process parameters, bound-
ary and initial conditions). The observation operator maps
the model state onto observables. In the case of a CCDAS-
assimilating atmospheric CO; the observation operator is the
atmospheric transport model that maps the net CO, surface
exchange fluxes as calculated by the terrestrial carbon cycle
onto simulated atmospheric CO, concentrations.
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Figure 1. Schematic of a data assimilation system with x being the
control vector containing the quantities to be updated by the assim-
ilation. The loop between the “evaluation of J” box to the “model
and observation operator” box indicates the assimilation process
(assimilation loop). Often, the analysis of residuals in model-data
comparison leads to either model improvements or adjustment of
the measurement strategies (“model improvement” and “adjusting
measurement strategy’’ arrows).

A data assimilation system consists of three main ingre-
dients: a set of observations, a dynamical model including
the observation operator and an assimilation method. When
assimilating multiple data streams, each data stream usually
requires its own observation operator (see e.g. Kaminski and
Mathieu, 2017). In the Bayesian formulation of the assim-
ilation problem uncertainties (i.e. the description of quanti-
ties by probability density functions, PDFs) are central to the
concept of data assimilation. Both observations as well as
models have errors arising for various reasons. We will de-
tail the observational errors in the next section. Dynamical
models as well as observation operators have errors arising
from the parameterisations and the discretisation of analyt-
ical dynamics into a numerical model; for a more complete
description of uncertainty in Earth system models or compo-
nents of such we refer to Scholze et al. (2012).

We distinguish two basic approaches in data assimilation:
sequential assimilation, which assimilates observations sub-
sequently at discrete model time steps, and variational as-
similation, which assimilates all observations at once at their
respective measurement times over a given period, the so-
called assimilation window. They differ in their numerical
efficiency and adequacy for their specific use. A general data-
assimilation scheme is shown in Fig. 1. In the sequential ap-
proach the assimilation loop is evaluated sequentially over
time following the dynamics of the model. In the case of
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variational assimilation the assimilation loop is evaluated it-
eratively (assuming a non-linear model). Both cases evaluate
a cost function J, formulated in the Bayesian framework as
follows:

J= 3 [ =B ) ) ) R - 0], (1)

where x® is the prior information, B the prior uncertainty
covariance and R the observational uncertainty covariance.
When multiple data streams with different observation oper-
ators are assimilated, there will be several summands of the
form of the second term on the right hand side of Eq. (1), one
for each data stream.

Rayner et al. (2016) introduce the theory fundamental to
data assimilation and illustrate how the different implemen-
tations of data assimilation relate to this theory in a more
narrative style. A more complete and mathematically precise
introduction to the concepts of data assimilation is given in
the textbooks by e.g. Daley (1991) and Tarantola (2005).

2.3 [Examples of terrestrial carbon cycle data
assimilation

A variety of the methods as described by Rayner et al. (2016)
have been applied by the carbon cycle community. One ex-
ample that is making use of formal assimilation methodolo-
gies for inferring surface-atmosphere CO, exchange fluxes
is based on atmospheric transport inversions. As mentioned
before, in atmospheric inversions the observation model is
an atmospheric tracer transport model. In atmospheric inver-
sions both sequential and variational methods have been used
together with observations of atmospheric trace gas concen-
trations such as from the flask sampling network, continuous
in situ and aircraft measurements and more recently also re-
motely sensed total column measurements. The techniques
for atmospheric transport inversions have been detailed in
Enting (2002) and a recent comparison of results from dif-
ferent transport inversion is given by Peylin et al. (2013).

A more recent development is the assimilation of observa-
tions into terrestrial biosphere models. Here, various meth-
ods and observations have been used to optimise model pro-
cess parameters at different scales. A comparison of a whole
suite of these assimilation methods applied to a test case us-
ing a simplified model at local scale is given by Trudinger
et al. (2007) and Fox et al. (2009).

Kaminski et al. (2002) were among the first who applied a
formal algorithm together with observations of atmospheric
CO; concentrations to constrain the simple diagnostic bio-
sphere model at global scale. This work was continued by the
development of the first carbon cycle data assimilation sys-
tem (CCDAS) with a process-based model (BETHY) at its
core (Rayner et al., 2005). The advantage of using a process-
based model at the core of a CCDAS is that once the process
parameters have been optimised the constrained model can
also be used for predictions as demonstrated by Scholze et al.
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(2007). Also, such systems are capable of ingesting multiple
independent data streams besides atmospheric CO, concen-
trations. Kaminski et al. (2013) provide an overview on the
developments of the CCDAS-BETHY since its first applica-
tion while Scholze et al. (2016) demonstrate the latest ap-
plication of CCDAS-BETHY, assimilating atmospheric CO»
and remotely sensed surface soil moisture simultaneously.
Since then several global terrestrial ecosystem models have
been included in CCDAS employing a variational approach
(e.g. Schiirmann et al., 2016; Peylin et al., 2016).

Concurrently, there have been several studies at the lo-
cal/regional scale assimilating various types of observations.
For instance, Barrett (2002) used a genetic algorithm to in-
fer soil carbon turnover times in a terrestrial carbon cycle
model over Australia from in situ observations of plant pro-
duction, biomass, litter and soil carbon. Local eddy covari-
ance flux tower measurements of net exchange of CO; and
latent and sensible heat fluxes have been assimilated to op-
timise parameters related to photosynthesis, respiration and
energy fluxes of terrestrial ecosystem models using Monte-
Carlo-type methods (e.g. Braswell et al., 2005; Knorr and
Kattge, 2005; Moore et al., 2008; Ricciuto et al., 2008; Post
et al., 2017), sequential methods (Williams et al., 2005) as
well as variational approaches (e.g. Wang et al., 2001; Kup-
pel et al., 2012; Raoult et al., 2016)

Recent advances focus on multiple independent data
stream assimilation to provide a more rigorous constraint on
the multiple components of terrestrial ecosystem models and
avoid equifinality, i.e. different parameter solutions provid-
ing the same cost function value at the minimum. Examples
for such studies on local/regional scale are the assimilation
of eddy covariance CO; fluxes together with observations
of vegetation structural information or carbon stocks (e.g.
Richardson et al., 2010; Keenan et al., 2012; Thum et al.,
2017). The assimilation of multiple data streams can be per-
formed either in a stepwise (e.g. Peylin et al., 2016) or simul-
taneous approach (e.g. Kaminski et al., 2012); in the case of
non-linear models or non-linear observation operators only
the simultaneous assimilation makes optimal use of the ob-
servations (MacBean et al., 2016). In Sect. 3.2 we provide
more terrestrial carbon cycle data assimilation examples us-
ing some of the remotely sensed products discussed in the
following.

3 Data characteristics and provision

Observations are our measurable representation of the
“truth”. They come with different characteristics in terms
of spatial and temporal resolution, coverage of the observed
system and errors. In analogy, models are also some repre-
sentation of the truth, but via knowledge embodied in some
form of functional relationships (with their own errors as
mentioned before). The paper by Raupach et al. (2005) has
been instrumental in highlighting the challenges in combin-
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Figure 2. Space—time diagram for a range of observations relevant
for a Terrestrial Carbon Observation System.

ing models and observational data for building a TCOS fo-
cusing on the observational requirements. Ciais et al. (2014)
argue for a globally integrated carbon observation system to
improve our understanding of the carbon cycle for predicting
future changes and to be able to independently verify the im-
pact of emission reduction measures. Such a system relies on
atmospheric carbon observations as a backbone but also con-
cerns observations of the terrestrial and ocean carbon cycle.
They focus on a strategy towards a global carbon cycle mon-
itoring system for achieving the above mentioned objectives.

Figure 2 depicts exemplarily the main observations of a
TCOS and their space—time characteristics. In the following
we briefly summarise the aspects of uncertainty in the obser-
vations and highlight progress on the specification of uncer-
tainty for some of the observations in Fig. 2 as well as on
their monitoring since Raupach et al. (2005).

3.1 Observational uncertainty

As mentioned before an important ingredient to any data as-
similation system is not only the observations themselves
but also the uncertainties associated to them. We distinguish
three main types of observation errors:

— Random errors are always present in measurements and
are caused by unpredictable changes in the measure-
ment system (e.g. electronic noise in electrical instru-
ment). They show up as different readings of the same
repeated measurement and thus can be reduced by tak-
ing the average of multiple measurements. Random er-
rors are usually assumed to be normal (Gaussian) dis-
tributed, however, in some cases the random error dis-
tribution is log-normal (e.g. precipitation) or skewed by
outliers due to unpredictable corruptions of the mea-
surement system. Random errors are therefore related
to the precision of a measurement system.
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— Systematic (bias) errors in observations are usually due
to some recurring problems in the overall measurement
system. They are caused by instrument miscalibrations
or interferences with the measurement system. They can
vary in space and time but they affect the measurement
system in a predictable way. Biases can be both additive
(absolute mean bias) and multiplicative (biases in the
dynamic range affecting the amplitude of a signal). If
the source for systematic errors is known they can usu-
ally be fixed and should be removed. Systematic errors
are therefore related to the accuracy of a measurement
system.

— Representativeness error occurs when information is
represented at a scale different from the source of the in-
formation. For instance a quantity simulated by a model
is representative for a given spatial and temporal reso-
lution of the model grid. In fact, the scale at which we
trust the model may be larger than a grid cell. An in-
dividual measurement, however, represents information
influenced by the local environment that is not resolved
by the model grid (e.g. representation of atmospheric
flask data in an atmospheric transport model grid cell).

For both random and systematic errors not only the mag-
nitude of the error for a single observation is important, i.e.
the diagonal elements in the observational uncertainty co-
variance matrix B, but also the correlations between errors
for different observations. Hence there is a need to specify
the off-diagonal elements in the error covariance matrix B.
These off-diagonal elements are usually hard to specify, but
it is important to quantify them in a data assimilation system.
They have considerable impact on the solution because of
their influence on the weight of the respective observations
in the cost function.

In addition to the observational errors, models have errors,
which, in a data assimilation system, are usually included in
the observation errors. These errors in dynamical models are
mainly caused by process parameterisations (instead of re-
solving the process) and by the discretisation of analytical
dynamics into a numerical model. A more detailed descrip-
tion of the different model error sources is given in Scholze
etal. (2012).

As mentioned before, Raupach et al. (2005) have already
reflected on the main properties of the data and their error
covariances for observations of remotely sensed land sur-
face properties (mainly the normalised differential vegeta-
tion index, NDVI), atmospheric CO> concentrations, land—
atmosphere net CO, exchange fluxes and terrestrial carbon
stores. The in situ measurements of CO; concentrations are
either based on flask samples or on continuous monitoring
stations. The flask sampling network was established in 1961
by Keeling (1961) and has been extended since then to more
than 200 sites globally. The continuous in situ network pro-
vide measurements at higher precision and temporal resolu-
tion than the flask networks. For both the flask and the contin-
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uous stations, improvements in precision and accuracy have
been achieved through propagation of frequent comparisons
and international standards (Francey et al., 2001).

The global FluxNet network consists of more than 200
sites globally measuring land—atmosphere fluxes of CO, la-
tent and sensible heat and others using the eddy covariance
technique at a half-hourly temporal resolution (Baldocchi
et al., 2001). Many other (mostly meteorological) variables
are measured at these sites as well. In the past years, there has
been substantial progress in the homogenisation and avail-
ability of these direct CO; flux measurements. The publicly
available FLUXNET2015 data set includes more than 1500
site-years of data covering all major biome types from about
165 sites worldwide, spanning a period from 1991 (for some
sites) up to 2014 (Pastorello et al., 2017). There has also
been substantial progress in the specification of uncertainties
in eddy covariance measurements of the land—atmosphere
net CO; exchange flux (net ecosystem productivity, NEP)
and its component fluxes (GPP and ecosystem respiration,
Reco). For instance, Lasslop et al. (2008) analysed the er-
ror distribution and found that the eddy flux data can almost
entirely be represented by a superposition of Gaussian dis-
tributions with inhomogeneous variance. Richardson et al.
(2008) showed that the measurement errors in NEP are het-
eroscedastic; i.e. the error variance varies with the magnitude
of the flux. In a more recent study Raj et al. (2016) investi-
gated the uncertainty of GPP derived from partitioning the
eddy covariance NEP measurements. They used a light-use
efficiency model embedded in a Bayesian framework to esti-
mate the uncertainty in the separated GPP from the posterior
distribution at half-hourly time steps.

3.2 Examples of systematic observations from satellite
EO data

There has been a vast extension of EO capabilities during
the past 10 years or so both in terms of product quality (in-
cluding, for instance, improved accuracy) and quantity (new
products).

In any data assimilation system using satellite EO data one
needs to decide in the design phase of the system whether to
assimilate observations at the sensor level (i.e. the spectral
radiances for optical sensors or brightness temperatures for
microwave sensor, referred to as level 1 data) or to assim-
ilate the biogeophysical variable derived from the radiances
through a retrieval algorithm (level 2 data product). When as-
similating level 1 data the retrieval algorithm is part of the ob-
servation operator linking the model state to the observations
in the data assimilation system. A more detailed description
of the two alternatives in assimilating EO satellite observa-
tions into models of the Earth system is given by Kaminski
and Mathieu (2017). In carbon cycle data assimilation sys-
tems level 2 data products (or even level 3 data, which are
provided on a regular space—time grid) are most commonly
used. However, there is a risk that when using products at
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level 2 or higher, the parameters/processes implemented in
the retrieval algorithm may not be consistent with the corre-
sponding equivalent parameters/processes in the underlying
model, thus causing additional errors in the assimilation.

In the next subsections we present some selected remotely
sensed Earth observation products, which are relevant for ter-
restrial carbon cycle data assimilation, in more detail:

atmospheric CO»,

vegetation activity (FAPAR and SIF),

soil moisture,

terrestrial biomass.

These EO products either have already been used, are in
the process of being used or would potentially be a use-
ful data constraint in a CCDAS. For vegetation activity we
distinguish two major types of products: more “traditional”
reflectance- or radiative-based products, such as the fraction
of absorbed photosynthetically active radiation (FAPAR),
and recently developed products based on biogeochemical
processes, such as sun-induced fluorescence (SIF). Leaf area
index (LAI, e.g. Liu et al., 2014), which is in effect closely
related to FAPAR, is another geophysical parameter that rep-
resents vegetation activity. There is also a range of remotely
sensed vegetation indices, of which NDVI is an example.
Both LAI and NDVI have been used in data assimilation
studies: an example for NDVI is given by MacBean et al.
(2015) and for LAI by Luke (2011) and Barbu et al. (2014).
In Sect. 3.2.2 we detail the difference between NDVI and FA-
PAR and explain that FAPAR is based on physical principles.
FAPAR has already been demonstrated to provide a strong
constraint on terrestrial carbon and water fluxes through its
impact on the phenology components of the carbon cycle
model either by assimilating only FAPAR data (e.g. Knorr
et al., 2010) or in combination with other data streams (e.g.
Kaminski et al., 2012; Kato et al., 2013; Forkel et al., 2014).
SIF is a promising observation for constraining the gross up-
take of CO; by plant photosynthesis. First assimilation re-
sults using SIF observations in a CCDAS show that the un-
certainty in global annual GPP is largely reduced by con-
straining parameters that describe leaf phenology (Norton
et al., 2016). Remotely sensed atmospheric CO, concentra-
tion (XCO,; see Sect. 3.2.1) has also been assimilated into a
diagnostic terrestrial carbon cycle model to derive net CO,
fluxes consistent with independent in situ measurements of
atmospheric CO; and to reduce posterior uncertainties in the
inferred net and gross CO; fluxes (Kaminski et al., 2016).
Barbu et al. (2014) and Albergel et al. (2017) assimilated
both soil moisture and LAI data into a land surface model,
but their focus was on improving the hydrological and land
surface physical quantities and not the carbon cycle. van der
Molen et al. (2016) assessed the impact of assimilating var-
ious remotely sensed soil moisture products into the SiB-
CASA ecosystem model on simulated carbon fluxes in bo-
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real Eurasia. Although the impact of assimilating ASCAT
surface soil moisture was significant, its skill in this hydro-
logically complex environment strongly depends on surface
water and vegetation dynamics. In contrast, Scholze et al.
(2016) showed that when assimilating SMOS soil moisture
simultaneously with in situ atmospheric CO; concentrations,
the reduction of uncertainty in gross and net CO; fluxes rel-
ative to the prior is considerably higher than when only as-
similating CO», which quantifies the added value of SMOS
observations as a constraint on the terrestrial carbon cycle. So
far, remotely sensed biomass data have not been used in car-
bon cycle data assimilation studies, but several studies (e.g.
Richardson et al., 2010; Keenan et al., 2012; Thum et al.,
2017) have demonstrated the added value of in situ above-
ground biomass observations in constraining the terrestrial
carbon cycle.

This list of EO products described in this paper is admit-
tedly subjective and there are of course a whole range of ad-
ditional remotely sensed products available, which are rele-
vant for carbon cycle studies as well, e.g. burned area (e.g.
Giglio et al., 2013), land cover (e.g. Bontemps et al., 2012),
land surface temperature (e.g. Li et al., 2013) or vegetation
optical depth (VOD; e.g. Konings et al. (2016)). However,
these products are rather used as input or boundary condi-
tions for terrestrial carbon cycle models (burned area and
land cover) or, in the case of land surface temperature and
VOD, they have so far not been used in carbon cycle data
assimilation studies.

3.2.1 Atmospheric CO; and CHy

Satellite retrievals of atmospheric carbon dioxide (CO;) and
methane (CHy4) are available from several satellite instru-
ments such as mid-tropospheric CO; and CH4 columns from
the Infrared Atmospheric Sounding Interferometer (IASI;
e.g. (Crevoisier et al., 2009a, b)) on EUMETSAT’s Metop
satellite series, vertical profiles with highest sensitivity in the
middle/upper troposphere from AIRS on Aqua (e.g. Xiong
et al.,, 2013), stratospheric profiles from MIPAS on EN-
VISAT limb observations (e.g. Laeng et al., 2015) and from
the solar occultation observations of SCTAMACHY on EN-
VISAT (Noél et al., 2011, 2016) and ACE-FTS (e.g. Boone
et al., 2005; Foucher et al., 2009). These observations have,
however, only little or no sensitivity to CO, and CHy con-
centration changes close to the Earth’s surface and there-
fore contain only limited information on regional or lo-
cal CO, and CHy sources and sinks. Satellites with high
near-surface sensitivity are nadir (down-looking) satellites
which measure radiance spectra of reflected solar radiation
in the relevant spectral bands in the near-infrared/shortwave-
infrared (NIR/SWIR) spectral region, which are located
around 1.6 um (CO; and CHy) and around 2.0 um (CO»).
Satellites instruments which perform (or have performed)
these observations are SCIAMACHY on board ENVISAT
(2002-2012; Burrows et al., 1995; Bovensmann et al., 1999),
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TANSO-FTS on board GOSAT (launched in 2009; Kuze
et al., 2009, 2014) and NASA’s Orbiting Carbon Observa-
tory 2 (OCO-2) mission (launched in 2014; Crisp et al., 2004;
Boesch et al., 2011).

The main CO; and CHy data products of these sensors are
near-surface-sensitive column-averaged dry-air mole frac-
tions of CO, and CHy, denoted XCO; and XCHy4. The
quantities XCO, and XCHy are both retrieved from SCIA-
MACHY/ENVISAT (ground pixel size: 30 x 50 km?, along
track times across track; swath width 960 km with con-
tiguous ground pixels) and TANSO-FTS/GOSAT (10km
pixel size; several, e.g. 3 or 5 non-contiguous pixels across
track). OCO-2 delivers XCO, (8 ground pixels across
track, each ~1.3km) and other satellites have been or
will be launched, such as Europe’s Sentinel-5-Precursor
satellite (S5P; Veefkind et al., 2012), which will deliver
(among several other parameters) XCHy (7 km pixel size at
nadir, 2600 km swath width with contiguous ground pixels;
planned launch: autumn 2017) (Butz et al., 2012) and China’s
TanSat (launched end of 2016), which will deliver XCO,
with similar characteristics to NASA’s OCO-2. It can be ex-
pected that future satellites will provide improved measure-
ments, in particular with respect to more localised emission
sources (e.g. Buchwitz et al., 2013; Ciais et al., 2015). In the
following we focus the discussion on sensors that have al-
ready delivered multiyear XCO, and XCHy data sets, i.e. on
SCIAMACHY and TANSO.

These satellite-derived XCO, and XCH4 data products are
sensitive to surface fluxes because CO, and CH4 emission
and uptake by surface sources and sinks result in the largest
changes of the atmospheric CO; and CH4 mixing ratio close
to the Earth’s surface and therefore modify the observed ver-
tical columns. This results in local or regional atmospheric
enhancements (e.g. Buchwitz et al., 2017, discussing lo-
calised methane sources) or large-scale atmospheric gradi-
ents (e.g. Reuter et al., 2014, discussing CO, uptake by the
terrestrial biosphere).

The XCO, and XCH4 data products retrieved from SCIA-
MACHY and TANSO are generated from the radiance ob-
servations using different approaches. Most approaches are
based on optimal estimation (OE; e.g. Rogers, 2000; Reuter
etal., 2010), also called Bayesian inference. OE permits con-
straining the retrieval using a priori information on, e.g. at-
mospheric vertical profiles of trace gases and aerosols. In
general, the radiances are simulated using a radiative trans-
fer model (RTM) and RTM and other parameters (state vec-
tor elements) are adjusted until an optimal match is achieved
between observed and simulated radiances. One algorithm
(WFM-DOAS, WFEMD Buchwitz et al., 2000; Schneising
et al., 2008, 2009) is based on least-squares and does not
use a priori information to constrain the fit parameters. As
a consequence, the resulting XCO, and XCHjy products are
typically somewhat “noisier” compared to the OE products.

The XCO; and XCHy4 data products from SCIAMACHY
are generated within the GHG-CCI project (Buchwitz et al.,

Biogeosciences, 14, 3401-3429, 2017



3408

M. Scholze et al.: EO data for carbon cycle assimilation

Table 1. Overview of SCTAMACHY/ENVISAT and TANSO-FTS/GOSAT XCO; and XCHy level 2 data products (individual ground-pixel
retrievals). For some products, level 3 (i.e. gridded data) products are also available (e.g. for CO2_SCI_WFMD and CH4_SCI_WFMD from
http://www.iup.uni-bremen.de/sciamachy/NIR_NADIR_WFM_DOAS/ and merged SCIAMACHY and TANSO-FTS XCO, and XCHy4

products in Obs4MIPs format from http://www.esa-ghg-cci.org/).

Variable Sensor Source

Product (reference)

XCOy SCIAMACHY

http://www.esa-ghg-cci.org/

CO2_SCI_BESD (Reuter et al., 2011)
CH4_SCI_WFMD (Schneising et al., 2011)

TANSO

http://www.gosat.nies.go.jp/en/

NIES operational GOSAT (Yoshida et al., 2013)
http://www.esa-ghg-cci.org/

CO2_GOS_OCFP (Cogan et al., 2012)
CO2_GOS_SRFP/RemoTeC (Butz et al., 2011)
http://www.iup.uni-bremen.de/~heymann/besd_gosat.php
GOSAT BESD (Heymann et al., 2015)
http://disc.sci.gsfc.nasa.gov/acdisc/documentation/ACOS .html
NASA ACOS (Crisp et al., 2012)

SCIAMACHY &
TANSO merged
0CO-2

http://www.esa-ghg-cci.org/
CO2_EMMA (Reuter et al., 2013)
http://disc.sci.gsfc.nasa.gov/OCO-2

NASA OCO-2 (Boesch et al., 2011)

XCHy SCIAMACHY

http://www.esa-ghg-cci.org/

CH4_SCI_WFMD (Schneising et al., 2011)
CH4_SCI_IMAP (Frankenberg et al., 2011a)

TANSO

http://www.gosat.nies.go.jp/en/

NIES operational GOSAT (Yoshida et al., 2013)
http://www.esa-ghg-cci.org/

CH4_GOS_OCPR (Parker et al., 2011)
CH4_GOS_SRPR/RemoTeC (Butz et al., 2010)
CH4_GOS_OCFP (Parker et al., 2011)
CH4_GOS_SRFP/RemoTeC (Butz et al., 2011)

SCIAMCHY &
TANSO merged

http://www.esa-ghg-cci.org/
CH4_EMMA (Reuter et al., 2013)

2015) of ESA’s Climate Change Initiative (CCI, Hollmann
et al., 2013) and these products are available from the GHG-
CCI website (http://www.esa-ghg-cci.org/). XCO, and/or
XCH4 products from GOSAT are generated at several in-
stitutions in Japan, Europe and the USA and are available
from several sources as shown in Table 1. The quality of
these GHG-CCI products and the XCO;, and XCH4 prod-
ucts generated elsewhere has been significantly improved
during recent years (e.g. Schneising et al., 2012; Yoshida
et al., 2013; Dils et al., 2014; Buchwitz et al., 2015) and has
now reached quite high maturity when compared to user re-
quirements as formulated in, e.g. GCOS (2011). This can be
concluded, for example, from the quality of the latest ver-
sion of the GHG-CCI SCIAMACHY and TANSO XCO»
and XCHy data set (Climate Research Data Package No. 3,
CRDP3; Buchwitz et al., 2016). Based on comparisons with
ground-based observations of the Total Carbon Column Ob-
serving Network (TCCON, Wunch et al., 2010, 2011) it has
been found that the GCOS requirements for systematic er-
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ror (< 1 ppm for XCO,, < 10 ppb for XCHy) and long-term
stability (< 0.2 ppm/year for XCO,, < 2 ppb yr~! for XCHy)
are met for nearly all products. As also shown in Buchwitz
et al. (2016), the single observation (ground pixel) retrieval
precision (random error primarily due to instrument noise)
is about 2 ppm for XCO, from SCIAMACHY and TANSO
and =~ 15 ppb for TANSO XCH4. For SCIAMACHY XCHy4
the precision depends on the time period and retrieval algo-
rithm and is in the range 35-80 ppb. For some products it
has also been investigated to what extent the uncertainty can
be reduced upon averaging (Kulawik et al., 2016) and rec-
ommendations are given on how to take into account error
correlations (Reuter et al., 2016), i.e. which values to use for
the non-diagonal elements of the error covariance matrix, as
an important contribution to the full characterisation of the
data needs for data assimilation studies.

Figure 3 presents an overview of GHG-CCI CRDP3 XCO,
(left) and XCHy4 (right) data set in terms of time series and
maps. These figures have been generated by gridding the un-
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derlying individual ground pixel (level 2) products to gen-
erate a 5° x 5° monthly level 3 Obs4MIPs product (Buch-
witz and Reuter, 2016). Each 5° x 5° monthly grid cell also
contains an estimate of the overall uncertainty (also shown
in Fig. 3) which has been computed by taking into ac-
count random and systematic error components. The grid
cell uncertainty is computed from two terms: (i) using the
reported uncertainties as given in the level 2 (individual
ground pixel) product files for each of the used satellite prod-
ucts (using an ensemble of SCTAMACHY and GOSAT level
2 products) and (ii) using a term accounting for potential
regional/temporal biases as obtained from validation using
TCCON ground-based data (see above). The first term de-
pends on the number of individual observations added (the
error reduces in proportion to the square root of the number
of observations added) whereas the latter term is constant
and in the range 0.57-0.87 ppm depending on the satellite
XCO; product or in the range 6—10ppb for XCH,4. As can
be seen from Fig. 3, the uncertainty of the satellite XCO, re-
trievals for monthly 5° x 5° averages is estimated to be typ-
ically around 0.5-1 ppm (values larger than 1 ppm are typ-
ically associated with regions where only few observations
per grid cell exist, e.g. due to clouds or higher latitudes cor-
responding to low sun elevation). For XCHy4 the uncertainty
is of the order of a few ppb (typically 4-8 ppb). In Buchwitz
and Reuter (2016), initial TCCON validation results of the
Obs4MIPs products are also presented. It is shown that the
XCO; product agrees with monthly averaged TCCON XCO,
within 0.29 £ 1.2ppm (lo) and the XCH4 product within
2.0410.7 ppb. This is hardly worse than the results which
have been obtained by careful validation of the individual
ground pixel retrievals taking into account the best possi-
ble spatio-temporal co-location and considering the averag-
ing kernels, etc. (e.g. Buchwitz et al., 2016). Note that the
computed differences of Obs4MIPs monthly 5° x 5° satel-
lite products with monthly averaged TCCON include the er-
rors of the satellite data, errors of the TCCON products, er-
rors due to neglecting altitude sensitivity differences (aver-
aging kernels) and representativity error. This indicates that
the representativity error is quite small (at least for monthly
5° x 5° spatio-temporal sampling and resolution), probably
of the order of 0.1-0.2 ppm for XCO, and a few ppb for
XCHy (it is planned to quantify this error in the future but
currently only these rough estimates are available). Note that
detailed information on all GHG-CCI products is available
on the GHG-CCI website in terms of technical documents,
links to peer-reviewed publications and figures including de-
tailed maps for each month and each individual data product.

The SCIAMACHY and TANSO XCO; and XCHy re-
trievals have been used in a number of scientific studies to ad-
dress important questions related to the sources and sinks of
atmospheric CO; and CHy by atmospheric inversion studies
(e.g. Bergamaschi et al., 2013; Houweling et al., 2015) and
more recently also in a data assimilation context for optimis-
ing model parameters (Chevallier et al., 2017). Obviously,
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the longer the time series and the more accurate it is, the
larger the information content of a given data set. Therefore,
further improvements are desired (Chevallier et al., 2017)
and possible (at least in terms of time series extension but
likely also in further reduction of remaining biases).

3.2.2 Reflectance-based vegetation dynamics/activity

Since the early beginnings of remote sensing the state and
evolution of the vegetation has been monitored by satel-
lites. An early attempt to analyse vegetation dynamics from
space is to calculate the normalised difference vegetation in-
dex (NDVI), defined as the ratio between the difference of
NIR and visible red (RED) spectral bands, and the sum of
NIR and RED: NDVI = (NIR — RED)/(NIR + RED) (Deer-
ing et al., 1975). The advantage of an index such as NDVI lies
in its simplicity and applicability to sensors with few spectral
bands such as the Advanced Very High Resolution Radiome-
ter (AVHRR). Therefore this index has been applied for nu-
merous purposes over the last 30 years or so. However NDVI
is not a geophysical variable and it is sensitive to various per-
turbing factors such as atmospheric constituents (aerosols,
water vapour), directional effects (geometry of illumination
and observation), changes in soil background colour (de-
pending on soil water content; e.g. Pinty et al., 1993; Goel
and Qin, 1994; Leprieur et al., 1994; Dorigo et al., 2007).
There have been many attempts to modify NDVI and de-
velop additional vegetation indices (VIs) to overcome its
limitations, for example the Soil-Adjusted Vegetation Index
(Huete, 1988), Atmospherically Resistant Vegetation Index
(Kaufman and Tanre, 1992) or Global Environmental Moni-
toring Index (Pinty and Verstraete, 1992). These indices gen-
erally exhibit some improvement in one respect but at the
expense of degradation in another respect. Pinty et al. (2009)
demonstrate the limitations of such VIs in representing the
complex radiative properties of the canopy—soil system over
the visible to NIR albedo range. Satellite-derived LAI prod-
ucts (e.g. Liu et al., 2014) seem to be an alternative to VIs.
LAI is, however, model dependent; i.e. the correct interpreta-
tion of this variable depends on the formulation of the model
used in the retrieval scheme and may differ from the inter-
pretation adopted by the land biosphere model used for as-
similating the LAI product (Disney et al., 2016).

A rational approach to addressing all these issues together
is to design a physically based quantity which is determined
by the state of the canopy—soil system. The fraction of ab-
sorbed photosynthetically active radiation (FAPAR), which
is a normalised fraction with values ranging from 0O to 1,
provides information on the photosynthetic activity of the
land vegetation. It is recognised as an essential climate vari-
able (ECV; GCOS, 2011) and is based on the land surface
radiation budget. It is defined as the fraction of the photo-
synthetically active radiation (i.e. incoming solar radiation
in the spectral region 0.4-0.7 pm) that is absorbed by the
vegetation canopy (see also Pickett-Heaps et al., 2014 for
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Table 2. Characteristics of a variety of FAPAR products; more details and products are provided by D’Odorico et al. (e.g. 2014); Pickett-

Heaps et al. (e.g. 2014).

Name Time Temporal  Definition Reference

period resolution
MODIS 2000—present 8 days Green canopy, direct radiation (Myneni et al., 2002)
SeaWiFS* 1997-2006 10 days Green canopy, diffuse radiation (Gobron et al., 2006)
TIP-MODIS 2000—present 16 days FAPAR/green canopy, diffuse radiation  (Pinty et al., 2011b)
TIP-GlobAlbedo  2002-2011 8 days FAPAR/green canopy, diffuse radiation ~ (Disney et al., 2016)
Vegetation 1999—present 10 days FAPAR, direct radiation (Baret et al., 2007)

* The same algorithm is used for MERIS (called JRC MGVI, 2002-2011) and SPOT-Vegetation (2012-present) with a 1.2 km, 10-day resolution

(Gobron et al., 2008).
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Figure 3. Time series of satellite-derived XCO, in three latitude bands (see annotation bottom left, e.g. red line: 30 to 60° N) and maps
showing the spatial distribution of XCO, for April 2014 (top left) and corresponding XCO, uncertainty (top right). (b) As (a) but for XCHy

(maps: September 2014).

a mathematical definition). Several FAPAR products are de-
rived from a variety of optical sensors (e.g. ATSR, MERIS,
MISR, MODIS, SEVIRI, SeaWiFS, VEGETATION) at dif-
ferent spatial and temporal resolutions. Although there have
been substantial efforts to harmonise products across sensors
(Ceccherini et al., 2013) and establish standards and valida-
tion practices (e.g. Widlowski, 2010), there are still consid-
erable differences among the products. These differences can
mainly be associated with differences in the retrieval method-
ology as well as to the quality of input variables. A recent
overview of various FAPAR products and their specifica-
tions, but without an assessment of product uncertainties, is
given by Gobron and Verstraete (2009). Table 2 summarises
the characteristics of the most common FAPAR products.
Several studies have compared the performance of dif-
ferent satellite-derived FAPAR products: McCallum et al.
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(2010) looked at four FAPAR data sets over northern Eurasia
for the year 2000, Pickett-Heaps et al. (2014) evaluated six
products across Australia, D’Odorico et al. (2014) compared
three products over Europe, Tao et al. (2015) assessed five
products over different land cover types, and Disney et al.
(2016) compared two FAPAR products derived from Glob-
Albedo and MODIS data. Pickett-Heaps et al. (2014) con-
cluded that, although all six evaluated products display ro-
bust spatial and temporal patterns, there is considerable dis-
agreement in the absolute magnitude among the products and
none of the products outperforms the others. This has also
been confirmed by the studies of D’Odorico et al. (2014) and
Tao et al. (2015). One of the reasons for these differences
are different assumptions on the underlying biome types.
They also reviewed the consistency of the FAPAR products
against in situ field measurements: the mean difference be-
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tween the EO products and the in situ field measurements
is around 0.1. This estimate is confirmed by the study of
Tao et al. (2015), who suggest an average uncertainty of
0.14 from validation against total FAPAR and 0.09 from val-
idation against green FAPAR in situ measurements. In their
comparison of the Joint Research Centre — Two-stream In-
version Package (JRC-TIP) MODIS, JRC MGVI (based on
MERIS) and Boston University MODIS products (see Ta-
ble 2), D’Odorico et al. (2014) placed special emphasis on
the assessment of the product uncertainties by not only com-
paring the uncertainties (or quality indicators) as proposed
by the product teams but also by calculating an independent
theoretical uncertainty based on the triple collocation (TC)
method (see Sect. 3.2.4). While the uncertainties specified
by the product teams differed by up to 0.1 among the prod-
ucts, the TC method suggested more consistent uncertainties
among the three products of around 10-20 % of the signal.
The JRC-TIP (Pinty et al., 2007) is an inverse modelling
system that was explicitly designed to retrieve a set of land
surface variables, including FAPAR, in a form that is com-
pliant with the requirements for assimilation into terrestrial
biosphere models; hence we focus in the following on this
product. TIP is based on a one-dimensional two-stream rep-
resentation of the radiative transfer in the canopy—soil system
(Pinty et al., 2006) and applies the same inversion approach
as CCDAS, which is briefly sketched in Sect. 2.2 and detailed
in Rayner et al. (2016) and Kaminski and Mathieu (2017). In
a first step it retrieves a set of model parameters describing
the state of the vegetation canopy system including the full
uncertainty covariance of the parameters by combining prior
information with observed radiant fluxes. Further, the model
is used to propagate this PDF forward onto simulated fluxes
such as FAPAR. TIP uses observed broadband albedo in the
NIR and visible spectral domains as input. The prior informa-
tion used in the retrieval is constant in space and time; i.e. all
variability is determined from space (Kaminski et al., 2017).
This is in contrast to other retrieval approaches, which are
based on prescribed land cover maps (e.g. Liu et al., 2014).
Long-term global records of JRC-TIP products (see Table 2)
have been retrieved from broadband albedos provided by
MODIS collection 5 (Pinty et al., 2011b, c¢) and Globalbedo
(Disney et al., 2016). Products are provided for each of the
respective 16-day (MODIS) and 8-day (Globalbedo) synthe-
sis periods. To reduce disk space, by default, JRC-TIP prod-
ucts are delivered without correlations among the uncertain-
ties between individual variables, even though these corre-
lations are available. An estimate of uncertainty correlation
in space and time is not provided. Both JRC-TIP records are
provided in the native 1km resolution of the albedo input
products. In order to maintain the above-mentioned compli-
ance with terrestrial models, coarser-resolution products are
to be derived by applying JRC-TIP to aggregated albedo in-
puts (as in Disney et al., 2016). JRC-TIP products are val-
idated at site (Pinty et al., 2007, 2008, 2011a) and regional
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scales (Disney et al., 2016); more details on JRC-TIP are
given in Kaminski et al. (2017).

3.2.3 Biogeochemical-based vegetation activity

Sun-induced fluorescence (SIF) is an electromagnetic signal
emitted as a two-peak spectrum between 650 and 850 nm
by the chlorophyll a of green plants under solar radiation.
SIF can be directly related to photosynthetic electron trans-
port rates and yields a mechanistic link to photosynthesis and
the subsequent gross carbon uptake by terrestrial vegetation
(GPP; Porcar-Castell et al., 2014). Recent developments in
satellite-based spectroscopy have enabled the first retrievals
of SIF from space (Frankenberg et al., 2011c; Joiner et al.,
2011), which holds the promise of enabling new approaches
to globally monitoring terrestrial photosynthesis. For exam-
ple, a high linear correlation between data-driven GPP esti-
mates and SIF retrievals at global and annual scales was re-
ported by Frankenberg et al. (2011c); Guanter et al. (2012).
The skills of SIF as a proxy for photosynthetic activity and
GPP were also reported by studies over different ecosystems,
like the Amazon rainforest (Lee et al., 2013; Parazoo et al.,
2013), large crop belts (Guanter et al., 2014) and the boreal
forests in Eurasia and North America (Walther et al., 2015).
However, in the context of DA and in order to extract the
maximal benefit from SIF data, the complex processes re-
sponsible for SIF in the plants’ photochemical systems (as
mentioned above) require complex models as observation
operators for SIF.

The global retrieval of SIF from space relies on the princi-
ple of in-filling of solar Fraunhofer lines by SIF (Frankenberg
et al., 2011b). Fraunhofer lines are absorption features in the
solar spectrum, caused by elements in the solar atmosphere
and sufficiently resolved by atmospheric spectrometers. Be-
cause of the additive nature of SIF, the fractional depth of
the Fraunhofer lines detected by the satellite instrument de-
creases with the amount of SIF being emitted at the same
wavelength. The retrieval of SIF from space is then based on
the evaluation of the depth of the Fraunhofer lines present
in red and NIR top-of-atmosphere spectra. The retrieval for-
ward model is thus simple and can be linearised (e.g. Guanter
etal., 2012; Kohler et al., 2015b), which simplifies the inver-
sion.

Fraunhofer line-based SIF retrievals tend to be accurate
but not precise: uncertainties are dominated by a random
component associated to instrumental noise, which is lin-
early mapped into SIF retrievals. The amplitude of instru-
mental noise, and hence 1o single-retrieval errors, scale with
at-sensor radiance for the most common case of grating-
based spectrometers dominated by multiplicative noise. This
implies that retrieval errors are mostly driven by surface
brightness and sun zenith angles (Guanter et al., 2015). Be-
cause of this high contribution of random errors to the to-
tal retrieval uncertainty, single SIF retrievals are commonly
linearly aggregated as spatio-temporal composites in which
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Table 3. Selected characteristics of operating and planned space-borne instruments able to deliver SIF data. Names of upcoming instruments
are highlighted in italics. NIR stands for near-infrared. It must be noted that GOME-2 on MetOp-A has been operating with a reduced pixel
size of 40 x 40km? since July 2013. References are examples: the full list is given in the text.

Name Time Overpass  Spectral Spatial Temporal  Reference
period time sampling resolution resolution
GOSAT 2009-today = Midday NIR 10 km diam. 3 days e.g. (Frankenberg et al., 2011c)
GOME-2 2007-today Morning red & NIR 40 x 80 km? <2 days e.g. (Joiner et al., 2013), (Kohler et al., 2015b)
SCIAMACHY 2003-2012  Morning red & NIR 30 x 240 km?Z <3 days e.g. (Joiner et al., 2013), (Kohler et al., 2015b)
0CO-2 2014-today ~ Midday NIR 13x23km? 16 days (Frankenberg et al., 2014)
TROPOMI ~ 2017 Midday red & NIR 7 x 7km? < 1 day (Guanter et al., 2015)
FLEX ~ 2022 Morning red & NIR 0.3 x0.3 km? <27 days  (Druschetal., 2017)

random errors are reduced. The number of retrievals to be
aggregated into a given grid cell results from a compromise
between spatial resolution, temporal resolution and precision
of the gridded product, the size of the spatial and tempo-
ral bins being exchangeable in terms of their effect on the
random uncertainty. The random uncertainty of the resulting
spatio-temporal composites is then not only driven by surface
albedo and illumination, but also by the number of sound-
ings going into a given grid cell, which is in turn defined by
cloudiness and latitude (in the case of overlapping orbits).
Detailed analyses of random errors in SIF retrievals for dif-
ferent space-borne instruments can be found in Frankenberg
et al. (2011b) and Guanter et al. (2015).

Global SIF data sets have been or are being derived from
GOSAT, MetOp’s Global Ozone Monitoring Experiment-2
(GOME-2), ENVISAT’s SCTAMACHY and the OCO-2 mis-
sion (Joiner et al., 2011, 2012, 2013, 2016; Frankenberg
etal.,, 2011c, 2014; Guanter et al., 2012; Kohler et al., 2015a,
b; Wolanin et al., 2015). All four missions except for SCIA-
MACHY are still operating. Sample SIF maps from GOSAT,
GOME-2 and SCIAMACHY for July 2010 are displayed in
Fig. 4. The spectral, spatial and temporal sampling of single
SIF soundings varies for each instrument, as it is summarised
in Table 3. For example, GOME-2 and SCIAMACHY pro-
vide SIF retrievals in the red and NIR spectral regions with
global coverage and a relatively high temporal resolution.
However, this comes at the expense of a coarse spatial res-
olution, which is 40 x 80 km? for GOME-2 (40 x 40 km? for
GOME-2 on MetOp-A since July 2013) and 30 x 240 km?>
for SCIAMACHY. On the other hand, GOSAT and OCO-2
do not provide spatially continuous measurements (i.e. no
global coverage), but single soundings in the NIR have a
much higher spatial resolution than those of GOME-2 and
SCIAMACHY. In particular, OCO-2 soundings correspond
to ground areas of about 4km?, which is substantially finer
than that of the other data sets. The number of soundings per
day by OCO-2 is also much larger (about 100x) than that
by the other instruments (Frankenberg et al., 2014), which
makes OCO-2 SIF to be the most suited data set for studies
over areas not requiring a continuous spatial sampling but
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benefiting from a high spatial resolution. This is the case,
for example, of tropical and boreal forests: spatial continu-
ity is less critical for those ecosystems because they are rel-
atively homogeneous over large spatial scales, whereas the
high spatial resolution is important for maximising the num-
ber of clear-sky soundings during the parts of the year with
persistent cloudiness.

Concerning near-future perspectives for SIF monitoring,
it can be expected that the limitations in spatial resolu-
tion and coverage of existing SIF products will be allevi-
ated with the advent of the TROPOspheric Monitoring In-
strument (TROPOMI) scheduled for launch on board the
Sentinel-5 Precursor satellite mission by mid-2017 (Table 3).
TROPOMI will enable SIF retrievals in the red and NIR
regions similar to GOME-2 and SCIAMACHY, but with a
7km pixel, daily global coverage and a number of clear-
sky observations per day, &~ 200 times larger than GOME-2
and & 600 times larger than SCTAMACHY. The SIF prod-
uct from TROPOMI can therefore be anticipated to have a
much higher spatio-temporal resolution and signal-to-noise
ratio than those from GOME-2 and SCIAMACHY (Guan-
ter et al., 2015). Complementarily, the FLuorescence EX-
plorer (FLEX; Drusch et al., 2017) has recently been selected
for implementation by ESA, with launch currently expected
for 2022. FLEX will provide global measurements of SIF in
the red and NIR at a relatively low temporal resolution, but
with the finest spatial resolution of all existing and upcoming
space-borne instruments.

3.2.4 Soil moisture

Soil moisture is measured in situ through large-scale soil
moisture monitoring networks (Dorigo et al., 2011; Ochsner
et al., 2013) or at various FLUXNET sites (Baldocchi et al.,
2001). Yet, these point observations have only limited cov-
erage in space time, have spatially very divergent proper-
ties (Dorigo et al., 2013), and often contain large represen-
tativeness errors at the scale of global ecosystem models
(Gruber et al., 2013). Satellite remote sensing in the mi-
crowave domain has the potential to overcome many of these
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issues. Microwave remote sensing uses the contrasting di-
electric properties of water, air, ice and soil particles to in-
fer the water content in the soil column (Owe et al., 2008).
Both passive radiometer systems, measuring the emitted mi-
crowave radiance (brightness temperatures), and active radar
systems, measuring backscattered microwave radiance, can
be used to retrieve soil moisture. Various approaches exist
that convert brightness temperatures and backscatter mea-
surements into estimates of soil moisture, including radia-
tive transfer model inversion approaches (e.g. Kerr et al.,
2012; Owe et al., 2008), neural networks (e.g. Rodriguez-
Fernandez et al., 2015), linear regressions (Al-Yaari et al.,
2016, e.g.) and change detection methods (Wagner et al.,
1999). The latter is commonly applied to scatterometer mea-
surements and yields, in contrast to the other approaches
which provide soil moisture as volumetric water content, soil
moisture as a percentage of total saturation. Microwave sen-
sors operate in different frequency (wavelength) domains,
of which L-band (with a wavelength of &~ 23 cm) and C-
band (& 5cm) are most commonly used for retrieving soil
moisture (Kerr et al., 2012; Owe et al., 2008; Wagner et al.,
1999). Smaller wavelengths are more sensitive to the vegeta-
tion canopy covering the soil and increasingly lose their sen-
sitivity to water. Still, frequencies up to 19 GHz (& 1.5 cm)
have proven potential for providing robust soil moisture esti-
mates at the global scale for moderately to sparsely vegetated
areas (Owe et al., 2008). Due to the relatively low energy lev-
els and the technical challenges in microwave domain, spatial
resolutions of the satellite observations are generally coarse
(&~ 25-50 km) but with high revisit frequencies (up to 1 day).
Only synthetic aperture radar is able to provide much higher
spatial resolutions, up to a few tens of metres, yet at the cost
of long revisit times. Also observations made by the Gravity
Recovery and Climate Experiment (GRACE; Rodell et al.,
2009) are sensitive to soil moisture, but the estimation of soil
moisture content from these observations is not straightfor-
ward because they are also sensitive to changes in snow, sur-
face water, groundwater and vegetation.

Since the release of the first global soil moisture data sets
from microwave sensors in the early 2000s, the number of
available soil moisture products and missions has rapidly ex-
panded (De Jeu and Dorigo, 2016). Several (pre-)operational
products are now available from a wide variety of data
providers and space organisations (Table 4). While initially
soil moisture products were based on sensors mainly de-
signed for other purposes (such as ASCAT, AMSR2 and
Sentinel-1), ESA and NASA launched their own dedicated
soil moisture satellite missions SMOS and SMAP (Kerr
et al., 2012; Entekhabi et al., 2010). Differences between the
various products exist in their technical design, observation
bands and retrieval algorithms, which often result in com-
plementary strengths over different land cover types (Alyaari
et al., 2015; Dorigo et al., 2010; Liu et al., 2011). The mis-
sions also differ in their degree of operationalisation: while
SMOS and SMAP are primarily scientific concept demon-
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strators, AMSR2 continues the legacy of C-band radiometer
observations started by JAXA and NASA in 2002 with the
launch of AMSR-E, while ASCAT is embedded in a fully
operational programme of weather observing satellites with
guaranteed continuation at least until 2023 and a follow-on
mission already under development (Wagner et al., 2013).
Apart from the target variable surface soil moisture, some
products come with estimates of freeze/thaw state and VOD,
which are disentangled from the soil moisture impacts on the
measured microwave signal during the retrieval process.

As none of the currently active missions cover a period
long enough to study climate change impacts, ESA’s Cli-
mate Change Initiative (CCI) endorsed the combination of
available soil moisture products from active and passive
microwave sensors into a consistent multidecadal record.
The ESA CCI soil moisture product currently combines
soil moisture products from 11 different sensors into a ho-
mogenised daily product spanning the period 1978-2015
(Liu et al., 2012, 2011; Dorigo et al., 2016). Several studies
have demonstrated the value of ESA CCI soil moisture for
assessing long-term interactions between soil moisture and
vegetation productivity (Barichivich et al., 2014; Chen et al.,
2014; Dorigo et al., 2012; Mufioz et al., 2014).

Key to a proper assimilation of remotely sensed soil mois-
ture into carbon models is a correct characterisation of its er-
rors. Apart from instrument errors which are common to all
observations, the quality of microwave-based soil moisture
retrievals is particularly impacted by vegetation cover, soil
frost, snow cover, open water, topography, surface roughness,
urban structures and radio frequency interference (Dorigo
et al., 2010; Kerr et al., 2012). Observations in which a
strong adverse impact of these factors is detected are usu-
ally masked during processing, which may lead to data gaps
for certain areas or periods of the year (Dorigo et al., 2015).
If cases in which their impact on the soil moisture retrieval
are only moderate, the errors that they introduce are either
simulated during the retrieval itself using error propagation
methods, or assessed a posteriori against reference data us-
ing various statistical methods (Draper et al., 2013).

While the ASCAT and AMSR2 products come with an
estimate of the error variance for each observation by er-
ror propagation (Naeimi et al., 2009; Parinussa et al., 2011),
this is still not common practice for all soil moisture prod-
ucts. Yet, no error propagation model perfectly represents
all error sources and interactions (Draper et al., 2013). On
the other hand, the use of in situ soil moisture measure-
ments to estimate random errors is hampered by their het-
erogeneous nature and large spatial representativeness errors
(Gruber et al., 2013). As an alternative, in recent years triple
collocation analysis (TCA) has firmly established itself as a
robust alternative to estimate random errors in soil moisture
data sets without the need of an absolute “true” reference
(Dorigo et al., 2010; Scipal et al., 2008). TCA estimates the
error variances of three spatially and temporally collocated
soil moisture data sets with independent error structures, e.g.
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Figure 4. Maps of sun-induced fluorescence (SIF) for July 2010 derived from GOSAT, GOME-2 and SCIAMACHY satellite data.

Table 4. Current (pre-)operational global soil moisture missions and products (see the list of acronyms).

Mission Organisation ~ Measurement concept Band Mission start ~ Data access
MetOp — EUMETSAT  Real aperture radar C-band Jan. 2007 http://hsaf.meteoam.it/soil-moisture.php
ASCAT (scatterometer) http://land.copernicus.eu/global/products/swi
SMOS ESA Interferometric L-band Nov. 2009 http://www.catds.fr/
radiometer
GCOM-W1 JAXA Radiometer C-band May 2012 http://www.vandersat.com/
AMSR2 http://suzaku.eorc.jaxa.jp/GCOM_W/
SMAP NASA Radiometer L-band Jan. 2015 http://smap.jpl.nasa.gov/
& radar®
Sentinel-1 ESA/ Synthetic aperture C-band Apr. 2014 https://www.eodc.eu/
Copernicus radar
CCI ESA Combined scatterometer L-, C-, X- Nov. 1978 http://www.esa-soilmoisture-cci.org
and radiometer Ku-band

* SMAP’s radar failed in July 2015.

a radiometer-based, a scatterometer-based and a land surface
model soil moisture data set. Recently, the TCA has been
intensively elaborated, e.g. to solve for colinearities between
errors (Gruber et al., 2016b) and non-linear dependencies be-
tween data sets (Zwieback et al., 2016). The most remark-
able advancement has been to express TCA-based error es-
timates as a signal-to-noise ratio, which facilitates a direct
intercomparison of the skill of data sets independent of their
dynamic ranges (Gruber et al., 2016a); see Fig. 5. Although
the TCA provides an estimate that is entirely independent of
any retrieval model assumptions, it only provides a single av-
erage error estimate for the entire period under consideration.
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Thus, synergistic use of error propagation and triple colloca-
tion estimates shall be exploited to better capture the tem-
poral error dynamics needed for an optimal assimilation into
carbon models. Due to the recent progress in product quality,
error characterisation and operationalisation, satellite-based
soil moisture products have reached the level of maturity that
allows for a systematic assimilation into land surface mod-
els. These products have been used to improve model hydrol-
ogy by, for example, Martens et al. (2017) who showed that
the assimilation of SMOS and ESA CCI soil moisture gen-
erally has a small positive impact on soil water storage and
evaporative fluxes as simulated by the GLEAM land evapo-
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ration model. Surface soil moisture from ASCAT is assimi-
lated operationally in near-real-time into the ECMWF Land
Data Assimilation System to obtain root-zone soil moisture
(Albergel et al., 2012). Global root-zone soil moisture prod-
ucts based on SMOS and SMAP are derived by a slightly
different approach, which assimilate the observed brightness
temperatures instead of the retrieved surface soil moisture
products (Lannoy and Reichle, 2016). The assimilation of
satellite-based soil moisture products in terrestrial carbon cy-
cle models has been described above.

3.2.5 Biomass

Continental-scale biomass maps have been produced from
space using both radar and lidar. Biomass here refers to
above-ground biomass (AGB), since there are no methods to
measure the below-ground component, and this is typically
inferred from AGB using allometric equations. Furthermore,
the emphasis is on the AGB of forests, although a global data
set of AGB in all biomes for the period 1993-2012 has been
produced based on VOD data from global passive microwave
sensors, hence with spatial resolution of 10km or coarser
(Liu et al., 2015). The AGB product is derived from a re-
gression of VOD against observations of AGB from ground-
based inventory data.

Using long time series of C-band radar data provided
by the ESA Envisat satellite, the growing stock volume of
Northern Hemisphere boreal and temperate forests has been
estimated (Santoro et al., 2011). Although available at 0.01°
resolution, the accuracy of growing stock volume at this scale
is comparatively poor, and spatial averaging provides more
reliable results: at 0.5° spacing, estimated growing stock vol-
ume has a relative accuracy of 20-30 % when tested against
inventory data (Santoro et al., 2013). Thurner et al. (2014)
used this product to derive the carbon stock (above- and
below-ground) in boreal, temperate mixed and broadleaf and
temperate coniferous forests of forests above 30° N (40.7,
24.5 and 14.5 PgC respectively). These values have estimated
accuracies of around 33—39 % under a conservative approach
to estimate uncertainty. Santoro et al. (2015) provide a high-
resolution data set (0.01°) over the Northern Hemisphere
with a relative RMSE against National Forest Inventory be-
tween 12 and 45 %.

For tropical forests, the key sensor is the Geoscience Laser
Altimeter System (GLAS) on board the Ice, Cloud and land
Elevation Satellite (ICESat) which failed in 2009 (Lefsky,
2010). Its archive of forest height estimates was the core
data set exploited to produce two pantropical biomass maps
(Saatchi et al., 2011; Baccini et al., 2012) at grid scales of
1 km and 500 m respectively; Saatchi et al. (2011) also pro-
vide a map of the errors associated with the biomass esti-
mates at each pixel. This is produced by combining mea-
surement errors, allometry errors, sampling errors and pre-
diction errors, which are treated as independent and spatially
uncorrelated. Further details are given in the supplementary
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material to Saatchi et al. (2011). In an attempt to resolve dif-
ferences between these two maps, Avitabile et al. (2016) used
an independent reference data set of field observations to re-
move the biases in the maps and then combined them to esti-
mate the AGB in the tropical belt (23.4° S to 23.4° N). Test-
ing against a reference data set not used in the fusion process
indicated that the fused map had a RMSE 15-21 % lower
than that of the input maps and nearly unbiased estimates.

However, there are unresolved questions about large-scale
biomass patterns across the Amazon inferred from in situ
and satellite data. Biomass maps derived from satellite data
in Saatchi et al. (2011) and Baccini et al. (2012) differ sig-
nificantly from each other and from biomass maps derived
from in situ plots distributed across Amazonia using kriging
(Mitchard et al., 2014). Neither satellite product exhibits the
strong increase in biomass from southwestern to northeastern
Amazonia inferred from in situ data. Mitchard et al. (2014)
attributed this to failure to account for gradients in wood
density and regionally varying tree height—diameter relations
when estimating biomass from the satellite data. Saatchi et al.
(2015) reject this analysis and claim that the trends and pat-
terns in Mitchard et al. (2014) are erroneous and a conse-
quence of inadequate sampling. Resolving this disagreement
is of fundamental importance since it raises basic questions
on accuracy, uncertainty and representativeness for both in
situ and satellite-derived biomass data.

The next 4-5 years will dramatically improve our global
knowledge of biomass, with the launch of three missions
aimed at measuring forest structure and biomass. The ESA
BIOMASS mission (European Space Agency, 2012), to be
launched in 2021, is a P-band radar that will provide near-
global measurements of forest biomass and height. Mea-
surements from airborne sensors indicate that even in dense
tropical forests affected by topography, the P-band fre-
quency used by BIOMASS will give sensitivity to biomass
up to 350-450 tha—! (Minh et al., 2014; Villard and Toan,
2015). Around the same time the NASA-ISRO SAR mission
(NISAR) based on an L-band sensor will be deployed, pro-
viding measurements of biomass in lower biomass forests
(up to 100tha~!). These highly complementary missions
will be further complemented by the NASA Global Ecosys-
tem Dynamics Investigation vegetation lidar to be placed on
the International Space Station around 2019; this aims to pro-
vide the first global, high-resolution observations of the ver-
tical structure of tropical and temperate forests, from which
biomass may be estimated.

As well as limitations caused by mission lifetimes, satellite
measurements of biomass are unlikely to be sensitive enough
to measure biomass increment except in rapidly growing
plantations and tropical forests. Hence an important ancil-
lary data set for studies aiming to relate biomass to climate
and environment is tree ring data (https://www.ncdc.noaa.
gov/data-access/paleoclimatology-data/datasets/tree-ring).
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Figure 5. Signal-to-noise ratio (in dB), estimated with the triple collocation analysis for four different satellite-based soil moisture products
and a land surface model. (a) MetOp-A ASCAT based on the TU Wien method (Wagner et al., 1999); (b) AMSR2 based on the LPRM model
(Owe et al., 2008); (¢) SMOS L3 (Kerr et al., 2010); (d) SMAP (Jackson, 1993). An SNR of —3 indicates a signal variance that is half of
the noise variance, an SNR of 0 a signal variance equal to the noise variance, an SNR of 3 a signal variance that is twice the noise variance
and so on. In areas without data the TC could not be computed, e.g. because of too few observations in one of the data sets. For details see

Gruber et al. (2016b).

4 Conclusions

In the context of carbon cycle data assimilation this paper re-
views the requirements and summarises the availability and
characteristics of some selected observations with a special
focus on remotely sensed Earth observation data. Observa-
tions are key for understanding the carbon cycle processes
and are an important component for any data assimilation
system. In this context the provision of systematic and sus-
tained observing systems on an operational basis is becoming
more and more important.

An example for such an operational network for in situ
data is the Integrated Carbon Observing System (ICOS; see
also https://www.icos-ri.eu). ICOS is a pan-European in-
frastructure for carbon observations, which provides high-
quality in situ observations (both fluxes as well as atmo-
spheric concentrations) over Europe and over ocean regions
adjacent to Europe with a long-term perspective. ICOS con-
sists of central facilities for co-ordination, calibration and
data in conjunction with networks of atmospheric, oceanic
and ecosystem observations as well as a data distribution cen-
tre, the Carbon Portal, providing discovery of and access to
ICOS data products such as derived flux information. Other
(quasi-)operational networks measuring atmospheric CO;
concentrations are maintained, for instance, by the National
Oceanic and Atmospheric Administration (NOAA) Climate
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Monitoring and Diagnostics Laboratory and the Scripps In-
stitution of Oceanography, both USA, as well as the CSIRO
Global Atmospheric Sampling Laboratory, Australia.

An example for an operational space-based Earth observ-
ing programme in Europe is the fleet of so-called Sentinel
satellites of the Copernicus programme. Copernicus aims to
provide Europe with continuous and independent access to
Earth observation data and associated services (transform-
ing the satellite and additional in situ data into value-added
information by processing and analysing the data) in sup-
port of Earth system science (Berger et al., 2012). Currently,
six different Sentinel missions are planned (and have partly
been launched). So far, a dedicated mission for monitoring
the carbon cycle, i.e. an instrument measuring the atmo-
spheric CO; composition, is not yet included in the Coperni-
cus monitoring programme (see Ciais et al., 2015); however,
the series of Sentinel satellites will be extended in the future
and will likely include a CO;, mission. Other operational EO
programmes are operated by e.g. NOAA and the Japanese
Aerospace Exploration Agency.

The paper also briefly recapitulates the assimilation sys-
tems capable of integrating these data: a more comprehensive
description of the underlying formalism is given in Rayner
et al. (2016) while MacBean et al. (2016) discuss the imple-
mentation strategies for a multiple data assimilation system
and their impacts on the results. To take maximum advantage
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of these data streams in carbon cycle data assimilation stud-
ies it is of utmost importance to have the appropriate knowl-
edge of the uncertainty characteristics of the observational
data, here with a focus on satellite products. This includes
an understanding of the observable and its representativeness
in order to develop the appropriate observation operator (see
also Kaminski and Mathieu, 2017) but also the structure of
any biases, random errors and error covariances (that is both
the diagonal and off-diagonal elements quantifying the error
correlations between different observations).

The benefit of using multiple data streams in a CCDAS
lies in the complementarity of the data and thus in the ability
to constrain different components of the underlying process
model. In fact, because of the model internal interactions and
feedbacks among the components the simultaneous assimi-
lation of complementary observations has synergistic effects
such that the constraint is larger than the sum of the individ-
ual constraints, as shown for instance by Kato et al. (2013),
who assimilated observations of FAPAR and latent heat flux.

As a final remark one important aspect of observational
data is their continuity, since much of the important infor-
mation is contained in response to climate anomalies. Fortu-
nately, the set up of operational observing systems such as
ICOS for in situ data or Copernicus for satellite data has cre-
ated the necessary infrastructure to ensure a long-term per-
spective in the provision of Earth observations.

Data availability. No data sets were used in this article.
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Appendix A: List of acronyms

ACE-FTS Atmospheric Chemistry Experiment — Fourier transform spectrometer
AGB Above-ground biomass

AIRS Atmospheric Infrared Sounder

AMSR2 Advanced Microwave Scanning Radiometer 2

AMSR-E Advanced Microwave Scanning Radiometer — Earth observing system
ASCAT Advanced scatterometer

ATSR Along Track Scanning Radiometers

AVHRR Advanced Very High Resolution Radiometer

CCDAS Carbon cycle data assimilation system

CCI Climate Change Initiative

ECMWF European Centre for Medium-Range Weather Forecasts
ECV Essential climate variable

EO Earth observation (in this form generally understood as from space)
ESA European Space Agency

FAPAR Fraction of absorbed photosynthetically active radiation
FLEX FLuorescence EXplorer

GCOM-W1 Global Change Observation Mission 1st-Water

GLAS Geoscience Laser Altimeter System

GLEAM Global Land Evaporation Amsterdam Model

GOME-2 Global Ozone Monitoring Experiment-2

GOSAT Greenhouse Gases Observing Satellite

GPP Gross primary productivity

IASI Infrared Atmospheric Sounding Interferometer

ICOS Integrated Carbon Observing System

ICESat Ice, Cloud and land Elevation Satellite

ISRO Indian Space Research Organisation

JAXA Japan Aerospace Exploration Agency

JRC-MGVI Joint Research Centre — MERIS Global Vegetation Index
JRC-TIP Joint Research Centre — Two-stream Inversion Package

LAI Leaf area index

MERIS Medium Resolution Imaging Spectrometer

MIPAS Michelson Interferometer for Passive Atmospheric Sounding
MISR Multi-angle Imaging SpectroRadiometer

MODIS Moderate Resolution Imaging Spectroradiometer

NASA National Aeronautics and Space Administration

NDVI Normalised difference vegetation index

NIR Near infrared

NOAA National Oceanic and Atmospheric Administration
Obs4Mips Observations for Model Intercomparisons Project

0CO-2 Orbiting Carbon Observatory 2

OE Optimal estimation

PDF Probability density function

SAR Synthetic aperture radar

SCIAMACHY SCanning Imaging Absorption spectroMeter for Atmospheric CHartography
SeaWiFS Sea-viewing Wide Field-of-view Sensor

SEVIRI Spinning Enhanced Visible and InfraRed Imager

SIF Sun-induced fluorescence

SMAP Soil Moisture Active Passive

SMOS Soil Moisture Ocean Salinity

SWIR Shortwave infrared

TANSO-FTS Thermal And Near infrared Sensor for carbon Observations — Fourier Transform Spectrometer
TCA Triple collocation analysis

TCCON Total Carbon Column Observing Network

TCOS Terrestrial Carbon Observation System

TROPOMI TROPOspheric Monitoring Instrument

VI Vegetation index

VOD Vegetation optical depth
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