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Abstract. In the context of global warming attributable to the
increasing levels of CO2, severe drought may be more fre-
quent in areas that already experience chronic water short-
ages (semiarid areas). This necessitates research on the in-
teractions between increased levels of CO2 and drought and
their effect on plant photosynthesis. It is commonly reported
that 13C fractionation occurs as CO2 gas diffuses from the
atmosphere to the substomatal cavity. Few researchers have
investigated 13C fractionation at the site of carboxylation to
cytoplasm before sugars are exported outward from the leaf.
This process typically progresses in response to variations in
environmental conditions (i.e., CO2 concentrations and water
stress), including in their interaction. Therefore, saplings of
two typical plant species (Platycladus orientalis and Quer-
cus variabilis) from semiarid areas of northern China were
selected and cultivated in growth chambers with orthogonal
treatments (four CO2 concentration ([CO2])×five soil vol-
umetric water content (SWC)). The δ13C of water-soluble
compounds extracted from leaves of saplings was deter-
mined for an assessment of instantaneous water use effi-
ciency (WUEcp) after cultivation. Instantaneous water use ef-
ficiency derived from gas-exchange measurements (WUEge)

was integrated to estimate differences in δ13C signal vari-
ation before leaf-level translocation of primary assimilates.
The WUEge values in P. orientalis and Q. variabilis both de-
creased with increased soil moisture at 35–80 % of field ca-
pacity (FC) and increased with elevated [CO2] by increasing
photosynthetic capacity and reducing transpiration. Instanta-

neous water use efficiency (iWUE) according to environmen-
tal changes differed between the two species. The WUEge in
P. orientalis was significantly greater than that in Q. vari-
abilis, while an opposite tendency was observed when com-
paring WUEcp between the two species. Total 13C fractiona-
tion at the site of carboxylation to cytoplasm before sugar ex-
port (total 13C fractionation) was species-specific, as demon-
strated in the interaction of [CO2] and SWC. Rising [CO2]
coupled with moistened soil generated increasing disparities
in δ13C between water-soluble compounds (δ13CWSC) and
estimates based on gas-exchange observations (δ13Cobs) in
P. orientalis, ranging between 0.0328 and 0.0472 ‰. Dif-
ferences between δ13CWSC and δ13Cobs in Q. variabilis in-
creased as [CO2] and SWC increased (0.0384–0.0466 ‰).
The 13C fractionation from mesophyll conductance (gm) and
post-carboxylation both contributed to the total 13C fraction-
ation that was determined by δ13C of water-soluble com-
pounds and gas-exchange measurements. Total 13C fraction-
ation was linearly dependent on stomatal conductance, in-
dicating that post-carboxylation fractionation could be at-
tributed to environmental variation. The magnitude and envi-
ronmental dependence of apparent post-carboxylation frac-
tionation is worth our attention when addressing photosyn-
thetic fractionation.
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1 Introduction

Since the industrial revolution, atmospheric CO2 concen-
tration has increased at an annual rate of 0.4 % and is ex-
pected to increase to 700 µmol mol−1, culminating in more
frequent periods of dryness (IPCC, 2014). Increasing atmo-
spheric CO2 concentrations that exacerbate the greenhouse
effect will increase fluctuations in global precipitation pat-
terns, which will probably amplify drought frequency in arid
regions and lead to more frequent extreme flooding events in
humid regions (Lobell et al., 2014). Accompanying the in-
creasing concentration of CO2, mean δ13C of atmospheric
CO2 is currently being depleted by 0.02–0.03 ‰ yr−1 (CU-
INSTAAR/NOAA CMDL network for atmospheric CO2;
http://www.esrl.noaa.gov/gmd/).

The current carbon isotopic composition may respond to
environmental change and its influence on diffusion via plant
physiological and metabolic processes (Gessler et al., 2014;
Streit et al., 2013). While depletion of δ13CCO2 occurs in the
atmosphere, variations in CO2 concentration ([CO2]) may af-
fect δ13C of plant organs, which in turn respond physiolog-
ically to changes in climate (Gessler et al., 2014). The car-
bon discrimination (131) in leaves could also provide timely
feedback to the availability of soil moisture and atmospheric
vapor pressure deficit (Cernusak et al., 2013). Discrimination
of 13C in leaves relies mainly on environmental factors that
affect the ratio of intercellular to ambient [CO2] (Ci /Ca).
Rubisco activities and the mesophyll conductance derived
from the difference of [CO2] between intercellular sites and
chloroplasts are also involved (Farquhar et al., 1982; Cano et
al., 2014). Changes in environmental conditions affect photo-
synthetic discrimination, recording differentially in the δ13C
of water-soluble compounds (δ13CWSC) in different plant or-
gans. Several processes during photosynthesis alter the δ13C
of carbon transported within plants. Carbon fractionation
during photosynthetic CO2 fixation has been reviewed else-
where (Farquhar et al., 1982; Farquhar and Sharkey, 1982).

Post-photosynthetic fractionation is derived from equilib-
rium and kinetic isotopic effects that determine isotopic dif-
ferences between metabolites and intramolecular reaction
positions. These are defined as post-photosynthetic or post-
carboxylation fractionation (Jäggi et al., 2002; Badeck et al.,
2005; Gessler et al., 2008). Post-carboxylation fractionation
in plants includes the carbon discrimination that follows car-
boxylation of ribulose-1, 5-bisphosphate, and internal dif-
fusion (RuBP, 27 ‰), as well as related transitory starch
metabolism. (Gessler et al., 2008, 2014), fractionation-
associated phloem transport, remobilization or storage of sol-
uble carbohydrates, and starch metabolism fractionation in
sink tissue (tree rings). In the synthesis of soluble sugars,
13C depletions of triose phosphates occur during export from
the cytoplasm and during production of fructose-1, as does 6-
bisphosphate by aldolase in transitory starch synthesis (Ross-
mann et al., 1991; Gleixner and Schmidt, 1997). Synthesis
of sugars before transportation to the twig is associated with

the post-carboxylation fractionation generated in leaves. Al-
though these are likely to play a role, another consideration is
[CO2] in the chloroplast (Cc), not in the intercellular space.
In the simplified equation of Farquhar’s model (Evans et al.,
1986; Farquhar et al., 1989), this is actually defined as car-
bon isotope discrimination (δ13C). Differences between gas-
exchange-derived values and online measurements of δ13C
have often been used to estimate Ci-Cc and mesophyll con-
ductance for CO2 (Le Roux et al., 2001; Warren and Adams,
2006; Flexas et al., 2006, 2012; Evans et al., 2009; Evans and
von Caemmerer, 2013). In this regard, changes in mesophyll
conductance could be partly responsible for the differences
in the two measurements, as mesophyll generally increases
in the short term in response to elevated CO2 (Flexas et al.,
2014), but tends to decrease under drought (Hommel et al.,
2014; Théroux-Rancourt et al., 2014). Therefore, it is neces-
sary to avoid confusion between carbon isotope discrimina-
tion derived from synthesis of soluble sugars and/or meso-
phyll conductance. The degree to which carbon fractionation
is related to environmental variation has yet to be fully inves-
tigated.

The simultaneous isotopic analysis of leaves allows the
determination of temporal variation in isotopic fractionation
(Rinne et al., 2016). This will aid in an accurate recording of
environmental conditions. Newly assimilated carbohydrates
can be extracted, and these are termed the water-soluble com-
pounds (WSCs) in leaves (Brandes et al., 2006; Gessler et al.,
2009). WSCs can also be associated with an assimilation-
weighted mean of Ci /Ca (and Cc /Ca) photosynthesized
over periods ranging from a few hours to 1–2 days (Pons
et al., 2009). However, there is disagreement as to whether
fractionation caused by post-carboxylation and/or mesophyll
resistance can alter the stable signatures of leaf carbon and
thence influence instantaneous water use efficiency (iWUE).
In addition, the manner in which iWUE derived from isotopic
fractionation responds to environmental factors, such as ele-
vated [CO2] and/or soil water gradients, is largely unknown.

Consequently, we investigated the δ13C of the fast-
turnover carbohydrate pool in sapling leaves of two tree
species, Platycladus orientalis (L.) Franco and Quer-
cus variabilis Bl., native to semiarid areas of China.
We conducted gas-exchange measurements in controlled-
environment growth chambers. One goal is to differenti-
ate the 13C fractionation from the site of carboxylation
to cytoplasm prior to sugar transportation in P. orientalis
and Q. variabilis, that is, the total 13C fractionation de-
termined from the δ13C of WSCs and gas-exchange mea-
surements. Another goal is to discuss the potential causes
for the observed divergence, estimate contributions of post-
photosynthesis and mesophyll conductance on these differ-
ences, and describe how carbon isotopic fractionation re-
sponds to the interactive effects of elevated [CO2] and water
stress.
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2 Material and methods

2.1 Study site and design

P. orientalis and Q. variabilis saplings, selected as experi-
mental material, were obtained from the Capital Circle forest
ecosystem station, a part of the Chinese Forest Ecosystem
Research Network (CFERN), 40◦03′45′′ N, 116◦5′45′′ E,
Beijing, China. This region is forested by P. orientalis and
Q. variabilis. We chose saplings of similar basal diame-
ters, heights, and growth class. Each sapling was placed
into an individual pot (22 cm diameter× 22 cm high). Undis-
turbed soil samples were collected from the field, sieved
(with particles > 10 mm removed), and placed into the pots.
The soil bulk density in the pots was maintained at 1.337–
1.447 g cm−3. After a 30-day transplant recovery period, the
saplings were placed into growth chambers for orthogonal
cultivation.

The controlled experiment was conducted in growth cham-
bers (FH-230, Taiwan Hipoint Corporation, Kaohsiung City,
Taiwan). To reproduce the meteorological conditions of dif-
ferent growing seasons in the research region, daytime and
nighttime temperatures in the chambers were set to 25± 0.5◦

from 07:00 to 17:00 GMT+8 and 18± 0.5◦ from 17:00 to
07:00 GMT+8. Relative humidity was maintained at 60 and
80 % during the daytime and nighttime, respectively. The
mean daytime light intensity was 200–240 µmol m−2 s−1.
The chamber system was designed to control and moni-
tor [CO2]. Two growth chambers (A and B) were used in
this study. Chamber A maintained [CO2] at 400 (C400) and
500 ppm (C500). Chamber B maintained [CO2] at 600 (C600)

and 800 ppm (C600). The target [CO2] in each chamber had
a standard deviation of±50 ppm during plant cultivation and
testing.

An automatic watering device was used to irrigate the pot-
ted saplings to avoid heterogeneity when scheduled water-
ing was not performed (Fig. 1). The watering device con-
sisted of a water storage tank, holder, controller, soil mois-
ture sensors, and a drip irrigation component. Prior to use,
the tank was filled with water, and the soil moisture sensor
was inserted to a uniform depth in the soil. After connect-
ing the controller to an AC power supply, target soil volu-
metric water content (SWC) was set and monitored by soil
moisture sensors. Since changes in SWC could be sensed by
the sensors, this automatic watering device could be regu-
lated to begin or stop watering the plants. One irrigation de-
vice was installed per chamber. Based on mean field capac-
ity (FC) of potted soil (30.70 %), we established orthogonal
treatments of four [CO2] values×five SWCs (Table 1). In
Table 1, A1–A4 denotes [CO2] of 400 (C400), 500 (C500),
600 (C600), and 800 ppm (C800) in the chambers; B1–B5 de-
notes 35–45 % (10.74–13.81 %), 50–60 % (15.35–18.42 %),
60–70 % (18.42–21.49 %), 70–80 % (21.49–24.56 %), and
100 % of FC (CK, 27.63–30.70 %). Each orthogonal treat-
ment of [CO2]×SWC for two saplings per species was re-

peated twice. Each treatment lasted 7 days. One pot was ex-
posed in each of the [CO2]×SWC treatments. Pots in the
chambers were rearranged every 2 days to promote uniform
illumination.

2.2 Foliar gas-exchange measurement

Fully expanded primary annual leaves of the saplings were
measured with a portable infrared gas photosynthesis sys-
tem (LI-6400, LI-COR, Lincoln, US) before and after the
7-day cultivation. Two saplings per species were replicated
per treatment (SWC× [CO2]). For each sapling, four leaves
were sampled and four measurements were conducted on
each leaf. Main photosynthetic parameters, such as net pho-
tosynthetic rate (Pn) and transpiration rate (Tr), were mea-
sured. Based on theoretical considerations of Von Caem-
merer and Farquhar (1981), stomatal conductance (gs) and
intercellular [CO2] (Ci) were calculated using the LI-COR
software. Instantaneous water use efficiency via gas ex-
change (WUEge) was calculated as the ratio Pn / Tr.

2.3 Plant material collection and leaf water-soluble
compound extraction

Eight recently expanded sun leaves were selected per sapling
and homogenized in liquid nitrogen after gas-exchange mea-
surements were finished. For extraction of WSCs from the
leaves (Gessler et al., 2004), 50 mg of ground leaves and
100 mg of PVPP (polyvinylpolypyrrolidone) were mixed
and incubated in 1 mL distilled water for 60 min at 5◦ in
a centrifuge tube. Each leaf sample was replicated twice.
The tubes containing the mixture were heated in 100◦ wa-
ter for 3 min. After cooling to room temperature, the su-
pernatant of the mixture was centrifuged (12 000× g for
5 min) and 10 µL of supernatant was transferred into a tin
capsule and dried at 70◦. Folded capsules were used for
δ13C analysis of WSCs. The samples of WSCs from leaves
were combusted in an elemental analyzer (Euro EA, HEKAt-
ech GmbH, Wegberg, Germany) and analyzed with a mass-
spectrometer (DELTAplusXP, Thermo Finnigan).

Carbon isotope signatures were expressed in δ notation
(parts per thousand), relative to the international Pee Dee
Belemnite (PDB) standard:

δ13C=
(
Rsample

Rstandard
− 1

)
× 1000, (1)

where δ13C is the heavy isotope and Rsample and Rstandard re-
fer to the isotope ratio between the particular substance and
the corresponding standard, respectively. The precision of re-
peated measurements was 0.1 ‰.
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Figure 1. Diagram of the automatic drip irrigation device used in this study; numbers indicate the individual parts of the irrigation device
(nos. 1–12). The lower-left corner of this figure presents the detailed schematic for the drip irrigation component (nos. 8–12).

Table 1. Orthogonal treatments applied to P. orientalis and Q. variabilis.

P. orientalis Repeats B1 B2 B3 B4 B5
(cultivated period)

A1 R1: 2–9 Jun A1B1R1 A1B2R1 A1B3R1 A1B4R1 A1B5R1
R2: 12–19 Jun A1B1R2 A1B2R2 A1B3R2 A1B4R2 A1B5R2

A2 R1: 11–18 Jul A2B1R1 A2B2R1 A2B3R1 A2B4R1 A2B5R1
R2: 22–29 Jul A2B1R2 A2B2R2 A2B3R2 A2B4R2 A2B5R2

A3 R1: 2–9 Jun A3B1R1 A3B2R1 A3B3R1 A3B4R1 A3B5R1
R2: 12–19 Jun A3B1R A3B2R2 A3B3R2 A3B4R2 A3B5R2

A4 R1: 11–18 Jul A4B1R1 A4B2R1 A4B3R1 A4B4R1 A4B5R1
R2: 22–29 Jul A4B1R2 A4B2R2 A4B3R2 A4B4R2 A4B5R2

Q. variabilis Repeats B1 B2 B3 B4 B5
(cultivated period)

A1 P1: 21–28 Jun A1B1P1 A1B2P1 A1B3P1 A1B4P1 A1B5R1
P2: 2–9 Jul A1B1P2 A1B2P2 A1B3P2 A1B4P2 A1B5R2

A2 P1: 4–11 Aug A2B1P1 A2B2P1 A2B3P1 A2B4P1 A2B5R1
P2: 15–22 Aug A2B1P2 A2B2P2 A2B3P2 A2B4P2 A2B5R2

A3 P1: 21–28 Jun A3B1P1 A3B2P1 A3B3P1 A3B4P1 A3B5R1
P2: 2–9 Jul A3B1P2 A3B2P2 A3B3P2 A3B4P2 A3B5R2

A4 P1: 4–11 Aug A4B1P1 A4B2P1 A4B3P1 A4B4P1 A4B5R1
P2: 15–22 Aug A4B1P2 A4B2P2 A4B3P2 A4B4P2 A4B5R2

2.4 Isotopic calculation

2.4.1 13C fractionation from the site of carboxylation
to cytoplasm prior to sugar transportation

Based on the linear model of Farquhar and Sharkey (1982),
the isotope discrimination, 1, was calculated as

1=
(
δ13Ca− δ

13CWSC

)/ (
1+ δ13CWSC

)
, (2)

where δ13Ca and δ13CWSC are the isotope signatures of am-
bient [CO2] in chambers and WSCs extracted from leaves,
respectively. The Ci : Ca was determined by

Ci : Ca = (1− a) / (b− a), (3)

where Ci and Ca are the [CO2] within substomatal cavities
and in growth chambers, respectively; a is the fractionation-
occurring CO2 diffusion in still air (4 ‰); and b refers to the
discrimination during CO2 fixation by ribulose 1,5- bispho-
sphate carboxylase/oxygenase (Rubisco), and internal diffu-
sion (30 ‰). The instantaneous water use efficiency by gas-
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exchange measurement (WUEge) was calculated as

WUEge = Pn : Tr = (Ca−Ci) /1.61e, (4)

where 1.6 is the diffusion ratio of stomatal conductance for
water vapor to CO2 in chambers and 1e is the difference
between elf and eatm, representing the extra- and intracellular
water vapor pressure, respectively:

1e = elf− eatm = 0.611× e
17.502T

/
(240.97+T )

× (1−RH) ,

(5)

where T and RH are the leaf-surface temperature and rel-
ative humidity, respectively. Combining Eqs. (2, 3, and 4),
the instantaneous water use efficiency was determined by the
δ13CWSC of leaves, defined as

WUEcp =
Pn

Tr
= (1−ϕ)(Ca−Ci)

/
1.61e

= Ca (1−ϕ)

[
b− δ13Ca+ (b+ 1)δ13CWSC

(b− a)
(
1+ δ13CWSC

) ]/
1.61e,

(6)

where ϕ is the respiratory ratio of leaf carbohydrates to other
organs at night (0.3).

Then the 13C fractionation from the site of carboxylation
to cytoplasm prior to sugar transportation (defined as the to-
tal 13C fractionation) was estimated by the observed δ13C
of WSCs from leaves (δ13CWSC) and the modeled δ13C cal-
culated from gas-exchange measurements (δ13Cmodel). The
δ13Cmodel was calculated by1model from Eq. (2);1model was
determined by combining Eqs. (3, 4) as

1model = (b− a)

(
1−

1.61eWUEge

Ca

)
+ a, (7)

δ13Cmodel =
Ca−1model

1+1model
. (8)

Total13C fractionation= δ13CWSC− δ
13Cmodel. (9)

2.4.2 Method of estimating mesophyll conductance and
the contribution of post-carboxylation
fractionation

CO2 diffusion into photosynthetic sites includes two main
processes. CO2 first moves from ambient air surrounding the
leaf (Ca) through stomata to the substomatal cavities (Ci).
From substomatal cavities, CO2 then moves to the sites of
carboxylation within the chloroplast stroma (Cc) of the leaf
mesophyll. The latter procedure of diffusion is termed meso-
phyll conductance (gm; Flexas et al., 2008). The carbon iso-
tope discrimination was generated from the relative contri-
bution of diffusion and carboxylation, reflected by Cc to Ca.

The carbon isotopic discrimination (1) can be presented as
(Farquhar et al., 1982)

1= ab
Ca−Cs

Ca
+ a

Cs−Ci

Ca

+ (es+ al)
Ci−Cc

Ca
+ b

Cc

Ca
−

eRD
k
+ f0∗

Ca
, (10)

where Ca, Cs, Ci, and Cc are the [CO2] in the ambient air,
at the boundary layer of the leaf, in the substomatal cavities,
and at the sites of carboxylation, respectively; ab is the CO2
diffusional fractionation at the boundary layer (2.9 ‰); es is
the discrimination for CO2 diffusion when CO2 enters in so-
lution (1.1 ‰, at 25◦); al is the CO2 diffusional fractionation
in the liquid phase (0.7 ‰); e and f are carbon discrimina-
tions derived in dark respiration (RD) and photorespiration,
respectively; k is the carboxylation efficiency, and 0∗ is the
CO2 compensation point in the absence of dark respiration
(Brooks and Farquhar, 1985).

When gas in the cuvette is well stirred during gas-
exchange measurements, diffusion across the boundary layer
is negligible and Eq. (10) can be written as

1= a
Ca−Ci

Ca
+(es+ al)

Ci−Cc

Ca
+b

Cc

Ca
−

eRD
k
+ f0∗

Ca
. (11)

There is no consensus about the value of e, although re-
cent measurements estimate it as ranging from 0 to 4 ‰.
The value of f has been estimated to range from 8 to 12 ‰
(Gillon and Griffiths, 1997; Igamberdiev et al., 2004; Lani-
gan et al., 2008). As the most direct factor, b influences the
calculation of gm, which is thought to be approximately 30 ‰
in higher plants (Guy et al., 1993).

The difference of [CO2] between substomatal cavities
and chloroplasts is omitted, while diffusion related to dark-
respiration and photorespiration are negligible and Eq. (11)
may be simplified to

1i = a+ (b− a)
Ci

Ca
. (12)

Equation (12) denotes the linear relationship between carbon
discrimination and Ci /Ca. This underlines subsequent com-
parison between expected1 (originating from gas-exchange,
1i, and measured 1obs), which can be used to evaluate the
differences of [CO2] between intercellular air and sites of
carboxylation associated with 13C fractionation from meso-
phyll conductance. Consequently, gm is calculated by sub-
tracting the 1obs of Eq. (11) from 1i [Eq. 12]:

1i−1obs = (b− es− al)
Ci−Cc

Ca
+

eRD
k
+ f0∗

Ca
, (13)

and Pn from Fick’s first law relates

Pn = gm (Ci−Cc) . (14)
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Figure 2. Net photosynthetic rates (Pn, µmol m−2 s−1; a, b), stomatal conductance (gs, mol H2O m−2 s−1; c, d), intercellular CO2 con-
centration (Ci, µmol CO2 mol−1; e, f), and transpiration rates (Tr, mmol H2O m−2 s−1; g, h) in P. orientalis and Q. variabilis for four CO2
concentration×five soil volumetric water content treatments. Means±SDs, n= 32.

Substituting Eq. (14) into Eq. (13) gives us

1i−1obs = (b− es− al)
Pn

gmCa
+

eRD
k
+ f0∗

Ca
(15)

and

gm =
(b− es− al)

Pn
Ca

(1i−1obs)−

eRD

/
k+f0∗

Ca

. (16)

In the calculation of gm, terms of respiration and photorespi-
ration can be ignored and e and f are assumed to be zero or
canceled in the calculation of gm.

Then Eq. (16) can be rewritten as

gm =
(b− es− al)

Pn
Ca

1i−1obs
. (17)

Therefore, the contribution of post-carboxylation fractiona-
tion can be estimated by

Contributionofpost− carboxylationfractionation=(
Total13C fractionation− fractionation from mesophll conductance

)
Total13 C fractionation

× 100%. (18)

3 Results

3.1 Foliar gas-exchange measurements

When SWC increased between the treatments, Pn, gs, and
Tr in P. orientalis and Q. variabilis peaked at 70–80 % of
FC and 100 % of FC (Fig. 2). The Ci in P. orientalis rose
as SWC increased. It peaked at 60–70 % of FC and declined
thereafter with increased SWC in Q. variabilis. The carbon
uptake and Ci were significantly improved by elevated [CO2]
at all SWCs for the two species (p < 0.05). Greater increases
in Pn in P. orientalis were found at 50–70 % of FC from C400
to C800, which was at 35–45 % of FC in Q. variabilis. As
water stress was reduced (at 70–80 and 100 % of FC), re-
duction of gs in P. orientalis was more pronounced with el-
evated [CO2] at a given SWC (p < 0.01). Nevertheless, gs
in Q. variabilis for C400, C500, and C600 was significantly
higher than that for C800 at 50–80 % of FC (p < 0.01). Co-
ordinated with gs, Tr of the two species for C400 and C500
was significantly higher than that for C600 and C800, except
at 35–60 % of FC (p < 0.01, Fig. 2g and h). Pn, gs, Ci, and
Tr in Q. variabilis was significantly greater than the corre-
sponding values in P. orientalis (p < 0.01, Fig. 2).
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Figure 3. Carbon isotope composition of water-soluble compounds
(δ13CWSC) extracted from leaves of P. orientalis (a) and Q. vari-
abilis (b) for four CO2 concentration×five soil volumetric water
content treatments. Means±SDs, n= 32.

3.2 δ13C of water-soluble compounds in leaves

After observations of photosynthetic traits in leaves of
the two species, the same leaves were immediately frozen
and WSCs were extracted for all orthogonal treatments.
The carbon isotope composition of WSCs (δ13CWSC) of
both species increased as SWC increased (Fig. 3a and b,
p < 0.01). The mean δ13CWSC of P. orientalis and Q. vari-
abilis ranged from −27.44± 0.155 to −26.71± 0.133 ‰,
and from −27.96± 0.129 to −26.49± 0.236 ‰, respec-
tively. The photosynthetic capacity varied with increased
SWC and the mean δ13CWSC of the two species, reach-
ing their respective maxima at 70–80 % of FC. With grad-
ual enrichment of [CO2], mean δ13CWSC in both species
declined when [CO2] exceeded 600 ppm (p < 0.01). Except
for C400 at 50–100 % of FC, the δ13CWSC in P. orientalis
was significantly higher than that in Q. variabilis for most
[CO2]×SWC treatments (p < 0.01, Fig. 3).

3.3 Estimations of WUEge and WUEcp

Figure 4a shows that increments of WUEge in P. orientalis
under severe drought (i.e., 35–45 % of FC) were highest for
most [CO2], ranging from 90.7 to 564.7 %. The WUEge in
P. orientalis decreased as SWC increased and increased as
[CO2] elevated. Differing from variation in WUEge in P. ori-
entalis with moistened soil, WUEge in Q. variabilis increased
slightly at 100 % of FC for C600 or C800 (Fig. 4b). The max-
imum WUEge occurred at 35–45 % of FC for C800 among
all orthogonal treatments associated with both species. El-
evated [CO2] enhanced the WUEge in Q. variabilis at all
SWCs, except at 60–80 % of FC. The 32 saplings of P. orien-
talis had greater WUEge than Q. variabilis did for the same
[CO2]×SWC treatments (p < 0.05).

Figure 4. Instantaneous water use efficiency through gas-exchange
measurements (WUEge) for leaves from P. orientalis (a) and
Q. variabilis (b) for four CO2 concentration×five soil volumetric
water content treatments. Means±SDs, n= 32.

Figure 5. Instantaneous water use efficiency estimated by δ13C of
water-soluble compounds (WUEcp) from leaves of P. orientalis (a)
and Q. variabilis (b) for four CO2 concentration×five soil volu-
metric water content treatments. Means±SDs, n= 32.

As illustrated in Fig. 5a, WUEcp in P. orientalis for C600
or C800 increased as water stress was alleviated beyond 50–
60 % of FC, as well as that for C400 or C500, while SWC ex-
ceeded 60–70 % of FC. Q. variabilis showed variable WUEcp
with increasing SWC (Fig. 5b). Except for C400, WUEcp in
Q. variabilis decreased abruptly at 50–60 % of FC and then
increased as SWC increased for C500, C600, and C800. In con-
trast to the results for WUEge, WUEcp in Q. variabilis was
more pronounced than in P. orientalis among all orthogonal
treatments.
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3.4 13C fractionation from the site of carboxylation to
cytoplasm before sugar transportation

We evaluated the total 13C fractionation from the site of
carboxylation to the cytoplasm by gas-exchange measure-
ments and WSCs in leaves (Table 2), which can help track
the path of 13C fractionation in leaves. Comparing δ13CWSC
with δ13Cmodel from Eqs. (4, 7–9), the total 13C fractionation
in P. orientalis ranged from 0.0328 to 0.0472 ‰, which was
less than that in Q. variabilis (0.0384 to 0.0466 ‰). The total
fractionation in P. orientalis was magnified with increasing
SWC, especially when SWC reached 35–80 % of FC from
C400 to C800 (increasing by 21.3–42.0 %). The total fraction-
ation for C400 and C500 was amplified as SWC increased until
50–60 % of FC in Q. variabilis. Conversely, they increased at
50–80 % of FC and decreased at 100 % of FC for C600 and
C800. Elevated [CO2] enhanced the mean total fractionation
in P. orientalis, while fractionation in Q. variabilis declined
sharply from C600 to C800. Total 13C fractionation in P. ori-
entalis, with increased SWC, increased more rapidly than it
did in Q. variabilis.

3.5 gm imposed on the interaction of CO2
concentration and water stress

A comparison between online leaf δ13CWSC and the values
desired from gas-exchange measurements is given to esti-
mate the gm over all treatments in Fig. 6 (Eqs. 10–17). A
significant increasing trend occurred in gm with decreas-
ing water stress in P. orientalis, ranging from 0.0091 to
0.0690 mol CO2 m−2 s−1 (p < 0.05), reaching a maximum at
100 % of FC under a given [CO2]. Increases in gm in Q. vari-
abilis with increasing SWCs were not significant, except
those under C400. With increasing [CO2], gm in the two
species increased at different rates. With P. orientalis under
C400, gm increased gradually and reached a maximum under
C800 at 35–60 and 100 % of FC (p < 0.05). However, that was
maximized under C600 (p < 0.05) and reduced under C800 at
60–80 % of FC. The maximum increment in gm (8.2–58.4 %)
occurred at C800 at all SWCs for Q. variabilis. The gm in
Q. variabilis was clearly greater than that in P. orientalis un-
der the same treatment conditions.

3.6 Contribution of post-carboxylation fractionation

We evaluated the difference between 1i and 1obs in 13C
fractionation derived from mesophyll conductance. The post-
photosynthetic fractionation after carboxylation can be cal-
culated by subtracting gm-sourced fractionation from the to-
tal 13C fractionation (Table 2). The gm-sourced fractionation
provided a smaller contribution to the total 13C fractiona-
tion than did post-carboxylation fractionation irrespective of
treatment (Table 2). The gm-sourced fractionation in the two
species illustrated different variations with increasing SWC,
which declined at 50–80 % of FC and increased at 100 % of
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500
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%

Total13C fractionation (‰)

0.0328
0.0373

0.0349
0.0332

Mesophyll conductance

0.0081
0.0030

0.0034
0.0072

Post-photosynthesis

0.0247
0.0343

0.0315
0.0260

50–60
%

0.0367
0.0437

0.0382
0.0374

0.0018
0.0058

0.0094
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0.0349
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60–70
%

0.0405
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0.0421
0.0409

0.0018
0.0050

0.0026
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70–80
%

0.0444
0.0453

0.0413
0.0452

0.0044
0.0052
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0.0400
0.0401
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0.0439

100
%

0.0441
0.0453
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%
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0.0372
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%

0.0424
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0.0445
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0.0066
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70–80
%

0.0424
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0.0482
0.0457
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0.0074
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0.0429
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%

0.0441
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0.0466
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0.0027
0.0076
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0.0414
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0.0444
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Figure 6. Mesophyll conductance in P. orientalis (a) and Q. vari-
abilis (b) for four CO2 concentration×five soil volumetric water
content treatments. Means±SDs, n= 32.

FC in P. orientalis. However, in Q. variabilis, it increased
with water stress alleviation at 50–80 % of FC and then de-
creased at 100 % of FC. Nevertheless, in the two species,
post-carboxylation fractionation in leaves all increased as
SWC increased. The gm-sourced fractionation in P. orien-
talis and Q. variabilis reached its peaks under C600 and C800,
respectively. Post-carboxylation fractionation was magnified
with increases in [CO2] in P. orientalis and reached a maxi-
mum under C600 and then declined under C800.

3.7 Relationship between gs, gm, and total 13C
fractionation

Total 13C fractionation may be correlated with resistances
associated with stomata and mesophyll cells. We performed
linear regressions between gs / gm and total 13C fractionation
in P. orientalis and Q. variabilis (Figs. 7 and 8). The total 13C
fractionation was correlated to gs (p < 0.01). The positive
linear relationships between gm and total 13C fractionation
(p < 0.01) indicated that the variation in [CO2] through the
chloroplast was correlated with carbon discrimination fol-
lowing leaf photosynthesis.

4 Discussion

4.1 Photosynthetic traits

The exchange of CO2 and water vapor via stomata can be
modulated by the soil and/or leaf water potential (Robredo
et al., 2010). Saplings of P. orientalis reached maximum Pn
and gs at 70–80 % of FC irrespective of [CO2] treatments.
As SWC exceeded this soil water threshold, elevated CO2

Figure 7. Regressions between stomatal conductance and total 13C
fractionation in P. orientalis (a) and Q. variabilis (b) for four
CO2 concentration×five soil volumetric water content treatments
(p < 0.01, n= 32).

Figure 8. Regressions between mesophyll conductance and total
13C fractionation in P. orientalis (a) and Q. variabilis (b) for four
CO2 concentration×five soil volumetric water content treatments
(p ≤ 0.01, n= 32).

caused a greater reduction in gs, as was previously reported
for barley and wheat (Wall et al., 2011). The decrease in
gs responding to elevated [CO2] could be mitigated with in-
creases in SWC. The Ci in Q. variabilis peaked at 60–70 %
of FC and then declined as soil moisture increased (Wall
et al., 2006, 2011). This may be because stomata tend to
maintain a constant Ci or Ci /Ca when ambient [CO2] is in-
creased, which would determine the amount of CO2 directly
used in the chloroplast (Yu et al., 2010). This result could
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be explained as stomatal limitation (Farquhar and Sharkey,
1982; Xu, 1997). However, Ci in P. orientalis increased con-
siderably, while SWC exceeded 70–80 % of FC, as found by
Mielke et al. (2000). One possible contributing factor is that
plants close their stomata to reduce water loss during organic
matter synthesis while simultaneously decreasing the avail-
ability of CO2 and generating respiration of organic matter
(Robredo et al., 2007). Another possible explanation is that
the limited root volume of potted plants may be unable to
absorb sufficient water to support the full growth of shoots
(Leakey et al., 2009; Wall et al., 2011). In the present study,
increasing [CO2] may cause nonstomatal limitations when
SWC exceeds a soil moisture threshold of 70–80 % of FC.
The accumulation of nonstructural carbohydrates in leaf tis-
sue may induce mesophyll-based and/or biochemical-based
transient inhibition of photosynthetic capacity (Farquhar and
Sharkey, 1982). Xu and Zhou (2011) developed a five-level
SWC gradient to examine the effect of water on the physiol-
ogy of a perennial, Leymus chinensis, and demonstrated that
there was a clear maximum in SWC, below which the plant
could adjust to changing environmental conditions. Micanda
Apodaca et al. (2014) also concluded that in suitable water
conditions, elevated CO2 levels augmented CO2 assimilation
in herbaceous plants.

The Pn of the two woody plant species increased with el-
evated [CO2] similar to results seen with other C3 woody
plants (Kgope et al., 2010). Increasing [CO2] alleviated se-
vere drought and the need for heavy irrigation, suggesting
that photosynthetic inhibition produced by a lack or excess
of water may be mediated by increased [CO2] (Robredo et
al., 2007, 2010) and ameliorate the effects of drought stress
by reducing plant transpiration (Kirkham, 2016; Kadam et
al., 2014; Micanda Apodaca et al., 2014; Tausz Posch et al.,
2013).

4.2 Differences between WUEge and WUEcp

Increases in WUEge in P. orientalis and Q. variabilis that re-
sulted from the combination of Pn increase and gs decrease
were followed by a reduction in Tr (Fig. 2a, b, g, and h).
This result was also demonstrated by Ainsworth and Mc-
Grath (2010). Comparing Pn and Tr in the two species, a
lower WUEge in Q. variabilis was obtained due to its differ-
ent physiological and morphological traits, such as larger leaf
area, rapid growth, and higher stomatal conductance than that
in P. orientalis (Adiredjo et al., 2014). Medlyn et al. (2001)
reported that stomatal conductance of broadleaved species is
more sensitive to elevated [CO2] than conifer species. There
is no agreement on the patterns of iWUE at the leaf level,
related to SWC (Yang et al., 2010). The WUEge values in
P. orientalis and Q. variabilis were enhanced with soil dry-
ing, as presented by Parker and Pallardy (1991), DeLucia and
Heckathorn (1989), Reich et al. (1989), and Leakey (2009).

Bögelein et al. (2012) confirmed that WUEcp was more
consistent with daily mean WUEge than with WUEphloem

(calculated with the δ13C of phloem). The WUEcp of the two
species demonstrated similar variations to those in δ13CWSC,
which differed from those of WUEge. Pons et al. (2009)
noted that 1 of leaf soluble sugar is coupled with en-
vironmental dynamics over a period ranging from a few
hours to 1–2 days. The WUEcp of our materials responded
to [CO2]×SWC treatments over a number of cultivation
days, whereas WUEge was characterized as the instantaneous
physiological change in plants as a response to new condi-
tions. Consequently, WUEcp and WUEge had different de-
grees of variation in response to different treatments.

4.3 Influence of mesophyll conductance on the
fractionation after carboxylation

Mesophyll conductance, gm, has been identified to coordi-
nate with environmental factors more rapidly than stomatal
conductance (Galmés et al., 2007; Tazoe et al., 2011; Flexas
et al., 2007). During our 7-day cultivations, gm increased and
WUEge decreased with increasing SWC. It has been docu-
mented that gm can improve WUE under drought pretreat-
ment (Han et al., 2016). However, the mechanism by which
gm responds to the fluctuation of [CO2] is unclear. Terashima
et al. (2006) demonstrated that CO2 permeable aquaporin, lo-
cated in the plasma membrane and inner envelope of chloro-
plasts, could regulate the change in gm. In our study, gm is
species-specific to the [CO2] gradient. The gm in P. orien-
talis significantly decreased by 9.1–44.4 % from C600 to C800
at 60–80 % of FC; this is similar to the results of Flexas et
al. (2007). A larger gm value in Q. variabilis under C800 was
observed compared to P. orientalis.

Furthermore, gm contributed to the total 13C fractiona-
tion that followed carboxylation, while photosynthate was
not transported to the sapling twigs. The 13C fractionation
of CO2 from the air surrounding the leaf to substomatal cav-
ities may be simply explained by stomatal resistance, which
also contains the fractionation derived from mesophyll con-
ductance between substomatal cavities and the site of car-
boxylation in the chloroplast that cannot be neglected and
should be elucidated (Pons et al., 2009; Cano et al., 2014). In
estimating the post-carboxylation fractionation, gm-sourced
fractionation must be subtracted from the total 13C fractiona-
tion (the difference between δ13CWSC and δ13Cmodel), which
is closely associated with gm (Fig. 8, p = 0.01). Variations
ingm-sourced fractionation are coordinated with those in gm
with changing environmental conditions (Table 2).

4.4 Post-carboxylation fractionation generated before
photosynthate moves out of leaves

Photosynthesis, a biochemical and physiological process
(Badeck et al., 2005), is characterized by discrimination in
13C, which leaves an isotopic signature in the photosyn-
thetic apparatus. Farquhar et al. (1989) reviewed the car-
bon fractionation in leaves and covered the significant as-
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pects of photosynthetic carbon isotope discrimination. The
post-carboxylation or post-photosynthetic fractionation as-
sociated with the metabolic pathways of non-structural car-
bohydrates (NSCs; defined here as soluble sugars+ starch)
within leaves, and fractionation during translocation, storage,
and remobilization prior to tree ring formation, is unclear
(Epron et al., 2012; Gessler et al., 2014; Rinne et al., 2016).
The synthesis of sucrose and starch before transportation to
twigs falls within the domain of post-carboxylation fraction-
ation generated in leaves. Hence, we hypothesized that 13C
fractionation may exist. When we completed the leaf gas-
exchange measurements, leaf samples were collected imme-
diately to determine the δ13CWSC. Presumably, 13C fraction-
ation generated in the synthetic processes of sucrose and
starch was contained within the 13C fractionation from the
site of carboxylation to cytoplasm before sugar transporta-
tion. Comparing δ13CWSC with δ13Cobs, the total 13C frac-
tionation in P. orientalis ranged from 0.0328 to 0.0472 ‰,
which was somewhat less than that in Q. variabilis (from
0.0384 to 0.0466 ‰). Post-carboxylation fractionation con-
tributed 75.3–98.9 % to total 13C fractionation, determined
by subtracting the fractionation in gm from total 13C frac-
tionation. Gessler et al. (2004) reviewed the environmen-
tal components of variation in photosynthetic carbon isotope
discrimination in terrestrial plants. Total 13C fractionation in
P. orientalis was enhanced by the increase in SWC, consis-
tent with that in Q. variabilis, except at 100 % of FC. The 13C
isotope signature in P. orientalis was depleted with elevated
[CO2]. However, 13C depletion was weakened in Q. vari-
abilis for C600 and C800. Linear regressions between gs and
total 13C fractionation indicated that the post-carboxylation
fractionation in leaves depends on the variation in gs and that
stomata aperture was correlated with environmental change.

5 Conclusions

Through orthogonal treatments of four [CO2]×five SWC,
WUEcp values calculated by δ13CWSC and WUEge derived
from simultaneous leaf gas-exchange were estimated to dif-
ferentiate the δ13C signal variation before leaf-level translo-
cation of primary assimilates. The influence of gm on 13C
fractionation between the sites of carboxylation and ambi-
ent air is important. It requires consideration when testing
the hypothesis that the post-carboxylation contributes to the
13C fractionation from the site of carboxylation to cyto-
plasm before sugar transport. In response to the interactive
effects of [CO2] and SWC, WUEge decreased with increas-
ing SWC in both tree species and increased with elevated
[CO2] at 35–80 % of FC. We concluded that relative soil
drying, coupled with elevated [CO2], can improve WUEge
by strengthening photosynthetic capacity and reducing tran-
spiration. WUEge in P. orientalis was significantly greater
than that in Q. variabilis, while the opposite was the case
for WUEcp. The gm and post-carboxylation both contributed

to the total 13C fractionation. Rising [CO2] and/or moisten-
ing soil generated increasing disparities between δ13CWSC
and δ13Cmodel in P. orientalis; nevertheless, the differences
between δ13CWSC and δ13Cmodel in Q. variabilis increased
when [CO2] was less than 600 ppm and/or water stress was
alleviated. Total 13C fractionation in the leaf was linearly de-
pendent on gs. With respect to carbon isotope fractionation in
post-carboxylation and transportation processes, we note that
13C fractionation derived from the synthesis of sucrose and
starch is likely influenced by environmental changes. A clear
description of the magnitude and environmental dependence
of post-carboxylation fractionation is worth considering.
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