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Abstract. This study presents the results of a combined
measurement and modelling strategy to analyse N2O and
CO2 emissions from adjacent arable land, forest and grass-
land sites in Hesse, Germany. The measured emissions re-
veal seasonal patterns and management effects, including
fertilizer application, tillage, harvest and grazing. The mea-
sured annual N2O fluxes are 4.5, 0.4 and 0.1 kg N ha−1 a−1,
and the CO2 fluxes are 20.0, 12.2 and 3.0 t C ha−1 a−1 for
the arable land, grassland and forest sites, respectively. An
innovative model–data fusion concept based on a multi-
criteria evaluation (soil moisture at different depths, yield,
CO2 and N2O emissions) is used to rigorously test the
LandscapeDNDC biogeochemical model. The model is run
in a Latin-hypercube-based uncertainty analysis framework
to constrain model parameter uncertainty and derive be-
havioural model runs. The results indicate that the model is
generally capable of predicting trace gas emissions, as evalu-
ated with RMSE as the objective function. The model shows
a reasonable performance in simulating the ecosystem C and
N balances. The model–data fusion concept helps to detect
remaining model errors, such as missing (e.g. freeze–thaw
cycling) or incomplete model processes (e.g. respiration rates
after harvest). This concept further elucidates the identifica-
tion of missing model input sources (e.g. the uptake of N
through shallow groundwater on grassland during the vegeta-
tion period) and uncertainty in the measured validation data
(e.g. forest N2O emissions in winter months). Guidance is

provided to improve the model structure and field measure-
ments to further advance landscape-scale model predictions.

1 Introduction

Carbon dioxide (CO2) and nitrous oxide (N2O) are two
prominent greenhouse gases (GHGs) contributing to global
warming, the latter having a global warming potential (GWP)
300 times higher than that of CO2 considering a 100-year
time horizon (Myhre et al., 2013). Terrestrial ecosystems
play an important role in the global atmospheric budgets of
both GHGs (Cole et al., 1997). The global CO2 emissions
from soils are five times higher than anthropogenic (mainly
fossil fuel) CO2 emissions (Raich and Schlesinger, 1992; up-
dated with recent fossil fuel data by Boden et al., 2010),
while agricultural land use released over 60 % of the global
anthropogenic N2O emissions in 2005 (IPCC, 2007). In ad-
dition to the radiative forcing of both GHGs, N2O is cur-
rently the main driver of stratospheric ozone depletion (Rav-
ishankara et al., 2009), causing increased ultraviolet radia-
tion, which could result in skin cancer and other health prob-
lems (Graedel and Crutzen, 1989). While CO2 is exchanged
with the soil (heterotrophic respiration) and vegetation (pho-
tosynthesis and autotrophic respiration), N2O fluxes refer
mainly to the nitrification and denitrification processes oc-
curring only in the soil (Butterbach-Bahl et al., 2013).
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Emissions of both GHGs are highly variable in space
and time and depend on a multitude of different interact-
ing environmental factors, e.g. land use/management, nitro-
gen/carbon inputs, meteorological conditions and physical
and chemical soil properties (Davidson, 1992; Smith et al.,
2003). They are largely regulated by plant physiological (Ro-
chette et al., 1999) and microbial processes (Burton et al.,
2008). Field measurements of GHG emissions and environ-
mental drivers have paved the way for a basic understand-
ing of observed emissions patterns. Nevertheless, the large
number and complexity of the processes involved in the pro-
duction and consumption of CO2 and N2O are still chal-
lenges in the reliable quantification of related GHG emis-
sions (Butterbach-Bahl et al., 2013). Various biogeochem-
ical models have been developed in recent years. These
models are used for temporal as well as spatial up-scaling
of GHG emissions, hypothesis testing of our understanding
of processes, and for scenario analyses and the evaluation
of efficient mitigation options (Kim et al., 2015; Molina-
Herrera et al., 2016). These include BASFOR (Oijen et al.,
2005), CERES-EGC (Gabrielle et al., 2006), COUP (Jans-
son, 2012), DAYCENT (Parton et al., 1998) and DNDC and
its descendant LandscapeDNDC (Haas et al., 2013). How-
ever, models are still simplifications of the real world and are
prone to multiple sources of uncertainty, i.e. defective model
structure and/or parameterization and the current model state
(Vrugt, 2016). During model application, poor-quality model
forcing data result in further uncertainties about the predicted
model outcome (Kavetski et al., 2006). However, there is still
no method available to properly address these sources of un-
certainty at the same time (Vrugt, 2016). One promising way
to reduce the magnitude of uncertainties in model output is to
use model–data fusion techniques, i.e. matching model pre-
diction with multiple observations by varying model parame-
ters or states using statistical uncertainty estimation (Keenan
et al., 2011). There are several statistical uncertainty esti-
mation methods available, e.g. formal Bayesian approaches
such as DREAM (Vrugt, 2016) and informal Bayesian ap-
proaches such as GLUE (Beven and Binley, 1992). How-
ever, these approaches are mostly used to fit models to single
types of observations (Giltrap et al., 2010). Innovative multi-
ple observation data evaluations with model–data fusion are
becoming common in ecosystem carbon modelling (Wang et
al., 2009) and are more and more important in the nitrogen
modelling community (Wang and Chen, 2012). The knowl-
edge gained can and should be used to guide further model
improvements (Vrugt, 2016).

This work focuses on establishing model–data fusion in
the biogeochemical community – i.e. showing the capability
of this technique to improve process understanding through
the application of process-based models. We present weekly
measurements of CO2 and N2O emissions from a developed
landscape with different land uses, i.e. arable land, grassland
and forest ecosystems, covering a 2-year period of observa-
tions. In addition to field measurements, we set up the bio-

geochemical LandscapeDNDC model for each of the three
land uses. During model–data fusion with GLUE, we rig-
orously accept only model runs that return concurrent, ac-
ceptable outputs for N2O, CO2 and soil moisture at different
depths and yields. Posterior model runs are not only evalu-
ated as to whether they fulfil appropriate objective functions
but also regarding realistic simulations of GHG emissions
for separate seasons, annual sums as well as before and af-
ter land management. The model is finally used to estimate
the magnitude and uncertainty of C and N fluxes, such as N2
emissions or autotrophic and heterotrophic CO2 emissions,
which are not yet experimentally quantifiable in situ. The re-
maining model and data errors are traced back to their po-
tential sources to improve ongoing measurements and future
model applications.

2 Materials and methods

2.1 Study area

The study area is located in the catchment of a low moun-
tainous creek (Vollnkirchener Bach) in the municipality of
Hüttenberg, Hesse, Germany (50◦29′56′′ N, 8◦33′2′′ E). One
kilometre north of the village of Vollnkirchen, next to the
creek, we established eight transects (oriented mostly verti-
cally to slope) along a valley cross section covering differ-
ent types of land uses (Fig. 1) for GHG emission measure-
ments. See Table 1 for detailed information on soils charac-
teristics. Three transects (A1–3) are located on arable land to
the west of the creek and were cultivated with the same field
management and crop rotations (Table 1). Three transects are
located in a young European beech (Fagus sylvatica) forest
(W1–3) with young and old trees on a steep hillside (slope:
10 %) east of the creek. A shallow 0.05 m litter layer char-
acterizes the forest soils. Furthermore, there is one managed
and grazed grassland transects (G1) located in the riparian
zone at a 4 m distance to the Vollnkirchener Bach. The G1
transect is mainly covered with brown knapweed (Centaurea
jacea), meadow foxtail (Alopecurus pratensis), red clover
(Trifolium pratense) and ribwort plantain (Plantago lance-
olata). The groundwater table is close to the surface on the
grassland sites. The mean annual wet depositions of nitrate
and ammonium were measured for 2013–2015 with 2.70 and
4.32 kg N ha−1 a−1, respectively. Dry deposition of N was
not measured and can be assumed to add another 30–60 % to
total atmospheric N deposition (Flechard et al., 2011).

In the catchment, the mean annual precipitation is 588 mm,
and the mean annual temperature is 10.5 ◦C for the hydro-
logical year 1 November 2013–31 October 2014 (Seifert et
al., 2016). The soil moisture is measured at A3 [0.2, 0.4
and 0.6 m], close to G1 [0.1 and 0.25 m] and at W1 [0.15
and 0.25 m] and has been recorded at an hourly resolution
since 2013.
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Figure 1. Map of the study area. Red squares represent GHG chamber positions at the different transects. Dark grey contour lines represent
5 m differences in elevation. Light grey areas are outside of the catchment area.

The weekly trace gas measurements began in Novem-
ber 2013 and range so far until December 2015. GHG ex-
change fluxes were measured manually with non-steady-state
opaque chambers, each covering a basal area of 0.12 m2.
Chambers were placed on frames (both polypropylene),
which were inserted approx. 8 cm into the soil in order to
facilitate gas-tight sampling as well as to avoid soil struc-
tural damage and lateral trace gas leakage. Each chamber is
equipped with an extraction septum, a counterbalance valve
(in-box pressure balance) and a small fan/ventilator for ho-
mogeneous mixing of the headspace air. During a 40 min
closure period, five air samples are taken from the chamber
headspace at regular time intervals t0–t4 of 10 minutes (0,
10, 20, 30 and 40 min). Samples are analysed by gas chro-
matography (GC 8610C, SRI Instruments, Torrance, US)
with an ECD for N2O and a methanizer and flame ionization
detector for CO2. Sampling was performed on a weekly ba-
sis, with five replicated chambers per transect sampled by the
gas sample pooling technique (Arias-Navarro et al., 2013).
According to this approach, at any time interval (t0–t4),
10 mL headspace samples are collected subsequently from
any of the five replicated chambers and are pooled into one
gas-tight glass vial (SRI Instruments). The trace gas fluxes
are calculated from the rate of change in the headspace gas
concentration over time by linear regression and were cor-
rected for the chamber temperature, atmospheric pressure
and chamber volume according to Barton et al. (2008). All
measurements with a regression quality of r2<0.7 for CO2
(using at least four individual samples) were rejected.

Soil emissions of CO2 and N2O can be subject to signifi-
cant diurnal patterns, with peak values observed in the early
afternoon (Savage et al., 2014), impeding the up-scaling of
hourly measured emissions (usually obtained at midday) to
daily values. We performed multiple linear regression (or-
dinary least squares regression including air temperature,
relative humidity and water-filled pores space) to account

for the difference between, for example, daytime (Wohlfahrt
et al., 2005a) and night-time respiration (Wohlfahrt et al.,
2005b). In our dataset, only CO2 emissions showed signif-
icant correlations with the mentioned environmental drivers
on arable land (r2

= 0.53), grassland (r2
= 0.59) and forest

(r2
= 0.51). Following Subke et al. (2003), we derived an

hourly integration formula in order to obtain daily represen-
tative mean values of CO2 emissions from our field mea-
surements conducted mostly between 09:00 and 17:00. N2O
emissions are up-scaled to daily mean values with the com-
mon approach, i.e. by multiplying hourly emissions by 24.
Annual CO2 and N2O emissions are calculated by linear in-
terpolation between the measurements. All the underlying
data in Sect. 2.1 and 2.2 are available upon request from a
database (http://fb09-pasig.umwelt.uni-giessen.de:8081/).

2.2 Modelling approach

2.2.1 Model set-up

We tested the biogeochemical model framework Land-
scapeDNDC (Haas et al., 2013) with the observed data from
our study area. Individual models were set up for arable land,
grassland and forest ecosystems. The models describe differ-
ent processes in ecosystem compartments, i.e. mathematical
descriptions of microclimate, water cycle, plant physiology
and soil biogeochemical processes. We applied the biogeo-
chemical model MeTrx (Kraus et al., 2015) and the water
cycle model watercycleDNDC (Kiese et al., 2011) for all
land uses. The biogeochemical model MeTrx simulates the
turnover of soil organic matter and plant debris depending
on their chemical structures (e.g. lignin and cellulose con-
tent, C / N ratio), soil properties (e.g. pH value) and meteo-
rological drivers. Following the “anaerobic balloon” concept
of Li et al. (2000), major metabolites (e.g. NO3) are distin-
guished between aerobic and anaerobic counterparts in order
to simulate the share of nitrification and denitrification and
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the related production of GHG emissions. Simulated model
outputs are, among others, emissions of CO2 and N2O. There
exists an effect of the simulated gaseous losses on the avail-
able nutrition for plant growth, which in turn affects water
cycle through changing water uptake and transpiration. How-
ever, we neglect this comparably minor interaction effect in
our model–data fusion approach, as outlined in Sect. 2.3.2.
The watercycleDNDC model simulates soil water dynam-
ics, i.e. potential evapotranspiration based on Thornthwaite
and Mather (1957), transpiration depending on gross primary
productivity, the water use efficiency of the modelled plant
types and soil water flow based on a cascading bucket model
approach (Kiese et al., 2011). The latter determines the ad-
vective transport of nutrients into deeper soil layers.

All models refer to a one-dimensional soil column, i.e.
assuming homogeneous conditions in lateral directions, and
were run with a daily time step resolution. Table 1 provides
an overview of the major model driving data, i.e. meteorolog-
ical data and land use-specific soil and vegetation character-
istics. To simulate plant growth on the three different land
use types, we selected the individual physiology modules
arableDNDC, grasslandDNDC (Kim et al., 2015; Molina-
Herrera et al., 2016) and PSIM (Grote et al., 2009).

Arable soils are Stagnic Luvisols with a thick loess layer,
modelled down to 2.0 m with 80 layers, while the actual soil
depth is unknown. Gleysols in the meadow grassland site
were modelled down to 0.5 m (set-up with 40 layers), cor-
responding to the mean annual groundwater table depth. The
thin and stony soil at the forest site is a cambisol and mod-
elled down to bedrock (0.55 m, set-up with 45 layers) with
a litter height of 0.05 m. The bulk density increases with
depth for every land use, while soil organic carbon and ni-
trogen decrease with depth. We run simulations for all land
uses at a daily time resolution for 6 years, starting on 1 Jan-
uary 2010, using the data from Table 1 as initialization and
using a model spin-up time of 2 years.

2.2.2 Model–data fusion

For the multi-objective Bayesian model calibration, we used
a two-tiered Generalized Likelihood Uncertainty Estimation
(GLUE) approach (Beven and Binley, 1992). Tier I is de-
signed to constrain the investigated parameter space for sim-
ulating water cycle and plant growth, while tier II builds on
tier I and aims to fit the parameters for the biogeochem-
ical process which drives the GHG emissions. The model
was iterated in both tiers 100 000 times by changing the
parameter sets using Latin hypercube sampling with the
Python software SPOTPY (Houska et al., 2015). The param-
eters for the physiology and the water-cycle modules were
treated as land-use specific, while the parameters of the bio-
geochemical model were calibrated using the data from all
land uses (Table A1 in Appendix). We presuppose no prior
knowledge besides the given parameter ranges, i.e. we as-
sume a uniform (non-informative) prior probability distribu-

tion for all parameters. We statistically judged the perfor-
mance of every parameter set to reproduce measurements
with a root mean squared error (RMSE). Similar to Bloom
and Williams (2015), we do not explicitly consider measure-
ment uncertainty during the model–data fusion. As shown in
Houska et al. (2017), one-tier GLUE-based multi-objective
model calibration can result in very low acceptance rates,
down to 0.01 %. We therefore considered a two-tier GLUE
approach in order to increase the identifiability and accuracy
of the accepted model runs.

Tier I In the first step, we constrained the parameter space
of the hydrology and plant physiology modules of Land-
scapeDNDC by investigating the respective parameters
of both models (Table A1). We accepted only model
runs that were within the best 5 % of all simulated RM-
SEs in terms of the respective variable – WFPS at differ-
ent depths (arable land at 0.2, 0.4 and 0.6 m, grassland
at 0.1 and 0.25 m and forest at 0.15 and 0.25 m), as well
as yield on arable land. Parameter sets were accepted if
they belonged to the 5 % best model runs for each land
use. That is, we took the best 5 % of the RMSEs for each
respective output variable and took only the intersecting
parameter set, which are all from the selected variables
for one land use. The results of tier I are summarized
in Figs. A1–A4 in the Appendix and are not further dis-
cussed in this study, as they belong to the initialization
of the model.

Tier II To achieve realistic GHG simulations from the
MeTrx biogeochemical module of LandscapeDNDC,
we took the posterior parameter boundaries of tier I
and ran GLUE with all parameters of Table A1 again.
This time, we considered the best 5 % of all RMSEs
in terms of the respective N2O and CO2 emissions for
each land use (A1–3, G1 and W1–3). Again, only the
5 % best intersecting parameter sets were accepted per
land use. These results are shown in the following chap-
ters. There was no major effect of the biogeochemical
model parameters on the WFPS simulation, i.e. sim-
ulated soil moisture did not change substantially with
changing biogeochemical model parameters.

Posterior model runs of tier II were further investigated in
three different ways:

1. Seasonal comparisons of measured and modelled emis-
sions for spring (21 March–20 June), summer (21 June–
20 September), autumn (21 September–20 December),
and winter (21 December–20 March).

2. Management comparison of measured and modelled
emissions, i.e. investigation of model performance
within 2 weeks before and 2 weeks after management
events to check implemented routines in generating hot
moments, e.g. after fertilizer application.
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Table 1. Input settings of the LandscapeDNDC model for the three different land uses in the Vollnkirchener study region, based on mea-
surements and farmers’ management documentation. When spans are given, they reflect observed ranges for measurements used throughout
the set-up of the soil profile, given from the top layer setting to the bottom layer. The soil depth was estimated for model set-up; F, fertilizer
application; M, manure application.

Input Arable (A1–3) Grassland (G1) Forest (W1–3) Unit

Vegetation type Sep 10–Jul 11 Winter barley Perennial grass Light beech forest –
Aug 11–Aug 12 Rape
Oct 12–Aug 13 Winter wheat
Oct 13–Aug 14 Triticale
Sep 14–Aug 15 Triticale
Oct 15–Jul 16 Rape

Management 2 Mar 12 166.5 kg N ha−1 (F) 1 Feb 13 Grazing –
2 Apr 12 49.9 kg N ha−1 (F) 1 May 13 Harvest
8 Nov 12 56.2 kg N ha−1 (F) 1 Sep 13 Grazing
11 Mar 13 54.0 kg N ha−1 (F) 2 Mar 14 Grazing
23 Apr 13 53.8 kg N ha−1 (F) 1 May 14 Harvest
3 May 13 29.3 kg N ha−1 (M) 1 Sep 14 Grazing
3 May 13 538.0 kg C ha−1 (M) 20 Jan 15 Grazing
12 Nov 13 29.0 kg N ha−1 29 Jun 15 Harvest
12 Nov 13 533.0 kg C ha−1 (M) 26 Sep 15 Grazing
11 Mar 14 54.0 kg N ha−1 (F)
1 Apr 14 53.8 kg N ha−1 (F)
8 May 14 40.5 kg N ha−1 (F)
22 Sep 14 149.0 kg C ha−1 (M)
22 Sep 14 8.1 kg N ha−1 (M)
8 Nov 14 1032.0 kg C ha−1 (M)
8 Nov 14 56.2 kg N ha−1 (M)
11 Mar 15 1564.0 kg C ha−1 (M)
11 Mar 15 85.1 kg N ha−1 (M)
10 Apr 15 59.4 kg N ha−1 (F)
30 Aug 15 59.4 kg N ha−1 (F)
12 Nov 15 29.0 kg N ha−1 (M)
12 Nov 15 532.0 kg C ha−1 (M)

Soil texture Sandy clay loam Sandy clay loam Sandy clay loam –

Soil type Stagnic Luvisol Gleysol Cambisol

Bulk density 1.55–1.60 1.20–1.44 1.36–1.49 g cm−3

Organic carbon 1.57–0.91 2.55–0.71 3.61–1.73 %

Total soil nitrogen 0.16–0.09 0.29–0.08 0.21–0.11 %

Clay content 23–26 24–25 24–26 %

pH 6.45 4.42 3.5–5.5 –

Soil depth 2.00 0.50 0.55 m

3. Model performance in simulating magnitude and uncer-
tainty of C and N fluxes not measured in situ, such as
N2 or autotrophic and heterotrophic components of CO2
emissions.

3 Results and discussion

3.1 Measured N2O fluxes

To determine the representativeness of each transect for a
given land use, the respective differences in measured N2O
emissions were compared (Table 2). The temporal dynamics
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of N2O emissions are presented (Fig. 2), distinguishing be-
tween different seasons (Fig. 3) and before/after management
events (Fig. 4).

Arable land N2O fluxes: emissions on arable land vary be-
tween 0 and 0.3 kg N2O–N ha−1 day−1. There were no sig-
nificant differences over time between the three weekly mea-
sured transects on arable land (Table 2). The highest emis-
sions occur mostly after management events. Mineral fertil-
izer application in particular stimulates N2O emissions, caus-
ing hot moments from, for example, March to May 2014.
The input of N through manure application has a minor influ-
ence on the magnitude of N2O emissions. The mean annual
measured N2O emissions from arable land are comparably
high with 4.5 kg N2O–N ha−1 a−1 (Jungkunst et al., 2006),
equalling a GWP of 575 kg CO2–C equiv. ha−1 a−1. With a
yearly fertilizer application of 192.9 kg N a−1 a mean annual
emission factor (EF) of 2.3 % (varying between 2.0 % for A2
and 2.9 % for A3) can be calculated, where 1 kg N ha−1 a−1

is attributed to the background emissions of unfertilized soil
(IPCC, 1997). This EF is outside the IPCC-assumed range of
1.25± 1 % and over the average EF (1.56 %) of several (n=
56) agricultural sites in Germany (Jungkunst et al., 2006). A
robust finding throughout the literature is that reduced nitro-
gen input would lead to lower emissions and therefore more
climate-friendly agriculture (Bouwman et al., 2002).

Grassland N2O fluxes: emissions from the grazed grass-
land vary between −0.0019 and 0.014 kg N ha−1 day−1.
High emissions were measured after grazing, e.g. in March
2014 when sheep dung was stimulating N2O emissions. Neg-
ative values depict N2O uptake and are frequently found un-
der prevailing wet conditions in spring, a finding that was
also reported by Glatzel and Stahr (2001). The grassland
annual N2O emissions are much lower than those observed
for the arable system (A1–3). However, with 0.29 kg N2O–
N ha−1 a−1 are they in accordance with a study site 12 km
northeast of our site, where annual emissions range from
0.18 to 0.79 kg N2O–N ha−1 a−1 on an unfertilized grass-
land with shallow groundwater table (Kammann et al., 1998).
Their study also reports a similar seasonal pattern to our
measurements, with emissions close to zero in the dry
and colder autumn months. The measured annual emissions
are below the assumed background level of N2O–N emis-
sions of 1 kg N2O–N ha−1 a−1 from agricultural soils (IPCC,
1997). The annual N2O emissions are equal to a GWP of
37 kg CO2–C equiv. ha−1 a−1. The EF through grazing is
3.8 %, which is in accordance with typical emissions factors
from extensive grazed grasslands, ranging globally from 0.2
to 9.9 % (Oenema et al., 1997).

Forest N2O fluxes: significant differences were found for
the forest transects W2 and W3, which can be explained by
natural variations along the steep hillslope – on the hillside
(W2) the soil is potentially washed out through lateral trans-
port, leading to decreased nutrient availability, compared to
the drier top (W1, +200 % N2O emissions) and the wet-
ter hillfoot (W3, +330 % N2O emissions). The N2O emis-

sions from the forest transects are mostly low, ranging be-
tween −0.003 and 0.004 kg N ha−1 day−1. Higher emis-
sions were measured only for several weeks in January 2014,
with the highest values observed at W1. We attribute this
to freeze–thaw effects, typically found when year-around
measurements are considered (Papen and Butterbach-Bahl,
1999). Negative fluxes were measured, for example in March
and May 2014. The underlying process of N2O uptake has
been reported before (e.g. Flechard et al., 2005; Neftel et al.,
2007) and is assumed to be a microbial process, in which
denitrifiers use N2O as an electron acceptor for respiration
under wet/anaerobic conditions (Bremner, 1997). Negative
emissions occur during times with high WFPS (Fig. A3),
which is in accordance with Bremner (1997). However, our
measured negative emissions are low compared to the vari-
ance between transects (W1–3), i.e. they could also originate
from measurement errors. Our annual measured emissions
in forests are 0.08 kg N2O–N ha−1 a−1 (GWP of 10 kg CO2–
C equiv. ha−1 a−1 CO2 emissions), which is much lower than
that at adjacent grassland and arable sites. Moreover, this
value is almost 2 orders of magnitude lower than the N2O
emissions (5.1 kg N2O–N ha−1 a−1) measured from a beech
forest in Högelwald, Germany (Papen and Butterbach-Bahl,
1999). A likely reason is the substantially higher annual
deposition rate of 25 kg N ha−1 a−1, an N input five times
higher than that in our system. However, our measurements
of N deposition only include wet deposition. Additional dry
depositions are often assumed to add another 30–60 % to to-
tal atmospheric N deposition (Flechard et al., 2011).

3.2 Measured CO2 fluxes

Emissions measured using our closed chamber on arable land
and grassland include those from soil and vegetation, as en-
tire plants are covered by the chamber. Therefore, we inter-
pret these emissions as total ecosystem respiration (TER).
In contrast, chambers in the forest were placed on the for-
est floor without any vegetation inside; thus, these measure-
ments include soil (heterotrophic) and root (autotrophic) res-
piration, i.e. belowground respiration only. To determine the
representativeness of each transect for a given land use, the
respective differences in measured CO2 emissions were com-
pared to each other (Table 3). The measured CO2 emissions
are given over time (Fig. 5), separated into different seasons
(Fig. 6) and before/after management events occur (Fig. 7).

Arable TER: measured values from our arable transects
range up to 175.2, 199.6 and 143.1 kg C–CO2 ha−1 day−1

for A1, A2 and A3 respectively and are not significantly dif-
ferent between the transects (compare Table 3). Emissions
occur mainly during the growing season, starting in March
and ending in November. For a comparable study site in
southern Finland, reported daily TER values under barley
were between 23.6 to 235.6 kg C–CO2 ha−1 day−1 during
May and September (Lohila et al., 2003), which is in the
same range as our observations. The annual sum of our TER
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Table 2. Mean measured annual fluxes (November 2013–December 2015) on the different land use transects of the Vollnkirchener Bach
study area. Differences between the investigated transects and land uses for measured and modelled N2O emissions in kg N–N2O ha−1 a−1.

A1 A2 A3 G1 W1 W2 Measured Mean Mean Posterior
measured simulated RMSE

A1 4.08
4.49 7.33

0.0326–0.0353
A2 3.87 0.0238–0.0278
A3 5.53 0.0285–0.0329

G1 ∗ ∗ ∗ 0.29 0.29 0.69 0.0029–0.0038

W1 ∗ ∗ ∗ 0.09
0.08 0.33

0.0022–0.0025
W2 ∗ ∗ ∗ ∗ 0.03 0.0014–0.0021
W3 ∗ ∗ ∗ ∗ 0.13 0.0018–0.0021

∗ Significant difference (p<0.05, Kruskal–Wallis test). Arable (A1–3), grassland (G1), wetland (G2), forest (W1–3), RMSE
in kg N–N2O ha−1 day−1.

emissions is 19.96± 2.36 t C–CO2 ha−1 a−1. This is slightly
lower than yearly TER measured on a winter wheat study
site in Belgium with 23.18 t C–CO2 ha−1 a−1 (Suleau et al.,
2011). Demyan et al. (2016) reported lower values, with an
average total of 11.43 t C–CO2 ha−1 a−1, derived from obser-
vations spanning six growing seasons in southwestern Ger-
many. However, all studies are possibly prone to overesti-
mations of the emissions from September to November, as
daily emissions are generated with a multiple linear regres-
sion model, and in our case, are based on our hourly measure-
ments of air temperature and soil moisture. Such methods do
not fully account for management effects, such as harvests
(Subke et al., 2003).

Grassland TER: emissions are close to zero in the win-
ter months (December to February) and highest during the
growing season. A distinct negative correlation between the
measured TER with WFPS was found during wet conditions
from end of June to July in 2014. In this time, emissions de-
crease to 41.0 kg C–CO2 ha−1 day−1. The total yearly emis-
sions are 11.79 t C–CO2 ha−1 a−1, which agrees well with
the mean yearly emissions reported for 19 different grass-
land sites across Europe, with mean annual emissions of
12.83 t C–CO2 ha−1 a−1 (Gilmanov et al., 2007). However,
due to the many different grassland sites considered in their
study, Gilmanov et al. report a much wider range of observed
annual TER values, from 4.9 to 16.4 t C–CO2 ha−1 a−1. They
also found that management is a main influencer of TER,
where intensively managed grasslands produce higher emis-
sions than extensively managed grasslands. With regard to
grazing, we found only a minor direct impact on the mea-
sured flux rates (Fig. 7).

Forest belowground respiration: the mean measured be-
lowground respiration spans between minimum values of
2.1 to 4.5 and maximum values of 9.3 to 19.9 kg C–
CO2 ha−1 day−1 between the different transects (W1–3).
While we found higher emissions in the summer months, sea-
sonal differences have a lower magnitude of TER on arable
and grassland. This was expected, as we do not measure

aboveground biomass respiration on our forest study site.
Overall, rewetting has the strongest influence on changes
in belowground respiration in our forest study sites. The
highest emissions occurred in July 2014 after several rewet-
ting events of the uppermost soil layer (Fig. A1). Xiang et
al. (2008) reported that multiple rewetting leads to respira-
tion rates of up to 8 times higher. The total yearly soil emis-
sions are 2.98± 0.89 t C–CO2 ha−1 a−1, which is at the lower
end of other European forest ecosystems, e.g. 6.6± 2.9 t C–
CO2 ha−1 a−1, as reported by Janssens et al. (2001). The up-
hill transect W1 has the highest emission rates throughout
the year and shows significant differences when compared to
W2 and W3. This transect is less shaded by trees, resulting
in a 1.3 ◦C higher annual mean soil temperature compared to
W2 and W3, likely causing higher CO2 emissions (Table 3).

3.3 Modelled N fluxes

After selecting the posterior model runs as described in
Sect. 2.3.2, we found the model to be generally capable of re-
producing the measured data and consequently investigated
the modelled C and N cycles in more detail. The modelled
N2O emissions are shown for the different land uses over
time (Fig. 2), separated into different seasons (Fig. 3) and
before/after management events occur (Fig. 4). The complete
modelled N cycle is given in Table 4.

Arable land N cycle: the arable land simulations con-
sider an annual N input of 200 kg N ha−1 a−1. This in-
put is balanced by 108.6± 50.1 kg N ha−1 a−1 gaseous (pri-
marily N2), 30.0± 29.9 kg N ha−1 a−1 nitrate leaching and
99.7± 7.8 kg N ha−1 a−1 harvest losses (Table 4), mean-
ing that the modelled outputs are higher than the given in-
puts. This gap in the annual N cycle is fed by soil stor-
age in the model, indicating N depletion over time. Even
though N losses through NO−3 and particularly N2O emis-
sions (7.3± 2.3 kg N ha−1 a−1) are only a minor proportion
of the total N balance, both rates are high regarding their en-
vironmental impacts as a GHG contributing to global warm-
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Table 3. Mean measured annual fluxes (November 2013–December 2015) from the different land use transects of the Vollnkirchener Bach
study area. Differences between the investigated transects and land uses for measured and modelled CO2 emissions in t C–CO2 ha−1 a−1.

A1 A2 A3 G1 W1 W2 Measured Mean Mean Posterior
measured simulated RMSE

A1 20.10
19.96 20.53

30.73–36.38
A2 22.25 35.66–42.26
A3 17.54 22.90–28.46

G1 11.79 11.79 13.24 7.01–9.08

W1 ∗ ∗ ∗ ∗ 4.00
2.98 3.28

3.53–3.89
W2 ∗ ∗ ∗ ∗ ∗ 2.38 3.37–4.07
W3 ∗ ∗ ∗ ∗ ∗ 2.56 3.15–3.96

∗ Significant difference (p<0.05, Kruskal–Wallis test). Arable (A1–3), grassland (G1), wetland (G2), forest (W1–3), RMSE in
kg C–CO2 ha−1 day−1.

Figure 2. Measured and modelled N2O emissions from different land use. Measurements are given as grey error bars showing the variance
between the replicated transects and the mean value as a black dot. Posterior model uncertainty is given in light colour for the 5th and
95th percentiles and dark colour for the 25th and 75th percentiles. Vertical lines indicate management events. In the uppermost panel, blue
coloured vertical bars indicate fertilizer application, while brown colours indicate manure application.

ing and as a water pollutant regarding eutrophication and
drinking water supply, respectively. However, the uncertainty
related to our estimated NO−3 leaching rate is overall the
largest source of uncertainty in our N balance. These esti-
mates cannot be sufficiently constrained with the given ob-
servation data, but they are in accordance with other reported
N leaching rates on arable land in Germany (Siemens and
Kaupenjohann, 2002).

The simulated N2O emissions contribute 3.1 % to the to-
tal simulated N losses. The underlying model runs follow the
trend of the observation data. Hot moments can be observed
after fertilizer applications, and they are predicted by the
model in time but sometimes not in magnitude (e.g. March
to May 2014). During these events, soil moisture is often
not modelled accurately: the model predicts rewetting pro-
cesses that have not been measured at the same magnitude
(Fig. A1), which might explain the overestimated fluxes. One
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Figure 3. Observed and modelled N2O emissions for spring (21 March–20 June), summer (21 June–20 September), autumn (21 September–
20 December) and winter (21 December–20 March).

Figure 4. Management effects on N2O emissions. Measured and modelled emissions within a time window of 2 weeks before and 2 weeks
after a management event.

possible reason may also be uncertain rainfall model input
data. Kavetski et al. (2006) found the measurements of pre-
cipitation within a catchment to be uncertain, as the trajec-
tory of storm cells through a catchment may be different for
each storm and may not have their centres at the rain gauge,
where rainfall inputs are traditionally measured. Our rainfall
data are measured 4 km northeast of the trace gas study area
and is likely affected by such uncertainties.

The total simulated and measured emissions on the arable
site are highest in the spring (Fig. 3). While the transects
A1 and A2 vary, with 95 % of the values between 0 and
0.05 kg N2O–N ha−1 day−1, A3 shows more variation, up
to 0.15 kg N2O–N ha−1 day−1. As A3 is located at the hill
toe, we attribute this effect to the lateral transport of nitrate
from uphill. However, our one-dimensional model setup does
not cover lateral water and nutrient transport; accordingly,
the model is not able to predict the higher emissions at A3
in the spring. While such a process is part of complex inte-
grated hydro-biogeochemical catchment models (Haas et al.,
2013; Klatt et al., 2017; Wlotzka et al., 2013), it has not yet
been confirmed experimentally. The distributions of the mea-
sured emissions in the summer, autumn and winter seasons

are well in accordance with the modelled emissions. Further-
more, the modelled emissions are also in agreement with
emissions measured before and after manure applications
(Fig. 4). This result agrees with a study by Molina-Herrera et
al. (2016) who found LandscapeDNDC to be capable of sim-
ulating agricultural N2O emissions. However, in our case, the
model overestimates peak emissions before fertilizer applica-
tions, which leads to higher mean annual modelled emissions
(7.33 kg N2O–N ha−1 a−1). This is 2.8 kg N2O–N ha−1 a−1

higher than our observed emissions and is even outside the
large model uncertainty of 2.3 kg N2O–N ha−1 a−1. Hence,
future research should specifically investigate the reason for
this overestimation of peaks, either by revising the model
structure or by identifying other sources of model uncer-
tainty.

Grassland N cycle: grassland simulations consider an an-
nual N input of 14.6 kg, with 7.6 kg coming from modelled
biomass that is transferred into dung and urine applied by
grazing sheep. The simulated N loss is substantially larger
than the N input, with 22.3± 13.3 kg N ha−1 a−1 gaseous
losses (primarily N2), 1.5± 3.19 kg N ha−1 a−1 occurring
as nitrate leaching and 29.8± 9.4 kg N ha−1 a−1 as biomass
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removal through grazing sheep and harvest (hay making).
Comparing inputs and outputs, we simulated a mean nitro-
gen gap of 38.9± 25.9 kg N ha−1 a−1. The model suggests
decreasing soil organic N stocks. So far, we have only initial
measurements of soil organic N content. However, we as-
sume that the source of additional N in the form of nitrate in
shallow groundwater is a potential dominating process that
is not included in the current LandscapeDNDC version we
used. Liebermann et al. (2017) used a revised LandscapeD-
NDC setup for hypothesis testing to identify potential addi-
tional N sources in groundwater-dominated grasslands and
showed that groundwater N uptake is a likely contributor.

Taking a closer look at the modelled N2O emissions, one
can see that the model did not reproduce high or nega-
tive (N2O uptake) emissions. Currently, LandscapeDNDC
does not consider any N2O uptake, and accordingly, nega-
tive fluxes cannot be simulated by the model. The peaky dy-
namics of the simulated N2O emissions, especially from Au-
gust 2014 to January 2015, are not confirmed by the measure-
ments, indicating possible measurement errors during this
period of time. In a grazed system with, in our case, approx-
imately 70 sheep per hectare, the animal urine patches create
emissions hot spots. With only five chambers, it is possible
that the measurements could miss these hot spots. Addition-
ally, the LandscapeDNDC model will assume that the ma-
nure is uniformly spread over the field, producing emissions
that are likely to be higher than those from non-urine patches,
but lower than those from urine patches. One has also to con-
sider the temporal mismatch of our weekly N2O measure-
ments and the hourly simulations, making a full match of the
observations with the simulations difficult. So far, there is no
clear effect of grazing on the N2O emissions on the grassland
site in both the measurements and modelled results (Fig. 4).
The mean modelled annual emissions overestimate the obser-
vations by 0.4 kg N2O–N ha−1 a−1, and even the simulated
uncertainty bounds of 0.27 kg N2O–N ha−1 a−1 do not cap-
ture the measured dynamics.

Forest N cycle: the N input is given for the forest model
only considering atmospheric deposition with an annual
amount of 7.0 kg N ha−1 a−1. Gaseous losses amount to
1.8± 2.0 kg N ha−1 a−1. Leaching contributes to 2.0 % of
the N output. The rest (3.3± 2.0 kg N ha−1 a−1) is allocated
into biomass and soil. By taking a closer look at the N2O
emissions (Fig. 2), we see that the model fails to reproduce
the observed emission dynamics. The observed N2O emis-
sions have high error bars, and not all transects are driven
by frost–thaw cycles or N2O uptake at the same time (Ta-
ble 2). Parameterizing and simulating the forest transects
independently from each other would improve the simu-
lations. One limiting factor is that both N2O uptake and
frost–thaw cycles are not included in the current version
of LandscapeDNDC. We therefore recommend the inclu-
sion of frost–thaw cycles (e.g. based on De Bruijn et al.,
2009) in the model, as this process can have a major influ-
ence on N2O inventories, e.g. up to 73 % of the total annual

N2O loss at a forest site in Högelwald, Germany (Papen and
Butterbach-Bahl, 1999). The mean modelled annual emis-
sions (0.33± 0.15 kg N ha−1 a−1) overestimate the observed
emissions on all transects.

3.4 Modelled C fluxes

The modelled CO2 emissions are shown for the different
land uses over time (Fig. 5), separated into different seasons
(Fig. 6) and before/after management events (Fig. 7). The
complete modelled C cycle is given in Table 5.

Arable land C cycle: the LandscapeDNDC simulations
for the arable system predict a mean annual gross car-
bon uptake of 25.7± 1.3 t C–CO2 ha−1 a−1. 20.5± 1.8 t
C–CO2 ha−1 a−1 leaves the system through respiration,
to which maintenance respiration contributes the largest
proportion (65 %). This is in accordance with annual
measured losses (Table 3). The harvest output is with
4.7± 0.4 t C ha−1 a−1 and is in good agreement with the ob-
served yields (Fig. A4). However, the temporal dynamics of
the modelled TER on the arable land study site underestimate
the emissions in the summer season (Fig. 6), and the mean
modelled fluxes are substantially lower than those measured
before and after the harvest (Fig. 7).

Tillage and harvest events occur in the summer season.
While the observed emissions drop after harvest by 25 %,
the modelled emissions drop by 50 %. The reason for this
is either an underestimation of the emissions through Land-
scapeDNDC (after harvest events until tillage occurs) or un-
certainties in the measured CO2 emissions upscaling method
(discussed in Sect. 2.1). As microbial processes can ox-
idize more soil carbon after harvests (resulting in higher
heterotrophic respiration), we assume that the discrepancy
stems from the model simulations. There are studies, e.g.
Buyanovsky et al. (1986), which report the highest soil res-
piration rates after harvests. The modelled and measured soil
CO2 emissions agree well after tillage. However, unless there
is a gap of 2 weeks or more between harvest and tillage, the
“pre-tillage” results will include some post-harvest effects,
and the “post-harvest” results will also include some post-
tillage effects. Our intention to present the data grouped by
these events are the discrepancies between modelled and ob-
served CO2 dynamics. There is a sharp drop of modelled
CO2 emissions after harvest due to the prompt absence of
autotrophic respiration. In reality, there will likely be some
ongoing metabolic respiration of plant tissue remaining in
the field, which is not represented by the “assumed” dead
plant material in the model. After incorporation of harvest
residues (at tilling), modelled CO2 emissions increase again
sharply. The sharp increase is due to the incorporation and
hence availability of fresh litter (stubble) and a temporary
stimulation of decomposition by the model due to the dis-
ruption/aeration of the soil structure. Both, overestimation of
fresh litter and/or stimulation of decomposition by the model

Biogeosciences, 14, 3487–3508, 2017 www.biogeosciences.net/14/3487/2017/



T. Houska et al.: Constraining a complex biogeochemical model for CO2 and N2O 3497

Table 4. Simulated nitrogen fluxes given by posterior model runs and their uncertainty on different land use in kg N ha−1 a−1. N manure on
grassland includes urine and dung input by sheep. Biomass output on grasslands combines harvest export and biomass leaving the system
through sheep. Arable land model assumes 20 % return of stubble to field.

Modelled N flux Arable land Grassland Forest

N deposition 7.02 7.02 7.02
N manure 57.55 7.57 0
N fertilizer 135.37 0 0
Total input 199.94 14.59 7.02

NO emis. 0.57± 0.16 0.46± 0.21 0.45± 0.33
N2 emis. 62.55± 26.83 18.69± 10.91 1± 1.5
N2O emis. 7.33± 2.3 0.69± 0.27 0.33± 0.15
NH3 emis. 38.15± 20.8 2.45± 1.89 < 0.01±< 0.01
Total gaseous output 108.6± 50.09 22.29± 13.28 1.78± 1.98

DON leaching 0.01±< 0.01 0.01±< 0.01 0.01±< 0.01
NO3 leaching 30.01± 29.9 1.46± 3.19 0.03± 0.04
Total leaching output 30.02± 29.9 1.47± 3.19 0.04± 0.04

N grain export 63.92± 5.17 0 0
N straw export 35.75± 2.67 29.77± 9.44 0
Total biomass output 99.67± 7.84 29.77± 9.44 0

Balance −38.35± 87.83 −38.94± 25.91 5.20± 2.02

Figure 5. Modelled CO2 emissions and management. Measurements are given as grey error bars showing the variance between the replicated
transects and the mean value as a black dot. Posterior model uncertainty is given in light colour for the 5th and 95th percentiles and dark
colour for the 25th and 75th percentiles. Vertical lines indicate management events. Brown coloured bars in the uppermost panel indicate
manure application.

may contribute to the discrepancies between observed and
modelled CO2 emissions.

Grassland C cycle: the LandscapeDNDC simulations for
the grassland system (G1) predict a mean annual gross car-
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Figure 6. Observed and modelled CO2 emissions for spring (21 March–20 June), summer (21 June–20 September), autumn (21 September–
20 December), and winter (21 December–20 March).

Figure 7. Management effects on CO2 emissions. Measured and modelled emissions in a time window of 2 weeks before and 2 weeks after
a management.

bon uptake of 16.9± 1.7 t C–CO2 ha−1 a−1 and an annual
loss of 13.2± 2.3 t C–CO2 ha−1 a−1 through respiration. The
rest is related to grazing (0.2±< 0.01 t C–CO2 ha−1 a−1),
harvesting (2.1± 0.7 t C–CO2 ha−1 a−1) and allocation in
the soil (1.4± 4.7 t C–CO2 ha−1 a−1). The model cannot de-
termine whether the system is net gaining or losing carbon.
The annual mean and temporal dynamics of the modelled
emissions are well in accordance with the measured emis-
sions. The effect of grazing has a minor influence on the to-
tal ecosystem respiration (Fig. 7), resulting in a wider range
of both measured and modelled emissions. Grazing, i.e. the
reduction of root biomass, results in two contrary processes:
a reduction in maintenance respiration and an increase in au-
totrophic respiration (Raich and Tufekciogul, 2000).

Forest C cycle: the forest model predicts an annual C in-
put of 8.9± 0.6 t C–CO2 ha−1 a−1, which is low compared to
the estimations for old-growth beech forests in Europe, with
reported rates from 14.4 to 18.3 t C–CO2 ha−1 a−1 (Molina-
Herrera et al., 2015). However, C uptake rates vary in magni-
tude, with values ranging from 3 to 34 t C–CO2 ha−1 a−1 for
different forests in different growing stages (Waring et al.,

1998). As our study site is a mixture of young and old beech
trees, we assume that it has 40–50 % less biomass compared
to an old beech forest. Of the modelled C input, 6.6± 0.5 t C–
CO2 ha−1 a−1 leaves the system as gaseous CO2. The rest is
accumulated in the biomass and soil. The annual mean and
dynamics of the modelled emissions are in accordance with
the measured emissions. We expected to see rising emissions
with litter fall in autumn (Raich and Tufekciogul, 2000), but
cannot report this effect, either with measurements or with
model results (Fig. 6).

4 Conclusions

We presented a 2-year measurement campaign of trace gas
emissions from adjacent land uses i.e. arable land, grassland
and forest ecosystems, with concurrent model development
and rigorous testing through a model–data fusion.

We found high emissions of N2O and CO2 on our arable
land sites, low emissions on grassland sites and the lowest
emissions on the forest sites. These observations enable us
to investigate the underlying effects of plant growth, tem-
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Table 5. Simulated carbon fluxes given by posterior model runs and their uncertainty on different land use in t C ha−1 a−1. C manure on
grassland includes input by sheep’s dung. Arable land model assumes 20 % return of stubble to field.

Modelled C flux Arable land Grassland Forest

CO2 uptake 24.65± 1.32 16.8± 1.72 8.94± 0.56
C manure 1.06 0.07 0
Total input 25.71± 1.32 16.87± 1.72 8.94± 0.56

Growth respiration 2.53± 0.2 0.81± 0.27 1.44± 0.05
Heterotrophic respiration 4.69± 0.53 2.27± 0.9 2.04± 0.1
Maintenance respiration 13.31± 1.06 10.16± 1.13 3.11± 0.39
Total gaseous output 20.53± 1.79 13.24± 2.3 6.59± 0.54

DOC leaching < 0.01±< 0.01 < 0.01±< 0.01 < 0.01±< 0.01
Total leaching output < 0.01 < 0.01 < 0.01

C bud export 1.97± 0.17 0 0
C straw export 2.75± 0.21 2.28± 0.72 0
Total biomass output 4.72± 0.38 2.28± 0.72 0

Balance 0.46± 3.49 1.35± 4.74 2.35± 1.1

Table 6. Overall posterior model performance of LandscapeDNDC on different land uses in reproducing GHG emission data. Subjectively
classified into (1) good, (2) medium and (3) poor model performance in simulating reliable annual sums, seasonal patterns and magnitudes
of management events (e.g. fertilizer application).

Modelled performance N2O emissions CO2 emissions
on each land use

annual seasonal management annual seasonal management

Arable land (A1-3) 2 1 1 1 2 3
Grassland (G1) 1 2 1 1 1 1
Forest (W1–3) 2 2 n/a 1 2 n/a

n/a, not applicable, i.e. no forest management during modelled period from 2010 to 2016.

perature and WFPS, land use effects, seasonal patterns and
management effects. Respiration amounts rise in less shaded
(warmer) areas of the forest, while N2O emissions increase
towards the foothills of the forest and arable land sites due
to nitrogen accumulation. Highly variable N2O emissions
in forests resulted in large uncertainties in the model veri-
fication data, which translated into large uncertainties in the
model results for forests.

Detailed measured data on soil and management allowed
us to fit the biogeochemical model LandscapeDNDC to the
measured soil moisture, yield and GHG emissions of CO2
and N2O. A subjective conclusion about the overall model
performance is shown in Table 6: The model reproduced the
measured data reasonably well in time, separated into sea-
sons and management events. The model performance was
best in predicting management effects on N2O emissions and
annual CO2 emissions for all land uses. With regard to land
use, the simulations for grassland sites work best, followed
by those for arable land. The simulations for N2O emissions
on arable land outperform those for CO2, and vice versa for

grassland. Low emissions on forest sites were generally dif-
ficult to depict using our modelling approach.

The model–data fusion approach allowed us to iden-
tify model structural deficiencies that would likely increase
model performances if addressed in LandscapeDNDC: miss-
ing N2O uptake processes; missing NO−3 (and potentially
dissolved organic nitrogen) uptake through shallow ground-
water; missing lateral interaction on hillslopes due to the 1-D
model setup.

Furthermore, posterior model runs allowed for the quan-
tification of the magnitude and uncertainty of unmeasured
C and N cycle fluxes. The investigated forest site generally
acts as the largest sink for C and N, with annual seques-
tration rates of 2.4± 1.1 t C ha−1 and 5.2± 2.0 kg N ha−1.
Whether the extensive grazed grassland is also acting as a
sink for C with 1.4± 4.7 t C ha−1 per year remains uncertain,
while the N cycle of the grassland model cannot be closed
with the given settings. Shrinking N soil pools indicate a
missing input, which we assume to be shallow groundwater
with an additional N supply of approximately 38.9± 25.9 kg
N ha−1 a−1.
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Current land use in this catchment is dominated by forests
(37 %) and arable land (35 %), whereas grassland sites
(11 %) are mainly distributed along the stream. From the
viewpoint of climate-smart landscapes, the measured data
suggest the benefit of forests in a landscape, as they have the
fewest GHG emissions. Riparian zones can act as sinks of N
but only during the vegetation period and during times when
roots have access to groundwater. Arable land use produces
high amounts of N2O, not throughout the year, but rather, in
spring after fertilizer application.

The herein presented novel GHG study catchment enables
a number of future studies. The forest sites could be further
used to investigate the influence of leafs on the concentra-
tion of N through fall. The presented grassland dataset al-
lows to quantify the nitrate uptake of riparian zones in more
detail, e.g. by model coupling analysis, as done by Klatt et
al. (2017), to account for potential interactions of land use
patterns. Such a model setup would allow upscaling in space,
e.g. for the generation of GHG inventories or an analysis of
more detailed management scenarios in time. From the view-
point of eutrophication and drinking water security, the pre-
sented agro-ecosystem plays a pivotal role, as it receives high
amounts of reactive nitrogen (N) in the form of mineral fer-
tilizer and manure. Our measured data can lead to novel un-
derstanding of how to develop and test mitigation measures
to reduce N pollution on the landscape scale. The existing
model setup can be further used in a forecast mode, e.g. to
estimate optimal timing and location of fertilizer application
to minimize N2O emissions and NO−3 leaching, while at least
maintaining yields. Continuous measures of greenhouse gas
emissions can be used to evaluate possible mitigation mea-
sures.

Code availability. The LandscapeDNDC framework is freely avail-
able upon request from http://svn.imk-ifu.kit.edu/. The SPOTPY
tool, used for model–data fusion, is free and open source and is
available from https://pypi.python.org/pypi/spotpy.

Data availability. All measured data are freely available upon re-
quest from http://fb09-pasig.umwelt.uni-giessen.de:8081/.
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Appendix A

Figure A1. Modelled WFPS on arable land in different depths. RM-
SEs ranging from 0.0774 to 0.1194 % WFPS (0.2 m), 0.0511 to
0.0955 % WFPS (0.4 m) and 0.0921 to 0.1193 % WFPS (0.6 m).

Figure A2. Modelled WFPS on grassland in different depths. RM-
SEs ranging from 0.043 to 0.1481 % WFPS (0.1 m) and 0.056
0.1069 % WFPS (0.25 m).

www.biogeosciences.net/14/3487/2017/ Biogeosciences, 14, 3487–3508, 2017
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Figure A3. Modelled WFPS on forest in different depths. RMSEs
ranging from 0.0817 to 0.1324 % WFPS (0.15 m) and 0.0812 to
0.1606 % WFPS (0.25 m).

Figure A4. Modelled dry weight grain yield on arable land use.
WIWH, winter wheat; TRSE, Triticum secale. RMSEs ranging
from 1125.7 to 2529.2 kg ha−1.

Biogeosciences, 14, 3487–3508, 2017 www.biogeosciences.net/14/3487/2017/
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Figure A5. Posterior parameter distribution of the LandscapeD-
NDC module MeTrx. Orange line, arable land; light green line,
grassland; dark green line, forest model set-up.

Figure A6. Posterior parameter distribution of the LandscapeD-
NDC modules wcDNDC and physiology. Orange line, arable land;
light green line, grassland; dark green line, forest model set-up.
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